# Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions of integrtion to problems unrelted to the computtion of re. Depending on the context, the definite integrl of function f from to b could represent the totl mss of wire, the totl electric chrge on such wire, or the probbility tht light bulb will fil sometime in the time intervl from to b. In this section we will consider three pplictions of definite integrls: finding the distnce trveled by n object over n intervl of time if we re given its velocity s function of time, finding the position of n object t ny time if we re given its initil position nd its velocity s function of time, nd finding the length of curve. Distnce Suppose the function v is continuous on the intervl [, b] nd, for ny t b, v(t) represents the velocity t time t of n object trveling long line. Divide [, b] into n time intervls of equl length t = b n with endpoints = t < t < t < < t n = b. Then, for j =,,,..., n, v(t j ) is the speed of the object t the beginning of the jth time intervl. Hence, for smll enough t, v(t j ) t will give good pproximtion of the distnce the object will trvel during the jth time intervl. Thus if D represents the totl distnce the object trvels from time t = to time t = b, then D v(t j ) t. (.8.) j= Moreover, we expect tht s t decreses, or, equivlently, s n increses, this pproximtion should pproch the exct vlue of D. Tht is, we should hve D = lim n j= v(t j ) t. (.8.) Now the right-hnd side of (.8.) is Riemnn sum (in prticulr, left-hnd rule sum) which pproximtes the definite integrl b v(t) dt. Copyright c by Dn Sloughter

2 Distnce, Position, nd the Length of Curves Section Figure.8. Grph of the velocity function v(t) = cos(πt) Hence this integrl is the vlue of the limit in (.8.), nd so we hve D = lim n j= v(t j ) t = b v(t) dt. (.8.) Exmple Suppose n object is oscillting t the end of spring so tht its velocity t time t is given by v(t) = cos(πt). Then the distnce D trveled by the object from time t = to time t = is given by Now nd Hence nd D = cos(πt) dt = cos(πt) dt. cos(πt) when t or t, cos(πt) when t. cos(πt) = cos(πt) when t or t, cos(πt) = cos(πt) when t.

3 Section.8 Distnce, Position, nd the Length of Curves Thus cos(πt) dt = = cos(πt) dt + cos(πt)dt = π sin(πt) ( ) = π = π. cos(πt) dt + cos(πt)dt + cos(πt) dt cos(πt)dt π sin(πt) + π sin(πt) ( π ) ( + + ) π π Hence D = cos(πt) dt = 8 π. Position Agin suppose v is continuous on [, b] nd v(t) represents, for t b, the velocity t time t of n object moving on line. Let x(t) be the position of the object t time t nd suppose we know the vlue of x(), the position of the object t the beginning of the time intervl. It follows tht ẋ(t) = d x(t) = v(t), (.8.) dt nd so, by the Fundmentl Theorem of Integrl Clculus, for ny t between nd b, Thus we hve v(s)ds = x(t) x(). (.8.5) x(t) = v(s)ds + x() (.8.6) for t b. In other words, if we re given the velocity of n object for every time t in the intervl [, b] nd the position of the object t time t =, then we my use (.8.6) to compute the position of the object t ny time t in [, b]. Exmple As in the previous exmple, consider n object oscillting t the end of spring so tht its velocity is given by v(t) = cos(πt). If x(t) is the position of the object t time t nd, initilly, x() =, then x(t) = cos(πs)ds + = t π sin(πs) + = sin(πt) +. π

4 Distnce, Position, nd the Length of Curves Section Figure.8. Velocity v(t) = cos(πt) nd position x(t) = π sin(πt) + You should compre the grphs of the velocity function v nd the position function x in Figure.8.. Note tht the object will oscillte between π nd + π. In prticulr, the distnce between these two extremes is π, nd so the object will trvel distnce of 8 π during complete oscilltion, in greement with our computtion in the previous exmple. Exmple Suppose the velocity of n object t time t is given by v(t) = sin(t ). If x(t) is the position of the object t time t nd its position t time is x() =, then x(t) = sin(s )ds. However, unlike the previous exmple, there does not exist simple ntiderivtive for v; hence, the best we cn do is pproximte x(t) for specified vlue of t using numericl integrtion. For exmple, we cn compute numericlly tht x() = sin(s )ds =.9, where we hve rounded the result to the third deciml plce. If we do this for enough points, we cn plot the grph of x, s shown in Figure.8.. Agin, you should compre this grph with the grph of v, lso shown in Figure Figure.8. Velocity v(t) = sin(t ) nd position x(t) = sin(s )ds

5 Section.8 Distnce, Position, nd the Length of Curves 5 x x x x x x 5 Figure.8. Approximting curve with line segments Length of curve Here we will consider the problem of finding the length of curve which is the grph of some differentible function. So suppose the function f is continuous on the closed intervl [, b] nd differentible on the open intervl (, b). Let C be the grph of f nd let L be the length of C. As we hve done previously, we will first describe method for finding good pproximtions to L. To begin, divide [, b] into n intervls of equl length x = b n with endpoints = x < x < x < < x n = b. For j =,,,..., n, we cn pproximte the length of the piece of C lying over the jth intervl by the distnce between the endpoints of this piece, s shown in Figure.8.. Tht is, since the endpoints of the jth piece re (x j, f(x j )) nd (x j, f(x j )), we cn pproximte the length of the piece of C lying over the intervl [x j, x j ] by (x j x j ) + (f(x j ) f(x j )). Since x = x j x j, (x j x j ) + (f(x j ) f(x j )) = ( x) + (f(x j ) f(x j )) ( = ( x) + (f(x ) j) f(x j )) ( x) ( ) f(xj ) f(x j ) = x +. x (.8.7)

6 6 Distnce, Position, nd the Length of Curves Section.8 Hence, when n is lrge (equivlently, when x is smll), good pproximtion for L is given by ( ) f(xj ) f(x j ) L + x. (.8.8) x Moreover, we expect tht L = lim j= n j= ( ) f(xj ) f(x j ) + x, (.8.9) x provided this limit exists. By the Men Vlue Theorem, for ech j =,,,..., there exists point c j in the intervl (x j, x j ) such tht Hence f (c j ) = f(x j) f(x j ). (.8.) x L = lim n j= Now the sum in (.8.) is Riemnn sum for the integrl b + (f (c j )) x. (.8.) + (f (x)) dx, nd so the limit, if it exists, converges to the vlue of this integrl. Thus the length of C is given by b L = + (f (x)) dx. (.8.) Exmple Let L be the length of the grph of f(x) = x on the intervl [, ], s shown in Figure.8.5. Then so L = = = 8 7 f (x) = x, + ( ) x dx + 9 x dx ( + 9 x ) = 8 =.97, 7 where we hve rounded the result to four deciml plces.

7 Section.8 Distnce, Position, nd the Length of Curves Figure.8.5 Grphs of y = x nd y = x Exmple Let L be the length of the prbol y = x from (, ) to (, ), s shown in Figure.8.5. Then dy dx = x, so L = + (x) dx = + x dx. At this point we do not hve the techniques to evlute this integrl exctly using the Fundmentl Theorem (lthough we will see such techniques in Chpter 6); however, we my use computer lgebr system to find tht L = 7 + sinh () = 7 + (log( + 7)), where log(x) is the nturl logrithm of x nd sinh (x) is the inverse hyperbolic sine of x. Since we will not study either of these functions until Chpter 6, we will use numericl pproximtion to give us L =.668 to four deciml plces, the sme nswer we would obtin by using numericl integrtion to evlute the integrl. Exmple To find the length L of one rch of the curve y = sin(x), s shown in Figure.8.6, we need to evlute π L = + cos (x) dx, n integrl which is even more difficult thn the one in the previous exmple. However, using numericl integrtion, we find tht L =.8 to four deciml plces. The lst two exmples illustrte some of the difficulties in finding the length of curve. In generl, the integrls involved in these problems require more sophisticted techniques thn we hve vilble t this time, nd frequently require the use of numericl techniques.

8 8 Distnce, Position, nd the Length of Curves Section Figure.8.6 Grph of y = sin(x) over the intervl [, π] Problems. For ech of the following, ssume tht v(t) is the velocity t time t of n object moving on line nd find the distnce trveled by the object over the given time period. () v(t) = t over t (b) v(t) = t + 6 over t (c) v(t) = t t 6 over t (d) v(t) = t t 6 over t (e) v(t) = sin(t) over t π (f) v(t) = cos(πt) over t. Suppose the velocity of flling object is given by v(t) = t feet per second. If the object is t height of feet t time t =, find the height of the object t n rbitrry time t.. Suppose x(t) nd v(t) re the position nd velocity, respectively, t time t of n object moving on line. If x() = 5 nd v(t) = t 6, find x(t).. If n object of mss m is connected to spring, pulled distnce x wy from its equilibrium position nd relesed, then, ignoring the effects of friction, the velocity of the object t time t will be given by v(t) = x k m sin ( k m t ), where k is constnt tht depends on the strength of the spring. position of the object t time t. 5. Show tht if ẋ(t) = f(t) nd f is continuous on [, b], then Find x(t), the x(t) = f(s)ds + x().

9 Section.8 Distnce, Position, nd the Length of Curves 9 6. For ech of the following, use the result from Problem 5 to find x(t). () ẋ(t) = t + 6t 7 with x() = (b) ẋ(t) = cos(6t) t with x() = (c) ẋ(t) = sin (t) with x() = (d) ẋ(t) = t sin(t) with x() = (e) ẋ(t) = + t with x() = 7. Let x(t), v(t), nd (t) be the height, velocity, nd ccelertion, respectively, t time t of n object of mss m in free fll ner the surfce of the erth. Let x nd v be the height nd velocity, respectively, of the object t time t =. If we ignore the effects of ir resistnce, the force cting on the body is mg, where g is constnt (g = 9.8 meters per second, or feet per second per second). Thus, by Newton s second lw of motion, mg = m(t), from which we obtin Using Problem 5, show tht (t) = g. x(t) = gt + v t + x. 8. Suppose n object is projected verticlly upwrd from height of feet with n initil velocity of feet per second. Use Problem 7 to nswer the following questions. () Find x(t), the height of the object t time t. (b) At wht time does the object rech its mximum height? (c) Wht is the mximum height reched by the object? (d) At wht time will the object strike the ground? 9. For ech of the following, find the length of the grph of the given function over the given intervl. [ () f(x) = x over [, ] (b) f(x) = sin(x) over, π ] [ (c) g(x) = x over [, ] (d) g(t) = tn(t) over π, π ] (e) f(t) = sin (t) over [, π] (f) g(θ) = sin(θ ) over [, π ]. A sheet of corrugted luminum is to be mde from flt sheet of luminum. Suppose cross section of the corrugted sheet, when mesured in inches, is in the shpe of the curve ( π ) y = sin t. Find the length of flt sheet tht would be needed to mke corrugted sheet tht is feet long.

### Math 8 Winter 2015 Applications of Integration

Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

### Distance And Velocity

Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

### Week 10: Riemann integral and its properties

Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

### Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwth-chen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:

### MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

### MA 124 January 18, Derivatives are. Integrals are.

MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

### We divide the interval [a, b] into subintervals of equal length x = b a n

Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

### x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

### Chapters 4 & 5 Integrals & Applications

Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

### Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

### A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

### Best Approximation. Chapter The General Case

Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

### Big idea in Calculus: approximation

Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

### 5.2 Volumes: Disks and Washers

4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

### Math 360: A primitive integral and elementary functions

Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

### MAT 168: Calculus II with Analytic Geometry. James V. Lambers

MAT 68: Clculus II with Anlytic Geometry Jmes V. Lmbers Februry 7, Contents Integrls 5. Introduction............................ 5.. Differentil Clculus nd Quotient Formuls...... 5.. Integrl Clculus nd

### Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

### Math Calculus with Analytic Geometry II

orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

### (0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

### Math 100 Review Sheet

Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

### l 2 p2 n 4n 2, the total surface area of the

Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

### Section 6.1 Definite Integral

Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

### Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

### Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

### Mathematics of Motion II Projectiles

Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

### The Trapezoidal Rule

_.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

### We know that if f is a continuous nonnegative function on the interval [a, b], then b

1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

### 63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

### Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

### Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

### 7.6 The Use of Definite Integrals in Physics and Engineering

Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

### MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

### The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

### Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Unit # De+inite Integrtion & The Fundmentl Theorem Of Clculus. Find the re of the shded region ove nd explin the mening of your nswer. (squres re y units) ) The grph to the right is f(x) = -x + 8x )Use

### The Wave Equation I. MA 436 Kurt Bryan

1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

### The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion

### The Trapezoidal Rule

SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion Approimte

### Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

### Math 0230 Calculus 2 Lectures

Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

### F (x) dx = F (x)+c = u + C = du,

35. The Substitution Rule An indefinite integrl of the derivtive F (x) is the function F (x) itself. Let u = F (x), where u is new vrible defined s differentible function of x. Consider the differentil

### Interpreting Integrals and the Fundamental Theorem

Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

### 2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

### Not for reproduction

AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type

### STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

### Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

### different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

### 5: The Definite Integral

5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

### Math 113 Exam 2 Practice

Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

### Midpoint Approximation

Midpoint Approximtion Sometimes, we need to pproximte n integrl of the form R b f (x)dx nd we cnnot find n ntiderivtive in order to evlute the integrl. Also we my need to evlute R b f (x)dx where we do

### Resistors. Consider a uniform cylinder of material with mediocre to poor to pathetic conductivity ( )

10/25/2005 Resistors.doc 1/7 Resistors Consider uniform cylinder of mteril with mediocre to poor to r. pthetic conductivity ( ) ˆ This cylinder is centered on the -xis, nd hs length. The surfce re of the

### Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Test 3 Review Jiwen He Test 3 Test 3: Dec. 4-6 in CASA Mteril - Through 6.3. No Homework (Thnksgiving) No homework this week! Hve GREAT Thnksgiving! Finl Exm Finl Exm: Dec. 14-17 in CASA You Might Be Interested

### A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

### Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

### !0 f(x)dx + lim!0 f(x)dx. The latter is sometimes also referred to as improper integrals of the. k=1 k p converges for p>1 and diverges otherwise.

Chpter 7 Improper integrls 7. Introduction The gol of this chpter is to meningfully extend our theory of integrls to improper integrls. There re two types of so-clled improper integrls: the first involves

### Topic 1 Notes Jeremy Orloff

Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble

### Section 14.3 Arc Length and Curvature

Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

### Integrals along Curves.

Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the

### DIRECT CURRENT CIRCUITS

DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

### NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

### Summer MTH142 College Calculus 2. Section J. Lecture Notes. Yin Su University at Buffalo

Summer 6 MTH4 College Clculus Section J Lecture Notes Yin Su University t Bufflo yinsu@bufflo.edu Contents Bsic techniques of integrtion 3. Antiderivtive nd indefinite integrls..............................................

### A sequence is a list of numbers in a specific order. A series is a sum of the terms of a sequence.

Core Module Revision Sheet The C exm is hour 30 minutes long nd is in two sections. Section A (36 mrks) 8 0 short questions worth no more thn 5 mrks ech. Section B (36 mrks) 3 questions worth mrks ech.

### 3.4 Numerical integration

3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

### 38 Riemann sums and existence of the definite integral.

38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

### Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

### Riemann Integrals and the Fundamental Theorem of Calculus

Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

### Math 554 Integration

Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

### Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

### Lecture 1. Functional series. Pointwise and uniform convergence.

1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

### PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

### Review of Gaussian Quadrature method

Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

### THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2-Dimensionl Gussin Qudrture 20 4

### 31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes

Numericl Integrtion 3. Introduction In this Section we will present some methods tht cn be used to pproximte integrls. Attention will be pid to how we ensure tht such pproximtions cn be gurnteed to be

### New Expansion and Infinite Series

Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

### Notes on Calculus II Integral Calculus. Miguel A. Lerma

Notes on Clculus II Integrl Clculus Miguel A. Lerm November 22, 22 Contents Introduction 5 Chpter. Integrls 6.. Ares nd Distnces. The Definite Integrl 6.2. The Evlution Theorem.3. The Fundmentl Theorem

### Terminal Velocity and Raindrop Growth

Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

### Chapter 6. Riemann Integral

Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

### APPM 1360 Exam 2 Spring 2016

APPM 6 Em Spring 6. 8 pts, 7 pts ech For ech of the following prts, let f + nd g 4. For prts, b, nd c, set up, but do not evlute, the integrl needed to find the requested informtion. The volume of the

### Math 31S. Rumbos Fall Solutions to Assignment #16

Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

### Discrete Least-squares Approximations

Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

### MATH1013 Tutorial 12. Indefinite Integrals

MATH Tutoril Indefinite Integrls The indefinite integrl f() d is to look for fmily of functions F () + C, where C is n rbitrry constnt, with the sme derivtive f(). Tble of Indefinite Integrls cf() d c

### Section 4: Integration ECO4112F 2011

Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

### y = f(x) \$ # Area & " % ! \$ b f(x) g(x) dx = [F (x) G(x)] b a

MthsTrck (NOTE Feb 23: This is the old version of MthsTrck. New books will be creted during 23 nd 24) Topic 9 Module 9 Introduction Integrtion to Mtrices y = f(x) Income = Tickets! Price = =! 25 \$! 25

### Numerical integration

2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

### The Definite Integral

CHAPTER 3 The Definite Integrl Key Words nd Concepts: Definite Integrl Questions to Consider: How do we use slicing to turn problem sttement into definite integrl? How re definite nd indefinite integrls

### UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

### The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

### Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

### Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

### ( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f

### C1M14. Integrals as Area Accumulators

CM Integrls s Are Accumultors Most tetbooks do good job of developing the integrl nd this is not the plce to provide tht development. We will show how Mple presents Riemnn Sums nd the ccompnying digrms

### MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

### Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

(x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

### Math 113 Exam 1-Review

Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

### Physics 2135 Exam 1 February 14, 2017

Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

### 10. AREAS BETWEEN CURVES

. AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in