Best Approximation. Chapter The General Case


 Rosaline Evans
 1 years ago
 Views:
Transcription
1 Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given function. This fundmentl problem in Approximtion Theory cn be stted in very generl terms. Let V be Normed Liner Spce nd W finitedimensionl subspce of V, then for given v V, find w W such tht v w v w, for ll w W. Here w is clled the Best Approximtion to v out of the subspce W. Note tht the definition of V defines the prticulr norm to be used nd, when using tht norm, w is the vector tht is closest to v out of ll possible vectors in W. In generl, different norms led to different pproximtions. In the context of Numericl Anlysis, V is usully the set of continuous functions on some intervl [, b], with some selected norm, nd W is usully the spce of polynomils P n. The requirement tht W is finitedimensionl ensures tht we hve bsis for W. Lest Squres Problem Let f(x) be given prticulr continuous function. Using the 2norm f(x) 2 = ( f 2 (x)dx ) 1/2 find p (x) such tht f(x) p (x) 2 f(x) p(x) 2, 69
2 for ll p(x) P n, polynomils of degree t most n, nd x [, b]. This is known s the Lest Squres Problem. Best pproximtions with respect to the 2norm re clled lest squres pproximtions. 4.2 Lest Squres Approximtion In the bove problem, how do we find p (x)? The procedure is the sme, regrdless of the subspce used. So let W be ny finitedimensionl subspce of dimension (n + 1), with bsis vectors φ (x), φ 1 (x),... nd φ n (x). Therefore, ny member of W cn be expressed s Ψ(x) = c i φ i (x), where c i R. The problem is to find c i such tht f Ψ 2 is minimised. Define E(c, c 1,..., c n ) = i= (f(x) Ψ(x)) 2 dx. We require the minimum of E(c, c 1,..., c n ) over ll vlues c, c 1,...,c n. A necessry condition for E to hve minimum is: This implies, or E c i = = 2 = 2 f(x)φ i (x)dx = f(x)φ i (x)dx = (f Ψ) Ψ c i dx, (f Ψ)φ i (x)dx. Ψφ i (x)dx, c j φ j (x)φ i (x)dx. Hence, the c i tht minimise f(x) Ψ(x) 2 stisfy the system of equtions given by f(x)φ i (x)dx = j= c j φ j (x)φ i (x)dx, for i =, 1,...,n, (4.1) j= totl of (n + 1) equtions in (n + 1) unknowns c, c 1,..., c n. These equtions re often clled the Norml Equtions. 7
3 Exmple Using the Norml Equtions (4.1) find the p(x) P n the best fits, in lest squres sense, generl continuous function f(x) in the intervl [, 1]. i.e. find p (x) such tht f(x) p (x) 2 f(x) p(x) 2, for ll p(x) P n, polynomils of degree t most n, nd x [, 1]. Tke the bsis for P n s φ = 1, φ 1 = x, φ 2 = x 2,..., φ n = x n. Then f(x)x i dx = = = = c j x j x i dx j= c j x i+j dx j= j= j= c j [ x i+j+1 i + j + 1 c j i + j + 1. ] 1 Or, writing them out: i = : i =1 :... i =n : fdx = c + c c c n n + 1 xfdx = c 2 + c c c n n + 2 x n fdx = c n c 1 n c n 2n + 1. Or, in mtrix form: 1 1 1/2... 1/n + 1 c f(x)dx 1 1/2 1/3... 1/n + 2 c = xf(x)dx.. 1/n + 1 1/n /2n + 1 xn f(x)dx Does nything look fmilir? A system HA = f where H is the Hilbert mtrix. This is seriously bd news  this system is fmously ILLCONDITIONED! We will hve to find better wy to find p. c n 71
4 4.3 Orthogonl Functions In generl, it will be hrd to solve the Norml Equtions, s the Hilbert mtrix is illconditioned. The previous exmple is n exmple of wht not to do! Insted, using the sme pproch s before choose (if possible) n orthogonl bsis φ i (x) such tht In this cse, the Norml Equtions (4.1) reduce to φ i (x)φ j (x)dx =, i j. f(x)φ i (x)dx = c i φ 2 i (x)dx, for i =, 1,...,n, (4.2) nd the coefficients c i cn be determined directly. Also, we cn increse n without disturbing the erlier coefficients. Note, tht ny orthogonl set with n elements is linerly independent nd hence, will lwys provide bsis for W, n n dimensionl spce, Generlistion of Lest Squres We cn generlise the ide of lest squres, using the inner product nottion. Suppose we define f 2 2 = f, f, where.,. is some inner product (e.g., we considered the cse f, g = fgdx in Chpter 1). Then the lest squres best pproximtion is the Ψ(x) such tht f Ψ 2 is minimised, i.e. we wish to minimise f Ψ, f Ψ. Writing Ψ(x) = n i= c iφ i (x), where φ i P n nd form bsis for P n nd expressing orthogonlity s φ i, φ j = for i j, then choosing c i = f(x), φ i(x) φ i (x), φ i (x) (c.f. eqution 4.2) gurntees tht f Ψ 2 f p 2 for ll p P n. In other words, Ψ is the best pproximtion to f out of P n. (See Tutoril sheet 4, question 1 for derivtion of this result). Exmple Find the lest squres, stright line pproximtion to x 1/2 on [, 1]. i.e., find the Ψ(x) P 1 tht best fits x 1/2 on [, 1]. 72
5 First choose n orthogonl bsis for P 1 : φ (x) = 1 nd φ 1 (x) = x 1 2. These form n orthogonl bsis for P 1 since φ φ 1 dx = (x 1 2 )dx = [ 1 2 x2 1 2 x ] 1 = =. Now construct Ψ = c φ + c 1 φ 1 = c + c 1 (x 1 2 ). To find the Ψ which stisfies f Ψ f p, we solve for the c i s follows... i=: c = f, φ φ, φ f, φ = x 1/2, 1 = x1/2 dx = [ 2 3 x3/2] 1 = 2 3 φ, φ = 1, 1 = 1dx = 1 c = 2 3 i=1: c 1 = f, φ 1 φ 1, φ 1 f, φ 1 = x 1/2, x 1 2 = x1/2 (x 1 2 )dx = (x3/2 1 2 x1/2 )dx = [ 2 5 x2/5 1 3 x3/2] 1 = 1 15 φ 1, φ 1 = x 1 2, x 1 2 = (x 1 2 )2 dx = (x2 x )dx = [ 1 3 x3 1 2 x x] 1 = 1 12 c 1 = = 4 5 Hence, the lest squres, stright line pproximtion to x 1/2 on [, 1] is Ψ(x) = x ( x 1 2) = Exmple Show tht truncted Fourier Series is lest squres pproximtion of f(x) for ny f(x) in the intervl [ π, π]. Choose W to be the 2n + 1 dimensionl spce of functions spnned by the bsis φ = 1, φ 1 = cosx, φ 2 = sin x, φ 3 = cos2x, φ 4 = sin 2x,...,φ 2n 1 = cosnx, φ 2n = sin nx, This bsis forms n orthogonl set of functions: e.g. π φ φ 1 dx = π π π cosxdx = [sinx] π π =, etc.,... 73
6 Thus, lest squres pproximtion Ψ(x) of f(x) cn be written Ψ(x) = c + c 1 cosx + c 2 sin x + + c 2n 1 cosnx + c 2n sin nx, with the c i given by nd so on. c = f, φ φ, φ = 1 2π c 1 = f, φ 1 φ 1, φ 1 = π π π π f(x)dx, cosxf(x)dx/ π π cos 2 xdx = 1 π π π cosxf(x)dx, The pproximtion Ψ is the truncted Fourier series for f(x). Hence, Fourier series is n exmple of Lest Squres Approximtion: Best Approximtion in the lest squres sense. Exmple Let x = {x i }, i = 1,..., n nd y = {y i }, i = 1,..., n be the set of dt points (x i, y i ). Find the lest squres best stright line fit to these dt points. We define the inner product in this cse to be x,y = x i y i, i=1 Next we let Ψ(x) = {c 1 (x i x) + c }, i = 1,..., n with x = 1 n n i=1 x i. Here φ (x) = 1, i = 1,..., n nd φ 1 (x) = {x i x}, i,..., n. Observe tht φ (x), φ 1 (x) = (x i x) 1 = i=1 x i i=1 x = nx nx =, so φ, φ 1 re n orthogonl set. Hence, if we clculte c nd c 1 s follows c 1 = y, φ 1 n φ 1, φ 1 = i=1 y i(x i x) n i=1 (x i x), 2 nd (using φ, φ = n i=1 1 = n) i=1 c = y, φ n φ, φ = i=1 y i. n then Ψ(x) is the best liner fit (in lest squres sense) to the dt points (x i, y i ). 74
7 4.3.2 Approximtions of Differing Degrees Consider f Ψ 2 f p(x) 2, Ψ, p P n, where Ψ = n i= c iφ i (x), where φ i (x) form n orthofonl bsis for P i. Note, p(x) my be ANY p(x) P n, polynomils of degree t most n. If we choose n 1 p(x) = c i φ i (x), i= then p(x) P n, nd p(x) is the best pproximtion to f(x) of degree n 1 (p(x) P n 1 ). Now from bove we hve n 1 f Ψ 2 f c i φ i 2. This mens tht the Lest Squres Best pproximtion from P n is t lest s good s the Lest Squres Best pproximtion from P n 1. i.e. Adding more terms (higher degree bsis functions) does not mke the pproximtion worse  in fct, it will usully mke it better. i= 4.4 Minimx In the previous two sections, we hve considered the best pproximtion in situtions involving the 2 norm. However, best pproximtion in terms of the mximum (or infinity) norm: f p f p, p P n, implies tht we choose the polynomil tht minimises the mximum error over [, b]. This is more nturl wy of thinking bout Best Approximtion. In such sitution, we cll p (x) the minimx pproximtion to f(x) on [, b]. Exmple Find the best constnt (p P ) pproximtion to f(x) in the intervl [, b]. Let c P, thus we wnt to minimise f(x) c : { } min mx f(x) c, ll c [,b] Clerly, the c tht minimises this is c mx } error c = mx{f} + min{f} 2. b Exmple Find the best stright line fit (p P 1 ) to f(x) = e x in the intervl [, 1]. 75
8 We wnt to find the stright line fit, hence we let p = mx + c nd we look to minimise f x e p 1(x) f(x) p = e x (mx + c) i.e., { } min mx ll m,c [,1] ex (mx + c). θ 1 Geometriclly, the mximum occurs in three plces, x =, x = θ nd x = 1. x = : e ( + c) = E (i) x = θ : e θ (mθ + c) = E (ii) x = 1 : e 1 (m + c) = E (iii) lso, the error t x = θ hs turning point, so tht x (ex (mx + c)) x=θ = e θ m = m = e θ θ = log e m. (i) nd (iii) imply 1 c = E = e m c or, m = e θ = log e (1.7183). (ii) nd (iii) imply e θ + e mθ c m c = or, c = 1 [m + e mθ m] Hence the minimx stright line is given by x As the bove exmple illustrtes, finding the minimx polynomil p n(x) for n 1 is not stright forwrd exercise. Also, note tht the process involves the evlution of the error, E in the bove exmple Chebyshev Polynomils Revisited Recll tht the Chebyshev polynomils stistfy q(x) P n+1 such tht q(x) = x n nt n+1(x) q(x), 76
9 In prticulr, if we consider n = 2, then x3 3 4 x x x x +, or x3 3 4 x x 3 ( 2 x 2 ) 1 x, constnts, 1, 2. Hence p 2 (x) P 2. x3 3 4 x x 3 p 2 (x), This mens the p (x) P 2 tht is the minimx pproximtion to f(x) = x 3 in the intervl [ 1, 1], i.e. the p (x) tht stisfies is p 2(x) = 3 4 x. x 3 p 2 (x) x 3 p 2 (x). From this exmple, we cn see tht the Chebyshev polynomil T n+1 (x) cn be used to quickly find the best polynomil of degree t most n (in the sense tht the mximum error is minimised) to the function f(x) = x n+1 in the intervl [ 1, 1]. Finding the minimx pproximtion to f(x) = x n+1 my see quite limited. However, in combintion with the following results it cn be very useful. If p n(x) is the minimx pproximtion to f(x) on [, b] from P n then 1. αp n (x) is the minimx pproximtion to αf(x) where α R, nd 2. p n(x) + q n (x) is the minimx pproximtion to f(x) + q n (x) where q n (x) P n. (See Tutoril Sheet 8 for proofs nd n exmple) 4.5 Equioscilltion From the bove exmples, we see tht the error occurs severl times. In Exmple 4.4.1: n=  mximum error occurred twice In Exmple 4.4.2: n=1  mximum error occurred three times 77
10 In Exmple 4.4.3: n=2  mximum error occurred four times In order to find the minimx pproximtion, we hve found p, p 1 nd p 2 such tht the mximum error equioscilltes. Definition: A continuous function is sid to equioscillte on n points of [, b] if there exist n points x i x 1 < x 2 < < x n b, such tht nd E(x i ) = mx x b E(x), i = 1,...,n, E(x i ) = E(x i+1 ), i = 1,...,n 1. Theorem: For the function f(x), where x [,b], nd some p n (x) P n, suppose f(x) p n (x) equioscilltes on t lest (n + 2) points in [,b]. Then p n (x) is the minimx pproximtion for f(x). (See Phillips & Tylor for proof.) The inverse of this theorem is lso true: if p n (x) is the minimx polynomil of degree n, then f(x) p n (x) equioscilltes on t lest (n + 2) points. The property of equioscilltion chrcterises the minimx pproximtion. Exmple Construct the minimx, stright line pproximtion to x 1/2 on [, 1]. So we wish to find p 1 (x) = mx + c such tht is minimised. mx [,1] x 1/2 (mx + c) From the bove theorem we know the mximum must occur in n + 2 = 3 plces, x =, x = θ nd x = 1. x = : ( + c) = E (i) x = θ : θ 1/2 (mθ + c) = E (ii) x = 1 : 1 (m + c) = E (iii) 78
11 Also, the error t x = θ hs turning point: ( ) x 1/2 (mx + c) x = x=θ ( ) 1 2 x 1/2 m = 1 2 θ 1/2 m = θ = 1 4m 2. Combining (i) nd (iii): c = 1 m c m = 1 Combining (ii) nd (iii): x=θ θ 1/2 (mθ + c) + 1 (m + c) = 1 2m 1 4m + 1 m 2c = c = c = 1 8. Hence the minimx stright line pproximtion to x 1/2 is given by x On the other hnd, the lest squres, stright line pproximtion ws 4 5 x , mking it cler tht different norms led to different pproximtions! 4.6 Chebyshev Series Agin The property of equioscilltion chrcterises the minimx pproximtion. Suppose we could produce the following series expnsion, f(x) = i T i (x) for f(x) defined on [ 1, 1]. This is clled Chebyshev series. Not such crzy ide! Put x = cosθ, then f(cosθ) = i T i (cosθ) = i cos(iθ), θ π, i= i= i= which is just the Fourier cosine series for the function f(cosθ). Hence, it is series we could evlute (using numericl integrtion if necessry). Now, suppose the series converges rpidly so tht, n+1 n+2 n+3... so few terms re good pproximtion of the function. 79
12 Let Ψ(x) = n i= it i (x) then f(x) Ψ(x) = n+1 T n+1 (x) + n+2 T n+2 (x) +... n+1 T n+1 (x), or, the error is dominted by the leding term n+1 T n+1 (x). Now T n+1 (x) equioscilltes (n + 2) times on [ 1, 1]. If f(x) Ψ(x) = n+1 T n+1 (x), then Ψ(x) would be the minimx polynomil of degree n to f(x). Since f(x) Ψ(x) n+1 T n+1 (x), Ψ(x) is not the minimx but is polynomil tht is close to the minimx, s long s n+2, n+3,... re smll compred to n+1. The ctul error lmost equioscilltes on (n + 2) points. Exmple 4.6.1: Find the minimx qudrtic pproximtion to f(x) = (1 x 2 ) 1/2 in the intervl [ 1, 1]. First, we note tht if x = cosθ then f(cosθ) = (1 cos 2 θ) 1/2 = sin θ nd the intervl x [ 1, 1] becomes θ [, π]. The Fourier cosine series for sinθ on [, π] is given by F( θ ) sinθ = 2 π 4 π [ cos2θ 3 + cos4θ 15 + cos6θ 35 ] +... π π So with x = cosθ, we hve (1 x 2 ) 1/2 = 2 π 4 π [ T2 (x) 3 + T 4(x) 15 + T 6(x) 35 ] +..., (1 x 2 ) 1/2 where 1 x Thus let use consider the qudrtic p 2 (x) = 2 π 4 π T 2 (x) 3 = 2 π 4 3π (2x2 1) = 2 3π (3 2(2x2 1)) = 2 3π (5 4x2 ). The error f(x) p 2 (x) 4 π 8 T 4 (x) 15,
13 which oscilltes = 5 times in [1,1]. At lest 4 equioscilltion points re required for p 2 (x) to be the minimx pproximtion of (1 x 2 ) 1/2, so we need to see whether the bove oscilltion points re of equl mplitude. T 4 (x) hs extreme vlues when 8x 4 8x = ±1, i.e. t x =, x = 1, x = 1, x = 1/ 2 nd x = 1/ 2. (1 x 2 ) 1/2 p 2 (x) error x = 1 1/3π.61 x = ±1/ 2 1/ 2 2/π.75 x = ±1 2/3π.2122 So the error oscilltes but not eqully. Hence, p 2 (x) is not quite the minimx pproximtion to f(x) = (1 x 2 ) 1/2, but it is good first pproximtion. The true minimx qudrtic to (1 x 2 ) 1/2 is ctully ( 9 8 x2) = (1.125 x 2 ), nd thus our estimte of ( x 2 ) is not bd. 4.7 Economistion of Power Series Another wy of exploiting the properties of Chebyshev polynomils is possible for functions f(x) for which power series exists. Consider the function f(x) which equls the power series f(x) = n x n. n=1 Let us ssume tht we re interested in pproximting f(x) with polynomil of degree m. One such pproximtion is m f(x) = n x n + R m, n=1 which hs error R m. Cn we get better pproximtion of degree m thn this? Yes! A better pproximtion my be found by finding function p m (x) such tht f(x) p m (x) equioscilltes t lest m + 2 times in the given intervl. Consider the truncted series of degree m + 1 m f(x) = n x n + m+1 x m+1 + R m+1. n=1 The Chebyshev polynomil of degree m + 1, equioscilltes m + 2 times, nd equls T m+1 (x) = 2 m x m+1 + t m 1 (x), 81
14 where t m 1 re the terms in the Chebyshev polynomil of degree t most m 1. Hence, we cn write x m+1 = 1 2 m (T m+1(x) t m 1 (x)). Substituting for x m+1 in our expression for f(x) we get f(x) = m n=1 n x n + m+1 2 m (T m+1(x) t m 1 (x)) + R m+1. Rerrnging we find polynomil of degree t most m, p m (x) = m n=1 n x n m+1 2 m t m 1(x). This polynomil will be pretty good pproximtion to f(x) since f(x) p m (x) = m+1 2 m T m+1(x) + R m+1, which oscilltes m + 2 times lmost eqully provided R m+1 is smll. Although p m (x) is not the minimx pproximtion to f(x) it is close nd the error m+1 2 m T m+1(x) + R m+1 m+1 2 m + R m+1, since T m+1 (x) 1, is generlly lot less thn the error R m for the truncted power series of degree m. This process is clled the Economistion of power series. Exmple 4.7.1: The Tylor expnsion of sin x where R 7 = x7 7! For x [ 1, 1], R 7 1 7!.2. However, where sin x = x x3 3! + x5 5! + R 7, d 7 dx 7 (sin x) x=θ = x7 ( cosθ). 7! sin x = x x3 3! + R 5, R 5 = x5 d 5 5! dx 5 (sin x) x=θ = x5 5! (cosθ), so R 5 1 5!.83. The extr term mkes big difference! Now suppose we express x 5 in terms of Chebyshev polynomils, T 5 (x) = 16x 5 2x 3 + 5x, 82
15 so Then x 5 = T 5(x) + 2x 3 5x 16 sin x = x x ( T5 (x) + 2x 3 5x 5! 16 ( ) ( 1 = x 1 x ! ) + R 7 ) ! T 5(x) + R 7. Now T 5 (x) 1 for x [ 1, 1] so if we ignore the term in T 5 (x) we obtin ( ) 1 sin x = x 1 x3 16 4! Error where 1 Error R ! T 5(x), = This new cubic hs mximum error of bout.7, compred with.83 for x x
Orthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationLecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics  A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationInnerproduct spaces
Innerproduct spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:
More informationIntroduction to Numerical Analysis
Introduction to Numericl Anlysis Doron Levy Deprtment of Mthemtics nd Center for Scientific Computtion nd Mthemticl Modeling (CSCAMM) University of Mrylnd June 14, 2012 D. Levy CONTENTS Contents 1 Introduction
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationChapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More informationWeek 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationTHE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS
THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2Dimensionl Gussin Qudrture 20 4
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationUNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE
UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence
More informationPractice final exam solutions
University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If
More informationNumerical Integration
Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl
More informationSection 14.3 Arc Length and Curvature
Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More informationIII. Lecture on Numerical Integration. File faclib/dattab/lecturenotes/numericalinter03.tex /by EC, 3/14/2008 at 15:11, version 9
III Lecture on Numericl Integrtion File fclib/dttb/lecturenotes/numericalinter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the
More information1 Error Analysis of Simple Rules for Numerical Integration
cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion
More informationWe know that if f is a continuous nonnegative function on the interval [a, b], then b
1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going
More informationMATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous relvlued function on I), nd let L 1 (I) denote the completion
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationPDE Notes. Paul Carnig. January ODE s vs PDE s 1
PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More information10. AREAS BETWEEN CURVES
. AREAS BETWEEN CURVES.. Ares etween curves So res ove the xxis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationLine and Surface Integrals: An Intuitive Understanding
Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More information(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35
7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know
More informationMath 113 Exam 2 Practice
Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number
More informationMapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
More informationLecture Notes: Orthogonal Polynomials, Gaussian Quadrature, and Integral Equations
18330 Lecture Notes: Orthogonl Polynomils, Gussin Qudrture, nd Integrl Equtions Homer Reid My 1, 2014 In the previous set of notes we rrived t the definition of Chebyshev polynomils T n (x) vi the following
More informationChapter 2 Fundamental Concepts
Chpter 2 Fundmentl Concepts This chpter describes the fundmentl concepts in the theory of time series models In prticulr we introduce the concepts of stochstic process, men nd covrince function, sttionry
More information7.6 The Use of Definite Integrals in Physics and Engineering
Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems
More information31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes
Numericl Integrtion 3. Introduction In this Section we will present some methods tht cn be used to pproximte integrls. Attention will be pid to how we ensure tht such pproximtions cn be gurnteed to be
More informationThe Dirac distribution
A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution
More informationCzechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction
Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCKKURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When relvlued
More informationMatrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More information7  Continuous random variables
71 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7  Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin
More informationMTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008
MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul
More informationMath 324 Course Notes: Brief description
Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd
More information4.1. Probability Density Functions
STT 1 4.14. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile  vers  discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of
More informationFINALTERM EXAMINATION 2011 Calculus &. Analytical GeometryI
FINALTERM EXAMINATION 011 Clculus &. Anlyticl GeometryI Question No: 1 { Mrks: 1 )  Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...
More information4 VECTORS. 4.0 Introduction. Objectives. Activity 1
4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply
More informationCOSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III)  Gauss Quadrature and Adaptive Quadrature
COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III  Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting
More informationThe Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5
The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationDistance And Velocity
Unit #8  The Integrl Some problems nd solutions selected or dpted from HughesHllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl
More informationContinuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom
Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive
More informationLinear Systems with Constant Coefficients
Liner Systems with Constnt Coefficients 4305 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system
More informationThe Bernoulli Numbers John C. Baez, December 23, x k. x e x 1 = n 0. B k n = n 2 (n + 1) 2
The Bernoulli Numbers John C. Bez, December 23, 2003 The numbers re defined by the eqution e 1 n 0 k. They re clled the Bernoulli numbers becuse they were first studied by Johnn Fulhber in book published
More informationIf u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du
Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find ntiderivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible
More information1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.
Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the
More informationImproper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.
Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:
More informationNormal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution
Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin
More informationTopic 1 Notes Jeremy Orloff
Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationChapter 4. Additional Variational Concepts
Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.
More informationDEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS
3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive
More informationBIFURCATIONS IN ONEDIMENSIONAL DISCRETE SYSTEMS
BIFRCATIONS IN ONEDIMENSIONAL DISCRETE SYSTEMS FRANCESCA AICARDI In this lesson we will study the simplest dynmicl systems. We will see, however, tht even in this cse the scenrio of different possible
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationPartial Differential Equations
Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for OneDimensionl Eqution The reen s function provides complete solution to boundry
More informationJackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The twodimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero
More informationA. Limits  L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.
A. Limits  L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c
More informationSummary of Elementary Calculus
Summry of Elementry Clculus Notes by Wlter Noll (1971) 1 The rel numbers The set of rel numbers is denoted by R. The set R is often visulized geometriclly s numberline nd its elements re often referred
More informationPhys 7221, Fall 2006: Homework # 6
Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 37 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which
More informationNumerical Methods 2007
Physics Mster Course: Numericl Methods 2007 Hns Mssen Rdboud Universiteit Nijmegen Onderwijsinstituut Wiskunde, Ntuur en Sterrenkunde Toernooiveld 1 6525 ED Nijmegen September 2007 1 Introduction In these
More informationMATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.
MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded
More informationB Veitch. Calculus I Study Guide
Clculus I Stuy Guie This stuy guie is in no wy exhustive. As stte in clss, ny type of question from clss, quizzes, exms, n homeworks re fir gme. There s no informtion here bout the wor problems. 1. Some
More information1 Online Learning and Regret Minimization
2.997 DecisionMking in LrgeScle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in
More informationThe Basic Functional 2 1
2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................
More information2. VECTORS AND MATRICES IN 3 DIMENSIONS
2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2dimensionl Vectors x A point in 3dimensionl spce cn e represented y column vector of the form y z zxis yxis z x y xxis Most of the
More informationLecture 1  Introduction and Basic Facts about PDEs
* 18.15  Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1  Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV
More informationCalculus MATH 172Fall 2017 Lecture Notes
Clculus MATH 172Fll 2017 Lecture Notes These notes re concise summry of wht hs been covered so fr during the lectures. All the definitions must be memorized nd understood. Sttements of importnt theorems
More informationMath 0230 Calculus 2 Lectures
Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two
More informationTests for the Ratio of Two Poisson Rates
Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson
More informationMATH 423 Linear Algebra II Lecture 28: Inner product spaces.
MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationA Convergence Theorem for the Improper Riemann Integral of Banach Spacevalued Functions
Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 24512460 HIKARI Ltd, www.mhikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch
More informationMATH 222 Second Semester Calculus. Fall 2015
MATH Second Semester Clculus Fll 5 Typeset:August, 5 Mth nd Semester Clculus Lecture notes version. (Fll 5) This is self contined set of lecture notes for Mth. The notes were written by Sigurd Angenent,
More informationECO 317 Economics of Uncertainty Fall Term 2007 Notes for lectures 4. Stochastic Dominance
Generl structure ECO 37 Economics of Uncertinty Fll Term 007 Notes for lectures 4. Stochstic Dominnce Here we suppose tht the consequences re welth mounts denoted by W, which cn tke on ny vlue between
More informationNumerical Methods I. Olof Widlund Transcribed by Ian Tobasco
Numericl Methods I Olof Widlund Trnscribed by In Tobsco Abstrct. This is prt one of two semester course on numericl methods. The course ws offered in Fll 011 t the Cournt Institute for Mthemticl Sciences,
More informationA New Fluctuation Expansion Based Method for the Univariate Numerical Integration Under Gaussian Weights
Proceedings of the 8th WSEAS Interntionl Conference on APPLIED MATHEMATICS, Tenerife, Spin, December 68, 005 (pp6873 A New Fluctution Expnsion Bsed Method for the Univrite Numericl Integrtion Under Gussin
More informationNotes on Calculus II Integral Calculus. Miguel A. Lerma
Notes on Clculus II Integrl Clculus Miguel A. Lerm November 22, 22 Contents Introduction 5 Chpter. Integrls 6.. Ares nd Distnces. The Definite Integrl 6.2. The Evlution Theorem.3. The Fundmentl Theorem
More informationKeywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.
Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. LmiAthens Lmi 3500 Greece Abstrct Using
More informationChapter Five  Eigenvalues, Eigenfunctions, and All That
Chpter Five  Eigenvlues, Eigenfunctions, n All Tht The prtil ifferentil eqution methos escrie in the previous chpter is specil cse of more generl setting in which we hve n eqution of the form L 1 xux,tl
More information38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes
The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which
More informationMath 4200: Homework Problems
Mth 4200: Homework Problems Gregor Kovčič 1. Prove the following properties of the binomil coefficients ( n ) ( n ) (i) 1 + + + + 1 2 ( n ) (ii) 1 ( n ) ( n ) + 2 + 3 + + n 2 3 ( ) n ( n + = 2 n 1 n) n,
More informationInterpolation. Gaussian Quadrature. September 25, 2011
Gussin Qudrture September 25, 2011 Approximtion of integrls Approximtion of integrls by qudrture Mny definite integrls cnnot be computed in closed form, nd must be pproximted numericlly. Bsic building
More informationThe problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.
ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion
More information