A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007


 Antony Sullivan
 2 years ago
 Views:
Transcription
1 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus 6 Rtes of Chnge nd Derivtives Life would be simple if every function were constnt. It isn't nd they ren't. Clculus llows us to get hndle on how functions chnge with their rgument. Recll this denition. Denition. A function f is rule of correspondence tht ssigns to ech element x in set D, clled its domin, unique vlue f (x) in set R, clled its rnge (or trget). We write f : D R in this sitution Exmple. Let D = [0, 5], the intervl of rel numbers x R such tht π x π, nd dene function f : D R by the formul f (x) = x 2 + 2x. Certinly this formul yields one nd only one welldened vlue f (x) for ech choice of x. (There is something to check: could the denomintor be zero for some x in D? Answer is no.) So we hve function. This function could be model of, for exmple, totl cost for certin product s function of output x. We re interested in how this function chnges with x. A trditionl denition of mrginl cost sys tht it is the dditionl costs incurred by the production of one 1
2 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 2 dditionl unit of the product. Thus the mrginl costs t production level x re f (x + 1) f (x) = f (x + 1) f (x) 1 = f (x + x) f (x), x = 1. x This is just step wy from the clculus denition of mrginl cost, nmely, the derivtive of f (x) t x dened by f (x) = df (x) = lim dx x 0 f (x + x) f (x). x Recll tht the derivtive hs nother interprettion, more geometricl in nture, nmely, f () is the slope of the tngent line y = f () (x ) + f() to the curve y = f (x) t the point (, f ()) on the curve. Observe tht this tngent line is relly limit of secnt lines of the form y = f ( + h) f () h (x ) + f () where we let h 0. See the gure below for comprison. y y = f ()(x ) + f() x df 01 f y = f(+ x) f() x (x ) + f() y = f(x) + x x As we know (nd won't give too much detil here) there re mny useful rules of dierentition, e.g., for given functions f (x), g (x) nd
3 constnts, b, n, A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 3 (f (x) + bg (x)) = f (x) + bg (x) (f (x) g (x)) = f (x) g (x) + f (x) g (x) ( ) f (x) = g (x) f (x) f (x) g (x) g (x) g (x) 2 f (g (x)) = f (g(x)) g (x) (x n ) = nx n 1 (e x ) = e x (ln (x)) = 1 x (sin (x)) = cos (x) (cos (x)) = sin (x) (rctn (x)) = x 2 nd so forth. Recll tht F (x) is n ntiderivtive of f (x) if F (x) = f (x). Any two ntiderivtives of f (x) dier by constnt, so generl formul for the ntiderivtives of f (x) is given by f (x) dx = F (x) + C, where C is constnt of integrtion. Thus, ech derivtive formul gives rise to n ntiderivtive formul. For exmple, the lst derivtive formul bove implies tht 1 dx = rctn (x) + C. 1 + x2 Exmple. Find n eqution of the tngent line to the curve f (x) = x 2 + 2x t the point on the curve where x = 3. Solution. First use the derivtive properties to clculte ( ) 3 f (x) = + (2x) = 6x 1 + x 2 (1 + x 2 ) Evlute nd nd tht f (3) = 6.3, f (3) = 1.82, so tht the tngent line is given by y = 1.82 (x 3) = 1.82x
4 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 4 Differentils Tke closer look t the denition of derivtive. We cn think of the rte of chnge over the intervl [, + h] given by f f ( + x) f () = x x s n pproximtion to the derivtive f (). Or, if we re relly interested in subsequent vlue f ( + x) beyond given f (), we cn think of the derivtive s giving n pproximtion to f by wy of the formul f df f () dx where we tke x = dx. The quntity df dened in the bove equlity is clled the dierentil of f (x) t x =. In generl, we dene df = df (x, dx) f (x) dx. The dierentil is relly function of the independent vribles x nd dx.there is nice geometricl picture tht one cn drw tht shows tht we obtin the vlues df nd f from the tngent nd secnt curves t x. For smll vlues of dx the dierentil provides n excellent pproximtion to f nd conversely. Refer to the gure bove nd identify f nd df in the picture. Exmple. Use the clcultions of the previous exmple to pproximte f (2) nd f (4) using dierentils nd the vlues of f, f t x = 3. Solution. We obtin tht with dx = 1, so tht f = f (3 + dx) f (3) df (3, 1) = f (3) 1 = 1.82, f (3 + 1) f (3) = As mtter of fct, f (4) = For dx = 1, we obtin similrly tht so tht f = f (3 + dx) f (3) df (3, 1) ( 1) = 1.82, f (3 1) f (3) 1.82 = As mtter of fct, f (4) = nd f (2) = 4.2. Approximting vlues with dierentils mounts to using liner pproximtion to f (x) which is incresingly ccurte ner x =. The ide is tht for x ner, f (x) f () + f () (x ).
5 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 5 One cn pply this rgument to higher derivtives nd integrte (next section) to obtin the fmous Tylor formul f (x) f ()+f () (x )+f (x )2 () + +f (n) (x )n () P n (x). 2! n! In fct the error of pproximtion is well understood. One form of it is R n (x) f (x) P n (x) = f (n+1) (ξ) where ξ is some number between nd x. Are nd Integrls (x )n+1, (n + 1)! Let A (x) be the signed re between the curve y = f (x) nd the xxis, with verticl line boundries t x = nd x. Thus A () = 0. We lso write A (x) = x f (x) dx. This is motivted by the pproximte equlity A (x + dx) A (x) f (x) dx whose ccurcy increses to equlity s dx 0. A grph of the re shows why this is so, so exmine the following gure. y 01 y = f(x) A(x) 1100 (x, f(x)) x x + x If we divide by dx nd pss to the limit, we see tht d A (x) = f (x). dx This is one form of the fundmentl theorem of clculus (FTOC). The other form follows from this rgument: As we sw erlier, ny two x
6 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 6 ntiderivtives of f (x) dier by constnt, so if F (x) = f (x), then F (x) + C = A (x), where C is some constnt. It follows tht b f (x) dx = A (b) = A (b) A () = (F (b) + C) (F () + C) = F (b) F (), which gives the second form of FTOC: If F (x) = f (x) is continuous on the intervl [, b], then b f (x) dx = F (b) F () F (x) b x= Exmple. Let f (x)be s in the rst exmple, nd clculte 4 f (x) dx. 0 Solution. Here we hve to nd n ntiderivtive f (x) which we write in the customry indenite integrl form F (x) = f (x) dx. We leve it to the reder to check tht ( ) x + 2x dx = 3 2 dx 1 + x 2 +2 x dx = 3 rctn (x)+2 x2 2 +C where C is n rbitrry constnt of integrtion. From this we deduce tht 4 ( ) x + 2x dx = 3 rctn (x) + x x=0 0 Perhps the rst form of the denite integrl tht you sw ws s limit of Riemnn sums, of which the following is specil cse: Let = x 0 < x 1 < x N = b with x j+1 x j = x b N b N 1 f (x) dx = lim f (x j ) x. x 0 Of course, this gin gives us the signed re between y = f (x) nd the xxis. This is left Riemnn sum. The corresponding right Riemnn sum is N j=1 f (x j) x. A rther fortunte turn of events occurs when we verge the left nd right Riemnn sums for given N. j=0 Multivrite Clculus Life would be simpler if ll functions involved one vrible. They don't. For exmple, the volume of right circulr cylinder of rdius x nd height y is function of two vribles f (x, y) = πx 2 y. Here we understnd tht the domin of the function V consists of points (x, y) such tht x nd y re nonnegtive. How do we mke sense of
7 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 7 rtes of chnge of such vribles when there re two (or more!) independent vribles. The nswer is tht we tke derivtives with respect to ech independent vrible seprtely, treting ll other vribles s constnt, nd use our single vrible rules. Such derivtives re prtil derivtives since they only tell us prt of the rte of chnge informtion bout f. Thus, in our exmple, f (x, y) x = 2πxy f y (x, y) = πx2. There is nice interprettion of these derivtives s simply ordinry derivtives of functions of one vrible obtined by intersection the surfce z = f (x, y) with verticl plnes prllel to the x or yxes. Similrly, there re higher nlogues of integrls nd dierentils. We won't go into detil here, but in nutshell, the double integrl over region R in the xyplne of continuous function f (x, y) dened on tht region is number f (x, y) da R tht represents the signed volume between the grph of z = f (x, y), (x, y) R nd the xyplne with verticl sides long the boundry of R. Finlly, there is the importnt ide of dierentils for functions of more thn one vrible. Just s dierentils represent tngent line pproximtions to curve y = f (x), dierentils for function of two vribles represent tngent plne pproximtions to surfce z = f (x, y). Here is the denition of dierentil for function f (x, y) of two vribles with continuous prtil derivtive: df = f f dx + x y dy. This denition is completely nlogous to dierentils in one vrible. It should be noted tht df is relly function of the four independent vribles x, y, dx nd dy. Just for the record, the denition bove gives rise to kind of chin rule for certin functions of two rguments. Suppose tht we know tht x = x (t) nd y = y (t) re both functions of t, so tht f = f (x (t), y (t))is relly function of the single independent vrible t. Then wht is df/dt? The nswer is chin rule for function of t tht hs two intermedite vribles x, y:
8 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H 8 df dt = f dx x dt + f dy y dt. Exmple. Given tht f (x, y) = x 2 y + y 3 + x 2, nd formul for the dierentil df nd in prticulr, for the dierentil evluted t x = 2, y = 1. How does this help you describe the tngent plne pproximtion to z = f (x, y) for (x, y) ner the point (2, 1)? Solution. In this cse, f/ x = 2xy + 2x nd f/ y = x 2 + 3y 2. Therefore, we hve df = f f dx + x y dy = (2xy + 2x) dx + ( x 2 + 3y 2) dy so tht df (2, 3, dx, dy) = 8dx + 7dy. In prticulr, if we tke dx = x 2 nd dy = 1, then we obtin the expression df = 8 (x 2) + 7 (y 1) nd if we interpret df f for points (x, y) ner (2, 1), then we obtin the expression f (x, y) z, where z f (2, 1) = z 9 = 8 (x 2) + 7 (y 1), tht is, z = 8x + 7y 14, which is plne contining the point (2, 1, f (2, 1)) nd is in fct the eqution of the tngent plne to the surfce t (2, 1, 9).
MATH , Calculus 2, Fall 2018
MATH 362, 363 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly
More informationn f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1
The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the
More informationReview of Calculus, cont d
Jim Lmbers MAT 460 Fll Semester 200910 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some
More informationUnit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
More information1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x
I. Dierentition. ) Rules. *product rule, quotient rule, chin rule MATH 34B FINAL REVIEW. Find the derivtive of the following functions. ) f(x) = 2 + 3x x 3 b) f(x) = (5 2x) 8 c) f(x) = e2x 4x 7 +x+2 d)
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
More informationa < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1
Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the
More informationImproper Integrals. Type I Improper Integrals How do we evaluate an integral such as
Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph
More informationDefinition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim
Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)
More informationf(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral
Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More informationChapters 4 & 5 Integrals & Applications
Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO  Ares Under Functions............................................ 3.2 VIDEO  Applictions
More informationMath 1B, lecture 4: Error bounds for numerical methods
Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the
More informationIntegrals  Motivation
Integrls  Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is nonliner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but
More informationOverview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationThe Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.
Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F
More informationDefinite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function
More informationFirst midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009
Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More informationUNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3
UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,
More information7.2 The Definite Integral
7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where
More information1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl new nme for ntiderivtive. Differentiting integrls. Theorem Suppose f is continuous
More informationThe area under the graph of f and above the xaxis between a and b is denoted by. f(x) dx. π O
1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the xxis etween nd is denoted y f(x) dx nd clled the
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More informationMain topics for the First Midterm
Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 23, Sections 4.14.8, nd Sections 5.15.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More informationINTRODUCTION TO INTEGRATION
INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide
More informationMA 124 January 18, Derivatives are. Integrals are.
MA 124 Jnury 18, 2018 Prof PB s oneminute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,
More information1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl new nme for ntiderivtive. Differentiting integrls. Tody we provide the connection
More informationSpace Curves. Recall the parametric equations of a curve in xyplane and compare them with parametric equations of a curve in space.
Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xyplne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)
More informationCalculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties
Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwthchen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:
More informationRecitation 3: More Applications of the Derivative
Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech
More informationChapter 8.2: The Integral
Chpter 8.: The Integrl You cn think of Clculus s doulewide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in
More informationChapter 0. What is the Lebesgue integral about?
Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationWe divide the interval [a, b] into subintervals of equal length x = b a n
Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More information5.7 Improper Integrals
458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the
More informationIndefinite Integral. Chapter Integration  reverse of differentiation
Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the
More informationAPPROXIMATE INTEGRATION
APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose ntiderivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be
More informationP 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)
1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this
More informationStuff You Need to Know From Calculus
Stuff You Need to Know From Clculus For the first time in the semester, the stuff we re doing is finlly going to look like clculus (with vector slnt, of course). This mens tht in order to succeed, you
More informationPhysics 116C Solution of inhomogeneous ordinary differential equations using Green s functions
Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationHow can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?
Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those
More informationRiemann is the Mann! (But Lebesgue may besgue to differ.)
Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >
More informationf(a+h) f(a) x a h 0. This is the rate at which
M408S Concept Inventory smple nswers These questions re openended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnkoutnnswer problems! (There re plenty of those in the
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationCalculus III Review Sheet
Clculus III Review Sheet 1 Definitions 1.1 Functions A function is f is incresing on n intervl if x y implies f(x) f(y), nd decresing if x y implies f(x) f(y). It is clled monotonic if it is either incresing
More informationAB Calculus Review Sheet
AB Clculus Review Sheet Legend: A Preclculus, B Limits, C Differentil Clculus, D Applictions of Differentil Clculus, E Integrl Clculus, F Applictions of Integrl Clculus, G Prticle Motion nd Rtes This is
More informationPartial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the righthnd side limit equls to the lefthnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
More informationBig idea in Calculus: approximation
Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationRiemann Integrals and the Fundamental Theorem of Calculus
Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums
More informationx = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b
CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick
More information( ) as a fraction. Determine location of the highest
AB Clculus Exm Review Sheet  Solutions A. Preclculus Type prolems A1 A2 A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f ( x). Set function equl to 0. Fctor or use qudrtic eqution if
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationNotes on length and conformal metrics
Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued
More information( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).
AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f
More informationand that at t = 0 the object is at position 5. Find the position of the object at t = 2.
7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we
More informationExam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH1105 Instructor: Attila Máté 1
Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixedpoint itertion to converge when solving the eqution
More information4.4 Areas, Integrals and Antiderivatives
. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order
More informationMath 113 Exam 2 Practice
Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This
More informationMath 116 Calculus II
Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................
More informationOverview of Calculus
Overview of Clculus June 6, 2016 1 Limits Clculus begins with the notion of limit. In symbols, lim f(x) = L x c In wors, however close you emn tht the function f evlute t x, f(x), to be to the limit L
More informationF (x) dx = F (x)+c = u + C = du,
35. The Substitution Rule An indefinite integrl of the derivtive F (x) is the function F (x) itself. Let u = F (x), where u is new vrible defined s differentible function of x. Consider the differentil
More informationMath 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED
Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More informationSection 6: Area, Volume, and Average Value
Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find
More informationdt. However, we might also be curious about dy
Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More informationPolynomials and Division Theory
Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the
More informationIntegration Techniques
Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u
More informationConservation Law. Chapter Goal. 5.2 Theory
Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very
More informationf(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all
3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the
More informationAP Calculus Multiple Choice: BC Edition Solutions
AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this
More informationAPPLICATIONS OF THE DEFINITE INTEGRAL
APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its crosssection in plne pssing through
More informationp(t) dt + i 1 re it ireit dt =
Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)
More informationx = b a N. (131) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is
Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationSYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus
SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is
More informationMATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The halfangle formula cos 2 θ = 1 2
MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xyplne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points
More information1 Probability Density Functions
Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our
More informationThe practical version
Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil
More informationLECTURE 19. Numerical Integration. Z b. is generally thought of as representing the area under the graph of fèxè between the points x = a and
LECTURE 9 Numericl Integrtion Recll from Clculus I tht denite integrl is generlly thought of s representing the re under the grph of fèxè between the points x = nd x = b, even though this is ctully only
More informationLine Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
More informationCalculus of Variations
Clculus of Vritions Com S 477/577 Notes) YnBin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function
More informationMath 231E, Lecture 33. Parametric Calculus
Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider
More informationMath 113 Exam 1Review
Mth 113 Exm 1Review September 26, 2016 Exm 1 covers 6.17.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between
More informationLine Integrals. Chapter Definition
hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xyplne. It
More information