Math 360: A primitive integral and elementary functions


 Joseph Howard
 1 years ago
 Views:
Transcription
1 Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth C: Integrl/functions 1 / 32
2 Setup for the integrl prtitions Definition: (prtitions of n intervl) Let < b, then sequence of numbers = x 0 < x 1 < x 2 < < x n = b is clled prtition of the intervl [, b]. There is no requirement tht the x i s be evenly spced, only tht they be strictly incresing nd tht x 0 = nd x n = b. Sometimes we refer to prtition by P. For instnce, we sy P is refinement of the prtition P (nd write P > P) if ll of the x i s in P re lso in P. The norm of the prtition P (denoted P ) is the mximum of x i x i 1 for i = 1,..., n. (The textbook clls this the gp of P). Given two prtitions P 1 nd P 2 of [, b] it is esy to see tht they hve common refinement just use ll the x s from both prtitions in new P 3. D. DeTurck Mth C: Integrl/functions 2 / 32
3 Setup for the integrl monotonic functions At first, we re only going to consider the integrls of monotonic functions. Let f : [, b] R be monotonic function. For the moment, we ll ssume tht f is incresing (i.e., f (x) f (y) if x y), but everything will work for decresing functions with the obvious djustments. f does not hve to be continuous (nd in fct it cn be llowed to be discontinuous t [countbly ] infinitely mny plces), s long s it is defined for ll x [, b] nd is monotonic. D. DeTurck Mth C: Integrl/functions 3 / 32
4 Setup for the integrl upper nd lower sums For f monotoniclly incresing on [, b], nd P prtition of [, b]. Definition: (upper nd lower sums) The upper sum of f corresponding to the prtition P is U(f, P) = n f (x i )(x i x i 1 ) i=1 nd the lower sum of f corresponding to the prtition P is L(f, P) = n f (x i 1 )(x i x i 1 ) i=1 Since f is incresing, we hve f (x i ) is the mximum vlue of f on [x i 1, x i ] nd f (x i 1 ) is the minimum. Therefore U(f, P) L(f, P) D. DeTurck Mth C: Integrl/functions 4 / 32
5 Setup for the integrl definition Since there s lwys common refinement P for ny prtitions P 1 nd P 2, we hve L(f, P 1 ) L(f, P) U(f, P) U(f, P 2 ) where P is common refinement for P 1 nd P 2. So for ny pir of prtitions P 1 nd P 2 we hve L(f, P 1 ) U(f, P 2 ). Therefore sup L(f, P) over ll prtitions P is less thn or equl to inf U(f, P). If these re equl then their common vlue is clled the integrl: f (x) dx D. DeTurck Mth C: Integrl/functions 5 / 32
6 Proving existence regulr prtitions To show tht the integrl exists, it is sufficient to find, for ny ε > 0, prtition P such tht U(f, P) < L(f, P) + ε. For monotonic functions, we cn do this by using sufficiently fine regulr prtitions these re prtitions hving the x i s evenly spced (so x i x i 1 = b for ll i = 1,..., n). n Theorem If f : [, b] R is monotonic, then f (x) dx exists. Proof: Given ε > 0, choose n so lrge tht the regulr prtition P f (b) f () with n steps, will hve U(f, P) L(f, P) = < ε. n D. DeTurck Mth C: Integrl/functions 6 / 32
7 Functions of bounded vrition Proposition (Greter generlity) If f (x) cn be written s the sum of two monotonic functions p(x) nd q(x) with p incresing nd q decresing on [, b] (such function is clled function of bounded vrition), then f (x) dx exists nd is equl to p(x) dx + q(x) dx. The set of functions of bounded vrition on closed bounded intervl is ctully quite generl, so even though we strted out with somewht restrictive definition we hve creted pretty powerful form of the integrl. D. DeTurck Mth C: Integrl/functions 7 / 32
8 Bsic properties Becuse the upper nd lower sums hve these properties, it follows tht the integrl does: 1 Linerity: αf (x) + βg(x) dx = α f (x) dx + β g(x) dx for constnts α, β nd f nd g re functions of bounded vrition on [, b]. 2 Monotonicity: If f (x) g(x) for ll x [, b] then b f (x) dx b g(x) dx. 3 If f (x) is of bounded vrition on [, b], then so is f (x) nd f (x) dx f (x) dx. D. DeTurck Mth C: Integrl/functions 8 / 32
9 More bsic properties 4 If < b < c then ˆ c f (x) dx = ˆ c f (x) dx + f (x) dx. b 5 If m inf{f (x) x [, b]} nd M sup{f (x) x [, b]} then (b )m f (x) dx (b )M. 6 Men vlue theorem for integrls: If f is continuous nd of bounded vrition on [, b] then there is c with < c < b such tht f (c) = 1 f (x) dx. b D. DeTurck Mth C: Integrl/functions 9 / 32
10 Fundmentl Theorem integrls of derivtives Fundmentl theorem of clculus I: Integrls of derivtives Let F (x) be differentible function on [, b] with derivtive F (x), nd suppose F is function of bounded vrition on [, b]. Then F (x) dx = F (b) F (). We cn prove this for functions with monotonic derivtives nd then use linerity. If F (x) is monotoniclly incresing, then for ny intervl (x i 1, x i ) prtition P we hve F (x i 1 ) F (x i) F (x i 1 ) x i x i 1 F (x i ) by the men vlue theorem (for derivtives). D. DeTurck Mth C: Integrl/functions 10 / 32
11 Fundmentl Theorem proof conclusion But then L(f, P) = n F (x i 1 )(x i x i 1 ) i=1 n F (x i ) F (x i 1 ) i=1 n F (x i )(x i x i 1 ) = U(f, P). i=1 But the middle sum telescopes to F (x n ) F (x 0 ) = F (b) F (). Now F (b) F () is trpped between sup L(f, P) nd inf U(f, P), both of which re equl to the integrl P f (x) dx. P D. DeTurck Mth C: Integrl/functions 11 / 32
12 Second fundmentl theorem derivtives of integrls Fundmentl theorem of clculus II: Derivtives of integrls Let f (x) be continuous function of bounded vrition on [, b]. Define the function F (x) vi F (x) = ˆ x f (t) dt. Then F is differentible nd F (x) = f (x). First, if h > 0 we hve F (x + h) F (x) = ˆ x+h x f (t) dt = hf (c) for some c between x nd x + h by properties 4 nd 6 (men vlue theorem for integrls). D. DeTurck Mth C: Integrl/functions 12 / 32
13 Second fundmentl theorem proof conclusion Therefore the difference quotient F (x + h) F (x) h = f (c) where x < c < x + h But since f is continuous, f (c) f (x) s h 0 +. ˆ x For h < 0 we use tht F (x + h) F (x) = x+h f (t) dt = hf (c) for some c between x + h nd x, nd the proof goes through s for the h > 0 cse. D. DeTurck Mth C: Integrl/functions 13 / 32
14 Using FTC I to compute integrls Of course, we cn use the first FTC to clculte integrls, once we hve ntiderivtive formuls obtined by turning round derivtive formuls. Right now, though, we don t hve much more thn derivtives of rtionl powers of x. So we hve tht since if r is rtionl number, then d dx (x r ) = rx r 1 x r 1 dx = 1 r (br r ) provided r 0. Of course we usully replce r by r + 1 nd sy x r dx = 1 r + 1 (br+1 r+1 ) provided r 1. D. DeTurck Mth C: Integrl/functions 14 / 32
15 Wht bout r = 1? 1 So now we hve question: wht is dx? Becuse x f (x) = 1/x is monotoniclly decresing on ny intervl [, b] where > 0 the integrl should exist. So, provisionlly, let s define the function L(x) vi: L(x) = ˆ x 1 1 t dt nd see if we cn uncover some of its properties. To begin, we know only tht L(1) = 0 nd L (x) = 1 x. D. DeTurck Mth C: Integrl/functions 15 / 32
16 Multiplictive property of L(x) Consider the function L(x) for positive constnt. By wht we know bout L nd the chin rule we hve d dl L(x) = dx dx = x x = 1 x. So the derivtive of L(x) is the sme s the derivtive of L(x), therefore the two differ by constnt. Wht constnt? Well, putting x = 1 gives tht L(x) t 1 is L(). So L(x) = L() + L(x). Look fmilir? D. DeTurck Mth C: Integrl/functions 16 / 32
17 Power property of L How bout L(x r ) if r Q? we hve d dx L(x r ) = 1 d x r dx x r rx r 1 = x r = r x = r dl(x) dx. So the derivtive of L(x r ) is r times the derivtive of L(x). Moreover, t x = 1, we hve L(x r ) x=1 = 0. This shows tht L(x r ) = rl(x). Agin, look fmilir? So fr, we hve defined L(x) only for x 1. But we could define it for 0 < x < 1 either by sying tht L(x) = L(1/x) or else by ˆ 1 1 sying tht L(x) = dx. It s n esy exercise to show tht x x these definitions gree. Likewise, if we define L(x) = L( x) for x < 0 we will hve L (x) = 1/x there s well. D. DeTurck Mth C: Integrl/functions 17 / 32
18 The rnge of ln(x) We hve defined the function L(x) s the integrl of 1/x with L(1) = 0 (nd L( 1) = 0). So L(x) grees with the nturl logrithm function ln(x). Since 1 1 x 1 2 for 1 < x < 2, we hve tht 1 > ln(2) > 1 2. Therefore ln(2 n ) > n 2 which shows tht ln(x) s x. Likewise, ln(1/2) < 1/2, so ln(1/2 n ) < n/2, showing tht ln(x) s x 0 +. Therefore the rnge of ln(x) is ll of R, nd ln(x) is strictly monotoniclly incresing function, since its derivtive is positive. Therefore it hs n inverse function tht will mp R to (0, ). Let s cll the inverse function E(x) nd study its properties. D. DeTurck Mth C: Integrl/functions 18 / 32
19 The inverse of ln x nd rbitrry powers The function E(x) is defined by E(ln(x)) = x for x > 0 nd ln(e(x)) = x for ll x R. Becuse ln(1) = 0 we hve E(0) = 1. And since ln(e()e(b)) = ln(e()) + ln(e(b)) = + b, we hve E( + b) = E()E(b). Likewise, since for R nd r Q, we hve E(r) = E() r. ln(e() r ) = r ln(e()) = r, Therefore E(x) behves like rising some number to the xth power, nd it gives us wy to define x y for ll rel y, nmely x y = E(y ln x). D. DeTurck Mth C: Integrl/functions 19 / 32
20 The number e We hve E(x) is like rising some number to the xth power. Wht number? Well, tht would be E(1), which we ll cll e. So e is the number such tht ln e = 1. Becuse ln 2 = ˆ 2 1 ˆ dt < 1 nd ln 4 = t 1 t dt > > 1 we know tht 2 < e < 4. We ll get better estimtes lter. But for now, we ll write e x for E(x). Derivtive: If y = e x then x = ln y so 1 = 1 y in other words d dx ex = e x. dy dy, nd so dx dx = y, D. DeTurck Mth C: Integrl/functions 20 / 32
21 An importnt differentil eqution So e x is solution of the differentil eqution y = y with initil vlue y(0) = 1. More generlly Importnt! The unique solution of the initilvlue problem y = ky, y(0) = C is y = Ce kx. It is esy to check tht Ce kx stisfies the differentil eqution nd the initil condition. If f (x) were nother solution, then f = kf nd f (0) = C nd we could clculte: d dx ( ) f (x) Ce kx = 1C (e kx f (x) ke kx f (x)) = e kx (kf kf ) = 0 C so e kx f (x) is constnt. Wht constnt? Evlute t zero to get tht it s 1, so f (x) = Ce kx fter ll. D. DeTurck Mth C: Integrl/functions 21 / 32
22 Better estimtes of e Now tht we know tht e x stisfies y = y, we know tht ll the derivtives of e x re e x. In prticulr, ll of them re equl to 1 t x = 0. Therefore, by the Tylor estimte: e = e 1 = ! + 1 2! + 1 3! n! + M (n + 1)! where M is the vlue of the (n + 1)st derivtive of e x evluted somewhere between 0 nd 1. From our erlier primitive estimte we know tht 1 < M < 4. So for ny n > 0 we cn write 1 (n + 1)! < e [ ! + 1 2! + 1 3! n! ] < 4 (n + 1)! D. DeTurck Mth C: Integrl/functions 22 / 32
23 e is irrtionl Use the lst inequlity to show tht e is not rtionl number. If it were, then e = p/q for some positive integers p nd q nd we would hve 1 (n + 1)! < p q Multiply by n! nd get 1 (n + 1) < n!p q n! [ ! + 1 2! + 1 3! ] < n! [ ! + 1 2! + 1 3! ] < n! 4 (n + 1)! 4 (n + 1) If n q then the number in the middle is n integer, but if n > 4 then we ve trpped n integer between two positive rtionl numbers both of which re less thn 1. A contrdiction! D. DeTurck Mth C: Integrl/functions 23 / 32
24 Deciml pproximtion of e Strt gin from the Tylor estimte e = e 1 = ! + 1 2! + 1 3! n! + where we know tht 1 < M < 4. If we evlute this for n = 19 we get tht M (n + 1)! < e < Probbly close enough for most purposes. D. DeTurck Mth C: Integrl/functions 24 / 32
25 Trig? How should we pproch trigonometric functions? Let s strt with the function ˆ x 1 A(x) = 1 + t 2 dt Clerly A(x) is n incresing function nd since A(x) < ˆ x 1 1 t 2 dt = 2 1 x, we hve tht A(x) is defined for ll x R (we hve A(x) is n odd function of x) nd A(x) < 2 for ll x. Since A(x) is incresing nd bounded bove, it must pproch limit s x. Let s cll this limit π/2: Definition of π π = 2 lim x A(x). D. DeTurck Mth C: Integrl/functions 25 / 32
26 Inverse functions Since A(x) is monotoniclly incresing function from R to the intervl ( 1 2 π, 1 2π), it hs n inverse function tht we will cll T (x) from ( 1 2 π, 1 2π) to R. Since d dx A(x) = 1, if x = A(y) (or y = T (x)) we hve 1 + x 2 1 = y 2 dy dx Therefore d dx T (x) = 1 + T (x)2. From our definition of π/2, we see tht lim T (x) = x π/2 D. DeTurck Mth C: Integrl/functions 26 / 32
27 S(x) nd C(x) Next. let S(x) nd C(x) be the functions stisfying S(x) = T (x) 1 + T (x) 2 nd C(x) = T (x) 2. It s immeditely pprent tht S(x) 2 + C(x) 2 = 1. Moreover d dx S(x) = = 1 + T 2 T T TT 1+T T 2 = (1 + T 2 ) 2 T 2 (1 + T 2 ) (1 + T 2 ) 3/2 1 (1 + T 2 = C(x) ) 1/2 nd likewise d C(x) = S(x). dx D. DeTurck Mth C: Integrl/functions 27 / 32
28 The differentil eqution for S(x) nd C(x) Both S(x) nd C(x) stisfy the secondorder DE: y + y = 0. Additionlly S(0) = 0 nd S (0) = 1 nd C(0) = 1 nd C (0) = 0. A new kind of initilvlue problem! Proposition There is t most one solution of the initilvlue problem y + y = 0 y(0) = y (0) = b. If there were two, cll them y nd z, then their difference u = y z would stisfy u + u = 0 with u(0) = u (0) = 0. But then d dx (u2 + u 2 ) = 2uu + 2u u = 2u (u + u ) = 0, so this quntity is constnt, nd in fct is zero becuse it is zero when x = 0. But tht mens u 2 = 0, so u = 0 nd so y = z. D. DeTurck Mth C: Integrl/functions 28 / 32
29 Extensions, periodicity At this point, becuse T (x) is defined only for 1 2 π < x < 1 2π, the functions S(x) nd C(x) hve these sme restrictions. However, since T (x) s x 1 2 π, you cn see tht S(x) 1 nd C(x) 0 s x 1 2 π. It follows tht C (x) 1 nd S (x) 0 there, nd becuse we hve tht S(π x) nd C(π x) re solutions of y + y = 0, we see we cn extend S nd C to be defined up to π. Keep repeting this trick to get tht S nd C re defined for ll x nd re periodic with period 2π. D. DeTurck Mth C: Integrl/functions 29 / 32
30 More trig identities Addition formuls: Wht is sin( + b)? Well, the function y = sin( + x) stisfies y + y = 0 nd y(0) = sin nd y (0) = cos. Therefore we hve y = sin( + x) = sin cos x + cos sin x Get ddition formuls for other trig functions in similr wy. D. DeTurck Mth C: Integrl/functions 30 / 32
31 Integrtion by substitution We puse to do the proof of fmilir integrtion technique, which is the chin rule in reverse: Integrtion by subsitution Suppose f : [, b] R nd g : [c, d] R re of bounded vrition, nd tht the derivtive of g exists nd is of bounded vrition on (c, d). Further, ssume tht the imge of g : (c, d) R is contined in the intervl (, b). Then ˆ d c f (g(x))g (x) dx = Proof: Apply FTC to the function H(x) = ˆ x c f (g(t)) dt ˆ g(d) g(c) ˆ g(x) g(c) f (x) dx. f (t) dt. D. DeTurck Mth C: Integrl/functions 31 / 32
32 Wht is π? We ve defined π/2 to be the first positive zero of cos x, but now we cn give it geometric significnce. To do so, we ll use the substitution g(x) = sin x on the following integrl: ˆ x 2 dx = ˆ π/2 = = 0 ˆ π/2 0 1 sin 2 θ cos θ dθ cos 2 θ dθ = ( ) θ sin 2θ π/ ˆ π/2 0 = π 4 1 (1 + cos 2θ) dθ 2 This shows tht π is the re of the unit circle. At lst. D. DeTurck Mth C: Integrl/functions 32 / 32
Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationUNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE
UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationChapter 6. Riemann Integral
Introduction to Riemnn integrl Chpter 6. Riemnn Integrl WonKwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationMath 3B Final Review
Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:4510:45m SH 1607 Mth Lb Hours: TR 12pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationMath 113 Exam 2 Practice
Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number
More informationIf u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du
Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find ntiderivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible
More informationMath 100 Review Sheet
Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s
More information38 Riemann sums and existence of the definite integral.
38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the xxis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More information5.5 The Substitution Rule
5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n ntiderivtive is not esily recognizble, then we re in
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationCalculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties
Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwthchen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationNew Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06073 HIKARI Ltd, www.mhikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More informationMath 113 Exam 1Review
Mth 113 Exm 1Review September 26, 2016 Exm 1 covers 6.17.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between
More informationChapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...
Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting
More information1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.
Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the
More informationSections 5.2: The Definite Integral
Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More information7.2 The Definition of the Riemann Integral. Outline
7.2 The Definition of the Riemnn Integrl Tom Lewis Fll Semester 2014 Upper nd lower sums Some importnt theorems Upper nd lower integrls The integrl Two importnt theorems on integrbility Outline Upper nd
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationThe problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.
ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion
More information8 Laplace s Method and Local Limit Theorems
8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationa n+2 a n+1 M n a 2 a 1. (2)
Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside
More informationx = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationFor a continuous function f : [a; b]! R we wish to define the Riemann integral
Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This
More informationdifferent methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).
Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different
More informationLecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
More informationu(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.
Lecture 4 Complex Integrtion MATHGA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex
More informationHandout: Natural deduction for first order logic
MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes
More informationUniversitaireWiskundeCompetitie. Problem 2005/4A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that
Problemen/UWC NAW 5/7 nr juni 006 47 Problemen/UWC UniversitireWiskundeCompetitie Edition 005/4 For Session 005/4 we received submissions from Peter Vndendriessche, Vldislv Frnk, Arne Smeets, Jn vn de
More informationFINALTERM EXAMINATION 2011 Calculus &. Analytical GeometryI
FINALTERM EXAMINATION 011 Clculus &. Anlyticl GeometryI Question No: 1 { Mrks: 1 )  Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...
More informationLine Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
More informationMAT612REAL ANALYSIS RIEMANN STIELTJES INTEGRAL
MAT612REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationMore Properties of the Riemann Integral
More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More informationRiemann Integrals and the Fundamental Theorem of Calculus
Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums
More informationPreSession Review. Part 1: Basic Algebra; Linear Functions and Graphs
PreSession Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:
More informationA. Limits  L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.
A. Limits  L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c
More information3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
More informationSOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014
SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.
More informationMapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
More informationInterpreting Integrals and the Fundamental Theorem
Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of
More information7  Continuous random variables
71 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7  Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin
More informationFarey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University
U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions
More informationHomework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.
Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points
More informationSummary of Elementary Calculus
Summry of Elementry Clculus Notes by Wlter Noll (1971) 1 The rel numbers The set of rel numbers is denoted by R. The set R is often visulized geometriclly s numberline nd its elements re often referred
More informationMath 324 Course Notes: Brief description
Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd
More informationProperties of the Riemann Stieltjes Integral
Properties of the Riemnn Stieltjes Integrl Theorem (Linerity Properties) Let < c < d < b nd A,B IR nd f,g,α,β : [,b] IR. () If f,g R(α) on [,b], then Af +Bg R(α) on [,b] nd [ ] b Af +Bg dα A +B (b) If
More informationMath 4200: Homework Problems
Mth 4200: Homework Problems Gregor Kovčič 1. Prove the following properties of the binomil coefficients ( n ) ( n ) (i) 1 + + + + 1 2 ( n ) (ii) 1 ( n ) ( n ) + 2 + 3 + + n 2 3 ( ) n ( n + = 2 n 1 n) n,
More informationMATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.
MATH 409 Advnced Clculus I Lecture 18: Drboux sums. The Riemnn integrl. Prtitions of n intervl Definition. A prtition of closed bounded intervl [, b] is finite subset P [,b] tht includes the endpoints
More informationVariational Techniques for SturmLiouville Eigenvalue Problems
Vritionl Techniques for SturmLiouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
More informationMA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
More informationSection 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40
Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since
More informationPower Series, Taylor Series
CHAPTER 5 Power Series, Tylor Series In Chpter 4, we evluted complex integrls directly by using Cuchy s integrl formul, which ws derived from the fmous Cuchy integrl theorem. We now shift from the pproch
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationMathematical Analysis: Supplementary notes I
Mthemticl Anlysis: Supplementry notes I 0 FIELDS The rel numbers, R, form field This mens tht we hve set, here R, nd two binry opertions ddition, + : R R R, nd multipliction, : R R R, for which the xioms
More informationPartial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the righthnd side limit equls to the lefthnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
More informationMATH 222 Second Semester Calculus. Fall 2015
MATH Second Semester Clculus Fll 5 Typeset:August, 5 Mth nd Semester Clculus Lecture notes version. (Fll 5) This is self contined set of lecture notes for Mth. The notes were written by Sigurd Angenent,
More informationSummer MTH142 College Calculus 2. Section J. Lecture Notes. Yin Su University at Buffalo
Summer 6 MTH4 College Clculus Section J Lecture Notes Yin Su University t Bufflo yinsu@bufflo.edu Contents Bsic techniques of integrtion 3. Antiderivtive nd indefinite integrls..............................................
More informationSection 4: Integration ECO4112F 2011
Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic
More informationMath 107H Topics for the first exam. csc 2 x dx = cot x + C csc x cotx dx = csc x + C tan x dx = ln secx + C cot x dx = ln sinx + C e x dx = e x + C
Integrtion Mth 07H Topics for the first exm Bsic list: x n dx = xn+ + C (provided n ) n + sin(kx) dx = cos(kx) + C k sec x dx = tnx + C sec x tnx dx = sec x + C /x dx = ln x + C cos(kx) dx = sin(kx) +
More informationNWI: Mathematics. Various books in the library with the title Linear Algebra I, or Analysis I. (And also Linear Algebra II, or Analysis II.
NWI: Mthemtics Literture These lecture notes! Vrious books in the librry with the title Liner Algebr I, or Anlysis I (And lso Liner Algebr II, or Anlysis II) The lecture notes of some of the people who
More informationMath 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
More informationCzechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction
Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCKKURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When relvlued
More informationEnergy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon
Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,
More information13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS
33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationIntegrals along Curves.
Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More informationBig idea in Calculus: approximation
Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:
More informationWeek 7 Riemann Stieltjes Integration: Lectures 1921
Week 7 Riemnn Stieltjes Integrtion: Lectures 1921 Lecture 19 Throughout this section α will denote monotoniclly incresing function on n intervl [, b]. Let f be bounded function on [, b]. Let P = { = 0
More informationMath 0230 Calculus 2 Lectures
Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two
More informationWe know that if f is a continuous nonnegative function on the interval [a, b], then b
1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going
More informationSection 14.3 Arc Length and Curvature
Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in
More informationMATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.
MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded
More informationThe Dirac distribution
A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution
More informationECO 317 Economics of Uncertainty Fall Term 2007 Notes for lectures 4. Stochastic Dominance
Generl structure ECO 37 Economics of Uncertinty Fll Term 007 Notes for lectures 4. Stochstic Dominnce Here we suppose tht the consequences re welth mounts denoted by W, which cn tke on ny vlue between
More informationAnonymous Math 361: Homework 5. x i = 1 (1 u i )
Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define
More informationCS667 Lecture 6: Monte Carlo Integration 02/10/05
CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of
More informationMath 113 Exam 2 Practice
Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This
More informationLine and Surface Integrals: An Intuitive Understanding
Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of
More information