different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s)."

Transcription

1 Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different methods (left endpoint, right endpoint, midpoint, trpezoid, Simpson s). 2. Find x 4x + 5dx. 3. Find ln xdx. 4. Find e x cos xdx. 5. Find x 3 e x2 dx. 6. Wht is the smllest vlue of n needed to ensure tht our numericl pproximtion method for 3 1 dx/x is within.1 = 1 4 using the different methods? 7. Find dx x. 8. Let popultion stisfy the eqution dn =.53N. Find the doubling time. 9. A logistic eqution is given by dp on the initil vlue. = r(1 P/K)P. Describe how the solutions depend 1. Describe the dynmics if there is constnt hrvesting occurring nd how it depends on h. 11. Solve dy = t/y. 12. When cn we compre n integrl with 1 how? dx x p to show convergence? Divergence? And True/Flse 13. True Flse One needs to lern the method of mthemticl induction in order to find pproximtions of res under functions using Riemnn sums for specific n (sy n = 5). 14. True Flse Antiderivtives re useful in t lest three plces: solving simple DE s, finding speeds nd distnces trvelled during free-flls, nd voiding using Riemnn sums when finding res fter we lern bout the Fundmentl Theorem of Clculus.

2 Mth 1A with Professor Stnkov Wednesdy, 12/6/ True Flse Despite the fct tht (ln x ) = 1/x for ny x, the integrl 1/xdx for x is strictly speking, not equl to ln x +C becuse the function 1/x is discontinuous, cusing us to use two different constnts for the negtive nd positive rel numbers. 16. True Flse The function e x2 hs no ntiderivtive in the form of n elementry function becuse no one hs been ble to find it. 17. True Flse Any continuous function on (, b) is integrble (i.e., it hs n ntiderivtive), but the converse is not true becuse some continuous functions do not hve derivtives. 18. True Flse To show tht the rule Integrl of product is the product of integrls is flwed it suffices to produce one counterexmple where it does not work. 19. True Flse The formul for the re of trpezoid (the product of the verge of the bses nd the height) cn be shown by dding up the res of the two tringles into which digonl divides the trpezoid. 2. True Flse Riemnn sums re somewht cumbersome tools for finding pproximtions of res, yet they re bsolutely necessry to link ntiderivtives to res. 21. True Flse To clculte the definite integrl x2 dx, we must find n ntiderivtive of 25 x 2 nd use the FTC I to evlute it t the ends of the intervl [ 5, 5]. 22. True Flse There re t lest three wys to compute π π sin(x)dx. 23. True Flse Splitting n integrl long its intervl s in b c f(x)dx mkes sense only when c is between nd b. b c 24. True Flse When we do not know n ntiderivtive of function nd we cnnot find the limit of the corresponding Riemnn sums on [, b], serching for geometric interprettion of the desired definite integrl is lso pointless. 25. True Flse Bounding f(x) on [, b] from bove nd below by some constnts M nd m produces only n estimte of b f(x)dx. 26. True Flse Geometric res cn be, fter ll, negtive if they pper underneth the x-xis nd bove some function f(x). 27. True Flse We cn turn limits of Riemnn sums into definite integrls nd vice vers. 28. True Flse The formul for the re of right trpezoid ppers in the geometric interprettion of the definite integrl 7 12 xdx.

3 Mth 1A with Professor Stnkov Wednesdy, 12/6/ True Flse When proving the bby definite ILL± nd IL*c, we need to descend ll the wy down to limits of Riemnn sums, nd pply long the wy the corresponding LL± nd LL*c. 3. True Flse FTCI sys tht if you strt with function F(x), then differentite it, nd then integrte it (ssuming ll these opertions re OK), you get bck the originl function F(x). 31. True Flse FTCII sys tht if you strt with function f(x), integrte f(u) from to x, nd then differentite with respect to x (ssuming ll these opertions re OK), you will get bck the originl function f(x). 32. True Flse The re-so-fr function F (x) = x f(u) du is > when f(x) increses, nd it is < when f(x) decreses. 33. True Flse A vlid PST sys tht if two functions re equl, then their derivtives re equl nd lso their integrls re equl (ssuming tht ech exists), so one my ttempt to tke derivtives (or integrls) on both sides of the equlity. 34. True Flse The Substitution Rule is relly ILL becuse it undoes for ntiderivtives wht CR does for derivtives. 35. True Flse (ln x ) = 1/ x for ll x. 36. True Flse Some ides for substitution tht work well in number of exmples re substituting wht is under rdicl, the denomintor of frction, nd n expression whose derivtive ppers in the numertor. 37. True Flse Checking your nswers fter hving done substitution is wste of time. 38. True Flse The re-so-fr function F (x) = x f(u) du is concve up where f(x) is incresing, nd it is concve down where f(x) is decresing. 39. True Flse There re two different wys to clculte definite integrls by SR (substitution rule): forget temporrily bout the bounds of integrtion, find n ntiderivtive, nd use FTCI; or go directly forwrd with SR while not forgetting to chnge the bounds of integrtion. 4. True Flse After hving done IP (integrtion by prts), checking your nswers by differentition is wste of effort since you hve lredy used vlid method(s) to clculte these integrls. 41. True Flse To justify IP on indefinite integrls, we pplied PR (product rule) nd FTCI. 42. True Flse When deciding which of two functions in n integrl h 1 (x)h 2 (x) dx will ply the role of u = f(x) nd which of v = g (x) in IP, we follow our intuition becuse integrtion is complicted process nd there re no guidelines to follow when doing IP.

4 Mth 1A with Professor Stnkov Wednesdy, 12/6/ True Flse If in the integrl h 1 (x)h 2 (x) dx we see tht h 1 (x) hs simpler (or comprble in difficulty) ntiderivtive while h 2 (x) s derivtive is simpler thn h 2 (x), we go for IP with u = f(x) = h 2 (x) nd v = g (x) = h 1 (x). 44. True Flse If in the integrl h 1 (x)h 2 (x) dx ech of the functions h 1 (x) nd h 2 (x) hs eqully complicted derivtives nd integrls s itself, then there is no point in pplying IP, since it will turn the integrl into n eqully hrd integrl. 45. True Flse When one of the functions h 1 (x) nd h 2 (x) in the integrl h1 (x)h 2 (x)dx is x 2 nd we wnt to solve the problem vi IP, then we must set u = f(x) = x 2, becuse if we do v = g (x) = x 2 this will mke g(x) = x 3 /3, which is more complicted thn x 2 nd hence it will complicte our problem. 46. True Flse The formuls for the error bounds for the vrious pproximtion rules for f(x)dx cn be used to find the exct errors for these pproximtions. b 47. True Flse The Trpezoidl Rule sum is the verge of the Right Endpoint nd Left Endpoint sums for b f(x)dx. 48. True Flse To estimte n pproximtion mens to find out t most how fr it cn be from the exct vlue, nd hence this is not useful since we either don t know the exct vlue, or if we knew it, we wouldn t be even pproximting, much more so estimting n pproximtion of it. 49. True Flse Simpson s Rule uses degree 4 polynomils to better pproximte the shpe of the grph of f(x), s evidenced by the fourth derivtive nd the 4th power n 4 in the formul for the error of the Simpson s pproximtion: E S K 4(b ) 5. 18n 4 5. True Flse The lrger the difference between the mximum nd the minimum of f (x) on [, b], the bigger the estimtes of the errors for E L nd E R will turn out to be. 51. True Flse To find out how fr we hve to go with the number of subintervls n of [, b] in order to ensure tht our pproximtion is close enough to the true vlue of b f(x)dx, we need to set up n inequlity using formul for the error bounds nd solve it for n. 52. True Flse For the sme number n of subintervls, the Midpoint Rule tends to be more precise thn the Trpezoidl Rule, but Simpson s Rule is lwys more precise thn the Trpezoidl Rule. 53. True Flse If function is concve down, we cn obtin n overestimte by pplying either the Right Endpoint Rule or the Left Endpoint Rule. 54. True Flse Infinitely mny continuous functions do NOT hve ntiderivtives in elementry functions, but they still do hve ntiderivtives, s shown by using the re-so-fr function nd pplying FTC II to it.

5 Mth 1A with Professor Stnkov Wednesdy, 12/6/ True Flse We cn solve the exponentil growth model DE y (t) = ky(t) only by guessing tht y(t) is n exponentil function. 56. True Flse The logistic model DE is modifiction of the exponentil growth model, tking into ccount tht environmentl resources my be limited to llow unrestricted exponentil growth forever. 57. True Flse To solve the logistic model DE P (t) = kp (1 P ), we need to integrte K both sides nd pply integrtion by prts on the RHS. 58. True Flse The logistic model DE cn be modified to ccount for constnt hrvesting rte h by subtrcting h from the RHS of the DE. 59. True Flse The growth rte of P (t) in the logistic model is the logrithmic derivtive of P (t). 6. True Flse The reltive growth rte in the exponentil decy model remins constnt for ll t. 61. True Flse The method of seprble DE cn be pplied only when the RHS of DE dy = f(y, t) cn be somehow written s product of function in y lone nd function in t lone. 62. True Flse The hlf-life of rdioctive element during exponentil decy depends on the initil mount of this element. 63. True Flse We cn get pretty good ide of the solutions to the hrvesting modifiction of the logistic model DE P (t) = kp ( ) 1 P K h by fctoring the qudrtic polynomil in P on the RHS nd studying where it is positive, negtive, or. 64. True Flse In the modified the logistic model dp ( = kp (t) 1 P (t) K ) h, there is vlue of the hrvesting rte h for which P (t) hs unique equilibrium, bove which ll solutions re decresing to this equilibrium nd below which the popultion becomes extinct. 65. True Flse We cn show tht 1 dx converges in t lest three wys: by 5 x 1.1 brute force clcultion using the definition of n improper integrl, by representing 1 dx s prt of 1 dx nd then using formul 5 x x 1.1 from clss for the vlue of the ltter integrl, or by compring it with the more fmilir to us integrl 1 dx. 5 x True Flse If we cnnot compute the exct vlue of n improper integrl b f(x)dx, we could try to compre it with nother integrl b g(x)dx, but tht, if successful, would only tell us if the originl integrl converges or diverges. 67. True Flse The vlue of sin x dx depends on where we stop the vrible t when clculting the limit of the proper integrls t sin x dx.

6 Mth 1A with Professor Stnkov Wednesdy, 12/6/ True Flse To show tht e x2 dx converges, it is enough to compre it with e x dx. 69. True Flse If g(x) f(x) on [, ) nd converges. f(x)dx converges, then g(x)dx lso 7. True Flse Improper integrls in Sttistics re used, for exmple, to compute the res under probbility distribuition functions. 71. True Flse The qudrtic ( formul ) is useful when fctoring the RHS of the DE dp = kp (t) 1 P (t) h. K 72. True Flse A semistble equilibrium is obtined for the modified logistic model when the hrvesting constnt h is such tht the qudrtic eqution in P, kp ( ) 1 P K h, hs unique root for P. 73. True Flse The vlue of convergent two-sided improper integrl f(x) dx for continuous function f(x) my depend on where we split the integrl s sum of two one-sided improper integrls f(x) dx + f(x) dx; however, the divergence of such n integrl does NOT depend on the prticulr we choose. 74. True Flse If we lredy know tht f(x) dx converges, then we cn compute t it by choosing symmetric bus stops ; i.e., s lim t f(x) dx; yet, t until we know tht the integrl converges we cnnot do this nd we must compute insted lim t t t t f(x) dx. 75. True Flse The improper integrl e x2 dx converges becuse the integrnd function is even nd the integrl on the right hlf on the number line e x2 dx is lredy shown to converge. 76. True Flse Integrls cn be improper in more thn two plces, but in this clss we will concentrte mostly on improper integrls of functions without infinite discontinuities becuse PDFs will be generlly continuous or piecewise continuous. 77. True Flse 3 dx x 1 = ln 2.

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find nti-derivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

The Definite Integral

The Definite Integral CHAPTER 3 The Definite Integrl Key Words nd Concepts: Definite Integrl Questions to Consider: How do we use slicing to turn problem sttement into definite integrl? How re definite nd indefinite integrls

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

Notes on Calculus II Integral Calculus. Miguel A. Lerma

Notes on Calculus II Integral Calculus. Miguel A. Lerma Notes on Clculus II Integrl Clculus Miguel A. Lerm November 22, 22 Contents Introduction 5 Chpter. Integrls 6.. Ares nd Distnces. The Definite Integrl 6.2. The Evlution Theorem.3. The Fundmentl Theorem

More information

Precalculus Spring 2017

Precalculus Spring 2017 Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I FINALTERM EXAMINATION 011 Clculus &. Anlyticl Geometry-I Question No: 1 { Mrks: 1 ) - Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

Not for reproduction

Not for reproduction AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type

More information

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35 7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q. Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the

More information

The Trapezoidal Rule

The Trapezoidal Rule _.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

More information

Numerical Integration

Numerical Integration Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

More information

Numerical quadrature based on interpolating functions: A MATLAB implementation

Numerical quadrature based on interpolating functions: A MATLAB implementation SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

B Veitch. Calculus I Study Guide

B Veitch. Calculus I Study Guide Clculus I Stuy Guie This stuy guie is in no wy exhustive. As stte in clss, ny type of question from clss, quizzes, exms, n homeworks re fir gme. There s no informtion here bout the wor problems. 1. Some

More information

Topic 1 Notes Jeremy Orloff

Topic 1 Notes Jeremy Orloff Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble

More information

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs MATHS NOTES The Institute of Eduction 06 SUBJECT: Mths LEVEL: Higher TEACHER: Aidn Rontree Topics Covered: Powers nd Logs About Aidn: Aidn is our senior Mths techer t the Institute, where he hs been teching

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Mapping the delta function and other Radon measures

Mapping the delta function and other Radon measures Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

More information

7 - Continuous random variables

7 - Continuous random variables 7-1 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7 - Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Chapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1

Chapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1 Chpter 5. Let g ( e. on [, ]. The derivtive of g is g ( e ( Write the slope intercept form of the eqution of the tngent line to the grph of g t. (b Determine the -coordinte of ech criticl vlue of g. Show

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests. ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion

More information

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2-Dimensionl Gussin Qudrture 20 4

More information

ECO 317 Economics of Uncertainty Fall Term 2007 Notes for lectures 4. Stochastic Dominance

ECO 317 Economics of Uncertainty Fall Term 2007 Notes for lectures 4. Stochastic Dominance Generl structure ECO 37 Economics of Uncertinty Fll Term 007 Notes for lectures 4. Stochstic Dominnce Here we suppose tht the consequences re welth mounts denoted by W, which cn tke on ny vlue between

More information

KOÇ UNIVERSITY MATH 106 FINAL EXAM JANUARY 6, 2013

KOÇ UNIVERSITY MATH 106 FINAL EXAM JANUARY 6, 2013 KOÇ UNIVERSITY MATH 6 FINAL EXAM JANUARY 6, 23 Durtion of Exm: 2 minutes INSTRUCTIONS: No clcultors nd no cell phones my be used on the test. No questions, nd tlking llowed. You must lwys explin your nswers

More information

31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes

31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes Numericl Integrtion 3. Introduction In this Section we will present some methods tht cn be used to pproximte integrls. Attention will be pid to how we ensure tht such pproximtions cn be gurnteed to be

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

Continuous probability distributions

Continuous probability distributions Chpter 1 Continuous probbility distributions 1.1 Introduction We cll x continuous rndom vrible in x b if x cn tke on ny vlue in this intervl. An exmple of rndom vrible is the height of dult humn mle, selected

More information

Numerical Integration

Numerical Integration Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM. May 30, 2007 MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

More information

Math 4200: Homework Problems

Math 4200: Homework Problems Mth 4200: Homework Problems Gregor Kovčič 1. Prove the following properties of the binomil coefficients ( n ) ( n ) (i) 1 + + + + 1 2 ( n ) (ii) 1 ( n ) ( n ) + 2 + 3 + + n 2 3 ( ) n ( n + = 2 n 1 n) n,

More information

Summary of Elementary Calculus

Summary of Elementary Calculus Summry of Elementry Clculus Notes by Wlter Noll (1971) 1 The rel numbers The set of rel numbers is denoted by R. The set R is often visulized geometriclly s number-line nd its elements re often referred

More information

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx . Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

C1M14. Integrals as Area Accumulators

C1M14. Integrals as Area Accumulators CM Integrls s Are Accumultors Most tetbooks do good job of developing the integrl nd this is not the plce to provide tht development. We will show how Mple presents Riemnn Sums nd the ccompnying digrms

More information

MATH 222 Second Semester Calculus. Fall 2015

MATH 222 Second Semester Calculus. Fall 2015 MATH Second Semester Clculus Fll 5 Typeset:August, 5 Mth nd Semester Clculus Lecture notes version. (Fll 5) This is self contined set of lecture notes for Mth. The notes were written by Sigurd Angenent,

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Necessary and Sufficient Conditions for Differentiating Under the Integral Sign

Necessary and Sufficient Conditions for Differentiating Under the Integral Sign Necessry nd Sufficient Conditions for Differentiting Under the Integrl Sign Erik Tlvil 1. INTRODUCTION. When we hve n integrl tht depends on prmeter, sy F(x f (x, y dy, it is often importnt to know when

More information

Final Exam Study Guide

Final Exam Study Guide Finl Exm Study Guide Includes. Integrls & Antiderivtive Rules 2. Definite Integrls (Integrls with bounds) 3. Are Between Two Curves - Region Bounded by Two Curves 4. Consumer nd Producer Surplus. U-Substitution.

More information

Convex Sets and Functions

Convex Sets and Functions B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

More information

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus Unit # De+inite Integrtion & The Fundmentl Theorem Of Clculus. Find the re of the shded region ove nd explin the mening of your nswer. (squres re y units) ) The grph to the right is f(x) = -x + 8x )Use

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

BIFURCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS

BIFURCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS BIFRCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS FRANCESCA AICARDI In this lesson we will study the simplest dynmicl systems. We will see, however, tht even in this cse the scenrio of different possible

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

11.1 Exponential Functions

11.1 Exponential Functions . Eponentil Functions In this chpter we wnt to look t specific type of function tht hs mny very useful pplictions, the eponentil function. Definition: Eponentil Function An eponentil function is function

More information

The Trapezoidal Rule

The Trapezoidal Rule SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion Approimte

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x =

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x = Chpter 3 Symbolic Integrtion This chpter contins the bsic tricks of the symbolic integrtion trde. The gol of this chpter is not to mke you slow inncurte integrtion softwre, but rther to help you understnd

More information

4.1. Probability Density Functions

4.1. Probability Density Functions STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

More information

A basic logarithmic inequality, and the logarithmic mean

A basic logarithmic inequality, and the logarithmic mean Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, Bbeş-Bolyi University Str. Koglnicenu

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Calculus MATH 172-Fall 2017 Lecture Notes

Calculus MATH 172-Fall 2017 Lecture Notes Clculus MATH 172-Fll 2017 Lecture Notes These notes re concise summry of wht hs been covered so fr during the lectures. All the definitions must be memorized nd understood. Sttements of importnt theorems

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Chapter 1 - Functions and Variables

Chapter 1 - Functions and Variables Business Clculus 1 Chpter 1 - Functions nd Vribles This Acdemic Review is brought to you free of chrge by preptests4u.com. Any sle or trde of this review is strictly prohibited. Business Clculus 1 Ch 1:

More information

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties M.Sc. (Mths), B.Ed, M.Phil (Mths) MATHEMATICS Mob. : 947084408 9546359990 M.Sc. (Mths), B.Ed, M.Phil (Mths) RAM RAJYA MORE, SIWAN XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII

More information

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008 MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

More information