MATH 144: Business Calculus Final Review

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MATH 144: Business Calculus Final Review"

Transcription

1 MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives by known rules. 5. Find the eqution of the tngent line t point. 6. Use implicit differentition. 7. Clculte severl definite nd indefinite integrls by vrious integrtion-techniques. 8. Find the re between two curves. 9. Anlyze function. () Find intervls of increse nd decrese. (b) Find intervls of concvity. (c) Find locl extreme vlues. (d) Find inflection points. 10. Applictions () Solve problems involving exponentil growth or continuously compounded interest. (b) Solve relted-rtes problem. (c) Solve n optimiztion-problem. (d) Optimize revenue, cost, nd profit. (e) Find the net-chnge of quntity over n intervl. (f) Find the Gini Index, nd interpret the result. 1

2 2 Formuls 1. point-slope form for the eqution of line: y y 0 = m(x x 0 ) 2. The limit-definition of derivtive: f (x) = lim h 0 f(x + h) f(x) h 3. Bsic differentition rules: constnts, pulling out constnt, dding or subtrcting 4. Product, Quotient, nd Chin Rules: (f g) = f g + fg, ( ) f = f g fg g g 2, d [ ] f(g(x)) = f (g(x)) g (x) 5. Derivtives nd Indefinite Integrls of Common Functions: (x n ) = nx n 1 x n 1 = n+1 xn+1 + C if n 1 (e x ) = e x e x = e x + C (ln(x)) = 1 1 = ln x + C x x 6. Fundmentl Theorem of Clculus: f(x) = F (b) F () if F (x) = f(x). 7. Integrtion-by-Prts: u dv = uv v du; Choose u by LAE. 8. Averge vlue of function: f vg = 1 b 9. Are between two curves: 10. Continuous Compound Interest: A = P e rt f(x) [ f(x) g(x) ] if f(x) g(x) on [, b] 11. Revenue: R = p x, where p is the price per item nd x is the number of items 12. Profit: P = R C, where R is revenue nd C is cost [ ] [ f(x) f ] (x) 13. L Hospitl s Rule: lim = lim x g(x) x g if the limit hs indeterminte form 0 (x) 0 or 14. Gini Index: G = 1 0 [x f(x)] 2

3 3 Summry 3.1 Functions: Ch Understnd wht function is nd how to determine whether n eqution describes function (Verticl Line Test). 2. Be fmilir with the bsic shpes of the grphs of common functions; for instnce, you should be ble to distinguish between f(x) = x 2 nd g(x) = x Know wht vrious chnges to n eqution will do to trnsform the grph (verticl/horizontl trnsltions, reflections, stretches, or compressions). These re summrized on pge 63 of the textbook. 3.2 Limits: Properties of Limits: Limit of constnt or identity function Limit of sum, difference, product, or quotient of functions Pulling constnt outside limit 2. Limits t Point: If function cn be evluted t point without dividing by 0, then the limit of the function t the point equls the function-vlue. This is the key ide behind continuity. Infinite Limits: If, for rtionl function, the limit of the denomintor s x c is 0, nd the limit of the numertor is not 0, then the function will be going to infinity. However, it could be going to positive infinity from one side nd negtive infinity from the other, so the limit my not exist. Recll tht limit only exists if its right- nd left-sided limits both exist nd re equl. 3. Limits t Infinity: Theorems 2-4 on pges in the textbook In generl, if the numertor is becoming lrger nd lrger, then the whole function is going to infinity (positive or negtive); lso, if the denomintor is becoming lrger nd lrger, then the function is going to 0. The limit s x of polynomil is the sme s the limit s x of the first term of the polynomil. 4. Asymptotes: Verticl Asymptotes: Verticl symptotes correspond to infinite limits. They occur when the denomintor is equl to 0. When finding verticl symptotes, find the x-vlues for which the denomintor is 0, then test the numertor for ech of these vlues. If the numertor is lso 0 t zero of the denomintor, then tht point is hole. If not, it is verticl symptote. 3

4 Horizontl Asymptotes: Horizontl symptotes correspond to limits t infinity, so follow these sme rules if you re sked to find the limit t infinity of rtionl function. When finding the horizontl symptote of rtionl function if there is one, check the degrees of the polynomils in the numertor nd denomintor: () If the degree of the numertor is greter, then there is no horizontl symptote. (b) If the degree of the denomintor is greter, then the line y = 0 is the horizontl symptote. (c) If their degrees re equl, then the rtio of the leding coefficients is the y-vlue t which the horizontl symptote occurs. 3.3 Derivtives: , Know wht derivtive ctully mens; try expressing wht derivtive mens in your own words. 2. Be ble to use the limit-definition in order to find the derivtive for simple polynomil function (the Four-Step Process). 3. Polynomils: Know the power rule nd how to use it. Know how to del with constnts when differentiting. 4. Exponentil nd Logrithmic Functions: rules. 5. Product Rule 6. Quotient Rule d (ex ) = e x nd d [ ] 1 ln(x) =. Memorize these x 7. Chin Rule: Know how to recognize the inner function nd the outer function. Use the chin rule to differentite composite functions. 8. Implicit Differentition: finding dy given n implicit eqution involving x nd y. () Differentite both sides of the eqution with respect to x. (b) Split up the eqution nd differentite ech term seprtely. (c) For the terms involving only x or constnts, use norml rules of differentition. (d) For terms involving y, differentite s usul, then multiply the result with dy by the chin rule. (e) Solve the resulting eqution for dy. 4

5 3.4 Applictions of Derivtives: 3.6, , Relted Rtes () Strt with n eqution linking two or more functions of time, x(t) nd y(t) for exmple. (b) Differentite the eqution implicitly with respect to t. (c) Given ll pieces of informtion but one, find the remining rte; for exmple, given x, y, nd dy, find. You my hve to use the originl eqution in order to find y, though. dt dt 2. Mxim nd Minim () First Derivtive Test: Extrem occur t criticl points, which re the points where the first derivtive is 0 or not defined while the function is still defined. i. Find f (x), the first derivtive. ii. Find the x-vlues for which f (x) = 0 or f (x) does not exist. iii. The resulting points re the criticl points. iv. Crete sign-chrt for f (x), splitting up the number line t the criticl points. v. Mke conclusion bout ech criticl point bsed on the sign chrt: If f (x) > 0 on the left nd f (x) < 0 on the right, then tht point gives mximum. If f (x) < 0 on the left nd f (x) > 0 on the right, then tht point gives minimum. If f (x) does not chnge sign, then tht point is neither mximum nor minimum. (b) Second Derivtive Test: Extrem occur t criticl points where the second derivtive is not 0; the second derivtive describes concvity. i. Find the criticl points. ii. Find f (x), the second derivtive. iii. Evlute f (x) t ech of the criticl points. A. If f (c) > 0, then the function is concve up there, so tht point gives minimum. B. If f (c) < 0, then the function is concve down there, so tht point gives mximum. C. If f (c) = 0, then tht point is neither mximum nor minimum. (c) Locl vs. Absolute: The first nd second derivtive tests give two wys to find locl extrem. In order to find the bsolute extrem: i. On closed intervl: Find ll criticl points, then evlute the function t the criticl points nd the endpoints of the intervl to find the bsolute mximum nd minimum over tht intervl. ii. Over ll rel numbers: A function hs n bsolute extremum over ll rel numbers if there is one nd only one criticl point. 5

6 3.5 Integrls: , , Indefinite Integrls () Be ble to find nti-derivtives of common functions, including power functions, exponentil functions, nd logrithmic functions. (b) Remember to tke nti-derivtives: do not tke derivtives when you re sked to find n indefinite integrl. (c) Remember to include the constnt of integrtion when you find n indefinite integrl. (d) Know how to perform u-substitution, nd prctice picking u nd finding du. 2. Definite Integrls () Evluting definite integrls: Find the indefinite integrl; tht is, find the prticulr nti-derivtive of the integrnd. Use the Fundmentl Theorem to plug in the limits of integrtion. (b) Remember tht n integrl with the sme vlue for the lower nd upper limits of integrtion is lwys 0, tht is, f(x) = Integrtion-Techniques () Know how to use the bsic rules of integrtion. (b) Know the nti-derivtives of common functions. (c) Know how to use the Fundmentl Theorem of Clculus. (d) Use u-substitution if the integrnd is not common function. (e) Use integrtion-by-prts if the integrnd is not common function nd u-substitution does not work. 3.6 Applictions of Integrls: 5.5, Net-Chnge Theorem: If Q (t) represents the rte of chnge of some quntity, then Q (t) dt = Q(b) Q() represents the net-chnge or the totl chnge from time t = to time t = b. 2. Averge vlue: 1 b f(x) finds the verge vlue of f(x) on the intervl [, b]. f(x) gives the re of rectngle with the sme re s the region under the curve. The height of this rectngle is the verge vlue. Dividing the re of the rectngle by its width gives the height; the width of the rectngle is b. 6

7 3. Are under curve Here, we tret res bove the x-xis s positive nd res below the x-xis s negtive. Just tking the integrl of the function gives the re under the curve; tht is, Are = f(x). 4. Are between two curves Here, we tret ll res s positive. Steps: 5. Gini Index () Find where the two curves intersect if t ll. Do this by setting the functions equl to ech other nd solving for x. (b) If you re given n intervl nd one or more of the intersection points lies on tht intervl, then split the intervl t those points, mking severl smller subintervls. (c) Over ech subintervl, find which function is bove nd which is below by picking test vlue nd evluting both functions. (d) Set up n integrl over ech subintervl with the pproprite order bsed on the upper nd lower functions. Add these integrls together. (e) Solve the integrtion problem to find the re between the two curves. If 0 x is the percentge of popultion nd 0 f(x) 1 is the percentge of income cross given country, then y = f(x) is Lorenz curve. If y = f(x) is given Lorenz curve, then its Gini index is G = If G 0, then income is closer to being distributed eqully. If G 1, then income is closer to being distributed uneqully. 1 0 [x f(x)]. For recommended exercises, refer to previous reviews, previous exms, or written s- Remrk: signments. Disclimer: In ddition to this review-sheet, nything presented in clss even if it ws not explicitly written on the bord, ssigned s online homework, or found in the book is fir gme for the exm. I will not try to trick you, but there my be importnt informtion which we hve covered which I hve not included on this hnd-out. This is my disclimer.... ;) 7

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

Topics Covered AP Calculus AB

Topics Covered AP Calculus AB Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

B Veitch. Calculus I Study Guide

B Veitch. Calculus I Study Guide Clculus I Stuy Guie This stuy guie is in no wy exhustive. As stte in clss, ny type of question from clss, quizzes, exms, n homeworks re fir gme. There s no informtion here bout the wor problems. 1. Some

More information

( ) as a fraction. Determine location of the highest

( ) as a fraction. Determine location of the highest AB Clculus Exm Review Sheet - Solutions A. Preclculus Type prolems A1 A2 A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f ( x). Set function equl to 0. Fctor or use qudrtic eqution if

More information

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x). AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

AB Calculus Review Sheet

AB Calculus Review Sheet AB Clculus Review Sheet Legend: A Preclculus, B Limits, C Differentil Clculus, D Applictions of Differentil Clculus, E Integrl Clculus, F Applictions of Integrl Clculus, G Prticle Motion nd Rtes This is

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

MATH SS124 Sec 39 Concepts summary with examples

MATH SS124 Sec 39 Concepts summary with examples This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

f(a+h) f(a) x a h 0. This is the rate at which

f(a+h) f(a) x a h 0. This is the rate at which M408S Concept Inventory smple nswers These questions re open-ended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnk-out-n-nswer problems! (There re plenty of those in the

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclimer: This is ment to help you strt studying. It is not necessrily complete list of everything you need to know. The MTH 33 finl exm minly consists of stndrd response questions where students must

More information

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009 Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm-6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No

More information

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function? Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Theorem Suppose f is continuous

More information

MATH , Calculus 2, Fall 2018

MATH , Calculus 2, Fall 2018 MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

More information

Math 116 Calculus II

Math 116 Calculus II Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

MAT137 Calculus! Lecture 20

MAT137 Calculus! Lecture 20 officil website http://uoft.me/mat137 MAT137 Clculus! Lecture 20 Tody: 4.6 Concvity 4.7 Asypmtotes Net: 4.8 Curve Sketching 4.5 More Optimiztion Problems MVT Applictions Emple 1 Let f () = 3 27 20. 1 Find

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists. AP Clculus Finl Review Sheet solutions When you see the words This is wht you think of doing Find the zeros Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor Find

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled? Section 5. - Ares nd Distnces Exmple : Suppose cr trvels t constnt 5 miles per hour for 2 hours. Wht is the totl distnce trveled? Exmple 2: Suppose cr trvels 75 miles per hour for the first hour, 7 miles

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

0.1 Chapters 1: Limits and continuity

0.1 Chapters 1: Limits and continuity 1 REVIEW SHEET FOR CALCULUS 140 Some of the topics hve smple problems from previous finls indicted next to the hedings. 0.1 Chpters 1: Limits nd continuity Theorem 0.1.1 Sndwich Theorem(F 96 # 20, F 97

More information

Main topics for the Second Midterm

Main topics for the Second Midterm Min topics for the Second Midterm The Midterm will cover Sections 5.4-5.9, Sections 6.1-6.3, nd Sections 7.1-7.7 (essentilly ll of the mteril covered in clss from the First Midterm). Be sure to know the

More information

Precalculus Spring 2017

Precalculus Spring 2017 Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify

More information

Mathematics 19A; Fall 2001; V. Ginzburg Practice Final Solutions

Mathematics 19A; Fall 2001; V. Ginzburg Practice Final Solutions Mthemtics 9A; Fll 200; V Ginzburg Prctice Finl Solutions For ech of the ten questions below, stte whether the ssertion is true or flse ) Let fx) be continuous t x Then x fx) f) Answer: T b) Let f be differentible

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

1.1 Functions. 0.1 Lines. 1.2 Linear Functions. 1.3 Rates of change. 0.2 Fractions. 0.3 Rules of exponents. 1.4 Applications of Functions to Economics

1.1 Functions. 0.1 Lines. 1.2 Linear Functions. 1.3 Rates of change. 0.2 Fractions. 0.3 Rules of exponents. 1.4 Applications of Functions to Economics 0.1 Lines Definition. Here re two forms of the eqution of line: y = mx + b y = m(x x 0 ) + y 0 ( m = slope, b = y-intercept, (x 0, y 0 ) = some given point ) slope-intercept point-slope There re two importnt

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

( ) where f ( x ) is a. AB/BC Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

( ) where f ( x ) is a. AB/BC Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x). AB/ Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 Find the intersection of f ( x) nd g( x). A3 Show tht f ( x) is even. A4 Show tht

More information

Calculus AB. For a function f(x), the derivative would be f '(

Calculus AB. For a function f(x), the derivative would be f '( lculus AB Derivtive Formuls Derivtive Nottion: For function f(), the derivtive would e f '( ) Leiniz's Nottion: For the derivtive of y in terms of, we write d For the second derivtive using Leiniz's Nottion:

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

1 Techniques of Integration

1 Techniques of Integration November 8, 8 MAT86 Week Justin Ko Techniques of Integrtion. Integrtion By Substitution (Chnge of Vribles) We cn think of integrtion by substitution s the counterprt of the chin rule for differentition.

More information

Topics for final

Topics for final Topics for 161.01 finl.1 The tngent nd velocity problems. Estimting limits from tbles. Instntneous velocity is limit of verge velocity. Slope of tngent line is limit of slope of secnt lines.. The limit

More information

lim f(x) does not exist, such that reducing a common factor between p(x) and q(x) results in the agreeable function k(x), then

lim f(x) does not exist, such that reducing a common factor between p(x) and q(x) results in the agreeable function k(x), then AP Clculus AB/BC Formul nd Concept Chet Sheet Limit of Continuous Function If f(x) is continuous function for ll rel numers, then lim f(x) = f(c) Limits of Rtionl Functions A. If f(x) is rtionl function

More information

Calculus I-II Review Sheet

Calculus I-II Review Sheet Clculus I-II Review Sheet 1 Definitions 1.1 Functions A function is f is incresing on n intervl if x y implies f(x) f(y), nd decresing if x y implies f(x) f(y). It is clled monotonic if it is either incresing

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

f a L Most reasonable functions are continuous, as seen in the following theorem:

f a L Most reasonable functions are continuous, as seen in the following theorem: Limits Suppose f : R R. To sy lim f(x) = L x mens tht s x gets closer n closer to, then f(x) gets closer n closer to L. This suggests tht the grph of f looks like one of the following three pictures: f

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Big idea in Calculus: approximation

Big idea in Calculus: approximation Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

More information

1 Functions Defined in Terms of Integrals

1 Functions Defined in Terms of Integrals November 5, 8 MAT86 Week 3 Justin Ko Functions Defined in Terms of Integrls Integrls llow us to define new functions in terms of the bsic functions introduced in Week. Given continuous function f(), consider

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

DERIVATIVES NOTES HARRIS MATH CAMP Introduction

DERIVATIVES NOTES HARRIS MATH CAMP Introduction f DERIVATIVES NOTES HARRIS MATH CAMP 208. Introduction Reding: Section 2. The derivtive of function t point is the slope of the tngent line to the function t tht point. Wht does this men, nd how do we

More information

AP Calculus Multiple Choice: BC Edition Solutions

AP Calculus Multiple Choice: BC Edition Solutions AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x I. Dierentition. ) Rules. *product rule, quotient rule, chin rule MATH 34B FINAL REVIEW. Find the derivtive of the following functions. ) f(x) = 2 + 3x x 3 b) f(x) = (5 2x) 8 c) f(x) = e2x 4x 7 +x+2 d)

More information

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher). Test 3 Review Jiwen He Test 3 Test 3: Dec. 4-6 in CASA Mteril - Through 6.3. No Homework (Thnksgiving) No homework this week! Hve GREAT Thnksgiving! Finl Exm Finl Exm: Dec. 14-17 in CASA You Might Be Interested

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx... Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Stuff You Need to Know From Calculus

Stuff You Need to Know From Calculus Stuff You Need to Know From Clculus For the first time in the semester, the stuff we re doing is finlly going to look like clculus (with vector slnt, of course). This mens tht in order to succeed, you

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

Math Bootcamp 2012 Calculus Refresher

Math Bootcamp 2012 Calculus Refresher Mth Bootcmp 0 Clculus Refresher Exponents For ny rel number x, the powers of x re : x 0 =, x = x, x = x x, etc. Powers re lso clled exponents. Remrk: 0 0 is indeterminte. Frctionl exponents re lso clled

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information