Review of Calculus, cont d


 Samuel Briggs
 1 years ago
 Views:
Transcription
1 Jim Lmbers MAT 460 Fll Semester Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some quntity is defined to be the product of two other quntities. For exmple, rectngle of width w hs uniform height h, nd the re A of the rectngle is given by the formul A = wh. Unfortuntely, in mny pplictions, we cnnot necessrily ssume tht certin quntities such s height re constnt, nd therefore formuls such s A = wh cnnot be used directly. However, they cn be used indirectly to solve more generl problems by employing the nottion known s integrl clculus. Suppose we wish to compute the re of shpe tht is not rectngle. To simplify the discussion, we ssume tht the shpe is bounded by the verticl lines x = nd x = b, the xxis, nd the curve defined by some continuous function y = f(x), where f(x) 0 for x b. Then, we cn pproximte this shpe by n rectngles tht hve width x = (b )/n nd height f(x i ), where x i = + i x, for i = 0,..., n. We obtin the pproximtion A A n = n f(x i ) x. i=1 Intuitively, we cn conclude tht s n, the pproximte re A n will converge to the exct re of the given region. This cn be seen by observing tht s n increses, the n rectngles defined bove comprise more ccurte pproximtion of the region. More generlly, suppose tht for ech n = 1, 2,..., we define the quntity R n by choosing points = x 0 < x 1 < < x n = b, nd computing the sum R n = n f(x i ) x i, x i = x i x i 1, x i 1 x i x i. i=1 The sum tht defines R n is known s Riemnn sum. Note tht the intervl [, b] need not be divided into subintervls of equl width, nd tht f(x) cn be evluted t rbitrry points belonging to ech subintervl. If f(x) 0 on [, b], then R n converges to the re under the curve y = f(x) s n, provided tht the widths of ll of the subintervls [x i 1, x i ], for i = 1,..., n, pproch zero. This 1
2 behvior is ensured if we require tht lim δ(n) = 0, where δ(n) = mx x i. n 1 i n This condition is necessry becuse if it does not hold, then, s n, the region formed by the n rectngles will not converge to the region whose re we wish to compute. If f ssumes negtive vlues on [, b], then, under the sme conditions on the widths of the subintervls, R n converges to the net re between the grph of f nd the xxis, where re below the xxis is counted negtively. We define the definite integrl of f(x) from to b by f(x) dx = lim n R n, where the sequence of Riemnn sums {R n } n=1 is defined so tht δ(n) 0 s n, s in the previous discussion. The function f(x) is clled the integrnd, nd the vlues nd b re the lower nd upper limits of integrtion, respectively. The process of computing n integrl is clled integrtion. In this course, we will study the problem of computing n pproximtion to the definite integrl of given function f(x) over n intervl [, b]. We will lern number of techniques for computing such n pproximtion, nd ll of these techniques involve the computtion of n pproprite Riemnn sum. Extreme Vlues In mny pplictions, it is necessry to determine where given function ttins its minimum or mximum vlue. For exmple, business wishes to mximize profit, so it cn construct function tht reltes its profit to vribles such s pyroll or mintennce costs. We now consider the bsic problem of finding mximum or minimum vlue of generl function f(x) tht depends on single independent vrible x. First, we must precisely define wht it mens for function to hve mximum or minimum vlue. Definition (Absolute extrem) A function f hs bsolute mximum or globl mximum t c if f(c) f(x) for ll x in the domin of f. The number f(c) is clled the mximum vlue of f on its domin. Similrly, f hs bsolute minimum or globl minimum t c if f(c) f(x) for ll x in the domin of f. The number f(c) is then clled the minimum vlue of f on its domin. The mximum nd minimum vlues of f re clled the extreme vlues of f, nd the bsolute mximum nd minimum re ech clled n extremum of f. Before computing the mximum or minimum vlue of function, it is nturl to sk whether it is possible to determine in dvnce whether function even hs mximum or minimum, so tht 2
3 effort is not wsted in trying to solve problem tht hs no solution. The following result is very helpful in nswering this question. Theorem (Extreme Vlue Theorem) If f is continuous on [, b], then f hs n bsolute mximum nd n bsolute minimum on [, b]. Now tht we cn esily determine whether function hs mximum or minimum on closed intervl [, b], we cn develop n method for ctully finding them. It turns out tht it is esier to find points t which f ttins mximum or minimum vlue in locl sense, rther thn globl sense. In other words, we cn best find the bsolute mximum or minimum of f by finding points t which f chieves mximum or minimum with respect to nerby points, nd then determine which of these points is the bsolute mximum or minimum. The following definition mkes this notion precise. Definition (Locl extrem) A function f hs locl mximum t c if f(c) f(x) for ll x in n open intervl contining c. Similrly, f hs locl minimum t c if f(c) f(x) for ll x in n open intervl contining c. A locl mximum or locl minimum is lso clled locl extremum. At ech point t which f hs locl mximum, the function either hs horizontl tngent line, or no tngent line due to not being differentible. It turns out tht this is true in generl, nd similr sttement pplies to locl minim. To stte the forml result, we first introduce the following definition, which will lso be useful when describing method for finding locl extrem. Definition(Criticl Number) A number c in the domin of function f is criticl number of f if f (c) = 0 or f (c) does not exist. The following result describes the reltionship between criticl numbers nd locl extrem. Theorem (Fermt s Theorem) If f hs locl minimum or locl mximum t c, then c is criticl number of f; tht is, either f (c) = 0 or f (c) does not exist. This theorem suggests tht the mximum or minimum vlue of function f(x) cn be found by solving the eqution f (x) = 0. As mentioned previously, we will be lerning techniques for solving such equtions in this course. These techniques ply n essentil role in the solution of problems in which one must compute the mximum or minimum vlue of function, subject to constrints on its vribles. Such problems re clled optimiztion problems. Although we will not discuss optimiztion problems in this course, we will lern bout some of the building blocks of methods for solving these very importnt problems. The Men Vlue Theorem While the derivtive describes the behvior of function t point, we often need to understnd how the derivtive influences function s behvior on n intervl. This understnding is essentil in numericl nlysis becuse, it is often necessry to pproximte function f(x) by function 3
4 g(x) using knowledge of f(x) nd its derivtives t vrious points. It is therefore nturl to sk how well g(x) pproximtes f(x) wy from these points. The following result, consequence of Fermt s Theorem, gives limited insight into the reltionship between the behvior of function on n intervl nd the vlue of its derivtive t point. Theorem (Rolle s Theorem) If f is continuous on closed intervl [, b] nd is differentible on the open intervl (, b), nd if f() = f(b), then f (c) = 0 for some number c in (, b). By pplying Rolle s Theorem to function f, then to its derivtive f, its second derivtive f, nd so on, we obtin the following more generl result, which will be useful in nlyzing the ccurcy of methods for pproximting functions by polynomils. Theorem (Generlized Rolle s Theorem) Let x 0, x 1, x 2,..., x n be distinct points in n intervl [, b]. If f is n times differentible on (, b), nd if f(x i ) = 0 for i = 0, 1, 2,..., n, then f (n) (c) = 0 for some number c in (, b). A more fundmentl consequence of Rolle s Theorem is the Men Vlue Theorem itself, which we now stte. Theorem (Men Vlue Theorem) If f is continuous on closed intervl [, b] nd is differentible on the open intervl (, b), then f(b) f() = f (c) b for some number c in (, b). Remrk The expression f(b) f() b is the slope of the secnt line pssing through the points (, f()) nd (b, f(b)). The Men Vlue Theorem therefore sttes tht under the given ssumptions, the slope of this secnt line is equl to the slope of the tngent line of f t the point (c, f(c)), where c (, b). The Men Vlue Theorem hs the following prcticl interprettion: the verge rte of chnge of y = f(x) with respect to x on n intervl [, b] is equl to the instntneous rte of chnge y with respect to x t some point in (, b). The Men Vlue Theorem for Integrls Suppose tht f(x) is continuous function on n intervl [, b]. Then, by the Fundmentl Theorem of Clculus, f(x) hs n ntiderivtive F (x) defined on [, b] such tht F (x) = f(x). If we pply the Men Vlue Theorem to F (x), we obtin the following reltionship between the integrl of f over [, b] nd the vlue of f t point in (, b). 4
5 Theorem (Men Vlue Theorem for Integrls) If f is continuous on [, b], then for some c in (, b). f(x) dx = f(c)(b ) In other words, f ssumes its verge vlue over [, b], defined by f ve = 1 b f(x) dx, t some point in [, b], just s the Men Vlue Theorem sttes tht the derivtive of function ssumes its verge vlue over n intervl t some point in the intervl. The Men Vlue Theorem for Integrls is lso specil cse of the following more generl result. Theorem (Weighted Men Vlue Theorem for Integrls) If f is continuous on [, b], nd g is function tht is integrble on [, b] nd does not chnge sign on [, b], then for some c in (, b). f(x)g(x) dx = f(c) g(x) dx In the cse where g(x) is function tht is esy to ntidifferentite nd f(x) is not, this theorem cn be used to obtin n estimte of the integrl of f(x)g(x) over n intervl. Exmple Let f(x) be continuous on the intervl [, b]. Then, for ny x [, b], by the Weighted Men Vlue Theorem for Integrls, we hve x x x (s )2 f(s)(s ) ds = f(c) (s ) ds = f(c) (x )2 2 = f(c), 2 where < c < x. It is importnt to note tht we cn pply the Weighted Men Vlue Theorem becuse the function g(x) = (x ) does not chnge sign on [, b]. Tylor s Theorem In mny cses, it is useful to pproximte given function f(x) by polynomil, becuse one cn work much more esily with polynomils thn with other types of functions. As such, it is necessry to hve some insight into the ccurcy of such n pproximtion. The following theorem, which is consequence of the Weighted Men Vlue Theorem for Integrls, provides this insight. Theorem (Tylor s Theorem) Let f be n times continuously differentible on n intervl [, b], nd suppose tht f (n+1) exists on [, b]. Let x 0 [, b]. Then, for ny point x [, b], f(x) = P n (x) + R n (x), 5
6 where nd P n (x) = n j=0 f (j) (x 0 ) (x x 0 ) j j! = f(x 0 ) + f (x 0 )(x x 0 ) f (x 0 )(x x 0 ) f (n) (x 0 ) (x x 0 ) n n! R n (x) = x x 0 where ξ(x) is between x 0 nd x. f (n+1) (s) n! (x s) n ds = f (n+1) (ξ(x)) (x x 0 ) n+1, (n + 1)! The polynomil P n (x) is the nth Tylor polynomil of f with center x 0, nd the expression R n (x) is clled the Tylor reminder of P n (x). When the center x 0 is zero, the nth Tylor polynomil is lso known s the nth Mclurin polynomil. The finl form of the reminder is obtined by pplying the Men Vlue Theorem for Integrls to the integrl form. As P n (x) cn be used to pproximte f(x), the reminder R n (x) is lso referred to s the trunction error of P n (x). The ccurcy of the pproximtion on n intervl cn be nlyzed by using techniques for finding the extreme vlues of functions to bound the (n + 1)st derivtive on the intervl. Becuse pproximtion of functions by polynomils is employed in the development nd nlysis of mny techniques in numericl nlysis, the usefulness of Tylor s Theorem cnnot be overstted. In fct, it cn be sid tht Tylor s Theorem is the Fundmentl Theorem of Numericl Anlysis, just s the theorem describing inverse reltionship between derivtives nd integrls is clled the Fundmentl Theorem of Clculus. 6
Overview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More informationCalculus III Review Sheet
Clculus III Review Sheet 1 Definitions 1.1 Functions A function is f is incresing on n intervl if x y implies f(x) f(y), nd decresing if x y implies f(x) f(y). It is clled monotonic if it is either incresing
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationCMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature
CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy
More informationINTRODUCTION TO INTEGRATION
INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide
More informationMath 1B, lecture 4: Error bounds for numerical methods
Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the
More information1 The Riemann Integral
The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re
More informationMA 124 January 18, Derivatives are. Integrals are.
MA 124 Jnury 18, 2018 Prof PB s oneminute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,
More informationAdvanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004
Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when
More informationDefinition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim
Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)
More informationMAT 168: Calculus II with Analytic Geometry. James V. Lambers
MAT 68: Clculus II with Anlytic Geometry Jmes V. Lmbers Februry 7, Contents Integrls 5. Introduction............................ 5.. Differentil Clculus nd Quotient Formuls...... 5.. Integrl Clculus nd
More informationNumerical Analysis: Trapezoidal and Simpson s Rule
nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationChapters 4 & 5 Integrals & Applications
Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO  Ares Under Functions............................................ 3.2 VIDEO  Applictions
More informationProperties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives
Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums  1 Riemnn
More informationThe Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.
Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F
More informationMATH 144: Business Calculus Final Review
MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives
More informationUnit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationIntegrals  Motivation
Integrls  Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is nonliner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but
More informationMain topics for the First Midterm
Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 23, Sections 4.14.8, nd Sections 5.15.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More informationThe Riemann Integral
Deprtment of Mthemtics King Sud University 20172018 Tble of contents 1 Antiderivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Antiderivtive Function Definition Let f : I R be function
More informationThe Fundamental Theorem of Calculus
The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls
More informationn f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1
The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the
More informationNumerical Integration
Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties
More informationJim Lambers MAT 169 Fall Semester Lecture 4 Notes
Jim Lmbers MAT 169 Fll Semester 200910 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of
More informationRiemann Sums and Riemann Integrals
Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct
More informationBig idea in Calculus: approximation
Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More informationChapter 1. Basic Concepts
Socrtes Dilecticl Process: The Þrst step is the seprtion of subject into its elements. After this, by deþning nd discovering more bout its prts, one better comprehends the entire subject Socrtes (469399)
More information7.2 The Definite Integral
7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More information38 Riemann sums and existence of the definite integral.
38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the xxis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These
More informationEuler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )
Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s
More informationSYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus
SYDE 112, LECTURES & 4: The Fundmentl Theorem of Clculus So fr we hve introduced two new concepts in this course: ntidifferentition nd Riemnn sums. It turns out tht these quntities re relted, but it is
More informationNUMERICAL INTEGRATION
NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls
More informationTHE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS.
THE EXISTENCEUNIQUENESS THEOREM FOR FIRSTORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrdlindeloftheorem/ This document is proof of the existenceuniqueness theorem
More informationf(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all
3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the
More informationMATH SS124 Sec 39 Concepts summary with examples
This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples
More informationThe First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
More informationMath Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove xxis) ( bove f under xxis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationNumerical Integration
Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019
ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationMATH , Calculus 2, Fall 2018
MATH 362, 363 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly
More informationRiemann Integrals and the Fundamental Theorem of Calculus
Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums
More informationa < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1
Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the
More informationWeek 10: Line Integrals
Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.
More informationx = b a N. (131) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is
Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More information1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl new nme for ntiderivtive. Differentiting integrls. Tody we provide the connection
More informationStuff You Need to Know From Calculus
Stuff You Need to Know From Clculus For the first time in the semester, the stuff we re doing is finlly going to look like clculus (with vector slnt, of course). This mens tht in order to succeed, you
More informationLecture 20: Numerical Integration III
cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationThe area under the graph of f and above the xaxis between a and b is denoted by. f(x) dx. π O
1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the xxis etween nd is denoted y f(x) dx nd clled the
More information4.4 Areas, Integrals and Antiderivatives
. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order
More informationImproper Integrals. Type I Improper Integrals How do we evaluate an integral such as
Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph
More informationChapter 5. Numerical Integration
Chpter 5. Numericl Integrtion These re just summries of the lecture notes, nd few detils re included. Most of wht we include here is to be found in more detil in Anton. 5. Remrk. There re two topics with
More informationIndefinite Integral. Chapter Integration  reverse of differentiation
Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the
More informationSections 5.2: The Definite Integral
Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)
More informationDefinite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function
More informationTopics Covered AP Calculus AB
Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.
More informationConstruction of Gauss Quadrature Rules
Jim Lmbers MAT 772 Fll Semester 201011 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht NewtonCotes qudrture
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationMath 116 Calculus II
Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................
More informationHow can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?
Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those
More informationDefinite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +
Definite Integrls 5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the lefthnd
More informationFinal Exam  Review MATH Spring 2017
Finl Exm  Review MATH 5  Spring 7 Chpter, 3, nd Sections 5.5.5, 5.7 Finl Exm: Tuesdy 5/9, :37:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.
More informationFact: All polynomial functions are continuous and differentiable everywhere.
Dierentibility AP Clculus Denis Shublek ilernmth.net Dierentibility t Point Deinition: ( ) is dierentible t point We write: = i nd only i lim eists. '( ) lim = or '( ) lim h = ( ) ( ) h 0 h Emple: The
More informationMath 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED
Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type
More information7.2 Riemann Integrable Functions
7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous
More informationLecture 1: Introduction to integration theory and bounded variation
Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You
More informationdifferent methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).
Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different
More informationCalculus II: Integrations and Series
Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]
More informationChapter One: Calculus Revisited
Chpter One: Clculus Revisited 1 Clculus of Single Vrible Question in your mind: How do you understnd the essentil concepts nd theorems in Clculus? Two bsic concepts in Clculus re differentition nd integrtion
More information5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship
5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is
More information1 The fundamental theorems of calculus.
The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl new nme for ntiderivtive. Differentiting integrls. Theorem Suppose f is continuous
More informationSuppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = 2.
Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot
More informationMA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
More informationLECTURE. INTEGRATION AND ANTIDERIVATIVE.
ANALYSIS FOR HIGH SCHOOL TEACHERS LECTURE. INTEGRATION AND ANTIDERIVATIVE. ROTHSCHILD CAESARIA COURSE, 2015/6 1. Integrtion Historiclly, it ws the problem of computing res nd volumes, tht triggered development
More informationMain topics for the Second Midterm
Min topics for the Second Midterm The Midterm will cover Sections 5.45.9, Sections 6.16.3, nd Sections 7.17.7 (essentilly ll of the mteril covered in clss from the First Midterm). Be sure to know the
More informationReview on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.
Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5.  5.3) Remrks on the course. Slide Review: Sec. 5.5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description
More information5.7 Improper Integrals
458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the
More informationand that at t = 0 the object is at position 5. Find the position of the object at t = 2.
7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we
More informationFirst midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009
Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No
More informationMAT 772: Numerical Analysis. James V. Lambers
MAT 772: Numericl Anlysis Jmes V. Lmbers August 23, 2016 2 Contents 1 Solution of Equtions by Itertion 7 1.1 Nonliner Equtions....................... 7 1.1.1 Existence nd Uniqueness................ 7 1.1.2
More informationf(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral
Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one
More information