Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties


 Pamela Jordan
 1 years ago
 Views:
Transcription
1 Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009
2 Overview 1 Motivtion: Computing the re under the grph 2 Approximtion by piecewise constnt functions 3 Denition of the Riemnn integrl 4 Properties of the Riemnn integrl
3 Motivtion: Computing ow from ow rtes We observe the ow of wter through drin, which vries with time. The result is ow rte, in litres/second, continuously recorded over time intervl [, b]. From these dt, we wnt to determine the totl mount A of wter tht hs pssed through the vlve during the intervl. This vlue corresponds to the re under the grph of f.
4 Answer for constnt rte If the ow rte is constnt, sy equl to c, the nswer is esily obtined: A = (length of the intervl) (ow rte) = (b ) c This corresponds to the formul for rectngulr res. re = width height. The ide to clculte the re under rbitrry grphs is to pproximte the grph by piecewise constnt functions.
5 Are under the grph: Piecewise constnt functions A piecewise constnt function or step function is function f : [, b] R tht consists of nitely mny constnt pieces Here, the region under the grph is mde up out of rectngles nd its re is computed by summing the res of the rectngles.
6 Prtition Denition. Let I = [, b] R be some intervl. A prtition of I is given by nite subset P = {x 0,..., x n } stisfying {, b} P. Without loss of generlity, = x 0 < x 1 < x 2 <... < x n = b. Exmple: The set P = {0, 0.3, 0.5, 0.8, 1.0} denes prtition of the intervl [0, 1].
7 Approximtion by step functions Denition. Let f : [, b] R be function, nd P = {x 0, x 1,..., x n } prtition. We dene M k (f ) = sup{f (x) : x k < x < x k+1} M k (f ) = inf{f (x) : x k < x < x k+1} Interprettion: M k nd M k provide optiml pproximtion of the grph of f by step functions with jumps in P, one from bove, one from below.
8 Exmple: Approximtion from bove A function dened on [0, 3], prtition P = {0, 1, 2, 3}. Blue: Function grph, Blck: Step function ssocited to M k
9 Exmple: Approximtion from below A function dened on [0, 3], prtition P = {0, 1, 2, 3}. Blue: Function grph, Blck: Step function ssocited to M k
10 Upper nd lower sum Denition. Let f : [, b] R, nd let P = {x 0, x 1,..., x n } be prtition of [, b], with = x 0 < x 1 <... < x n = b. We write S(P) = S(P) = n M k 1(x k x k 1) k=1 n M k 1(x k x k 1) k=1 Interprettion: The re below the step function with vlues M k 1 contins the re below the grph of f. Hence S(P) is greter or equl to the re below the grph of f. Likewise: S(P) is smller or equl to the re below the grph of f.
11 Grphicl interprettion of upper nd lower sum The dierence S(P) S(P) is the re between upper nd lower step function pproximtion
12 Renement of prtition Denition. Let P 1, P 2 be two prtitions of [, b]. Then P 1 is clled renement of P 2 if P 1 P 2. Interprettion: If P 1 P 2, then S(P 2 ) S(P 1 ) S(P 1 ) S(P 2 ) Hence the re between upper nd lower pproximtion decreses. The two should pproximte the sme vlue, s the prtition gets ner nd ner.
13 Illustrtion for renement A function f : [0, 3] R, prtition {0, 1, 2, 3}, lower nd upper pproximtion
14 Illustrtion for renement The sme function, lower nd upper pproximtion for the renement {0, 0.5, 0.7, 0.8, 0.9, 1, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.4, 2.6, 2.8, 3}.
15 Riemnn integrble function Denition. The function f : [, b] R is clled (Riemnn) integrble if for every ɛ > 0 there is prtition P of [, b] such tht S(P) S(P) < ɛ Note: This implies S(P ) S(P ) < ɛ for every renement P of P.
16 Convergence of upper nd lower sums Theorem 1. Let f be Riemnn integrble function. Let P n be sequence of prtitions stisfying δ n 0, where δ n is the mximl distnce of two neighboring elements of P n. Then I (f ) = lim n S(P n) exists, with I (f ) = lim n S(P n). Moreover, I (f ) is the sme for ll sequences of prtitions with δ n 0.
17 Denition of the Riemnn integrl Denition. If f is integrble, I (f ) s in Theorem 1. I (f ) is clled the (Riemnn) integrl of f over [, b], nd denoted s b f (x)dx. is clled lower bound of the integrl, b is clled upper bound of the integrl, nd f is clled the integrnd. Furthermore, we dene, for < b, b b f (x)dx = f (x)dx s well s f (x)dx = 0
18 Criteri for Riemnn integrbility Sucient conditions: If f is continuous on [, b], then f is integrble. If f is monotonic nd bounded on [, b], then f is integrble. Exmple: A bounded function tht is not Riemnn integrble: { 1 x Q f : [0, 1] R, f (x) = 1 x Q For every prtition P, one nds S(P) = 1 1 = S(P).
19 Properties of the Riemnn integrl Theorem 2. Let f, g be integrble over the intervl with bounds, b, let s R sf is integrble, with b sf (x)dx = s b f (x)dx. f + g is integrble, with b f (x) + g(x)dx = b f (x)dx + b g(x)dx. Let c in R be such tht f is integrble over [b, c]. Then f is integrble over [, c], with c f (x)dx = b c f (x)dx + b f (x)dx. If f is integrble, then f is integrble s well, with b b f (x)dx f (x) dx
20 Monotonicity of integrls Theorem 3. Let b, let f : [, b] R be integrble nd bounded, with Then m f (x) M, for ll x [, b] m(b ) b f (x)dx M(b ). This pplies in prticulr, when f is continuous on [, b], nd m = min f (x), M = mx f (x). x [,b] x [,b] More generlly, if f, g : [, b] R re integrble, with f (x) g(x) for ll x [, b], then b b f (x)dx g(x)dx.
21 Illustrtion for the estimte
22 Fundmentl Theorem of Clculus Theorem 4. Let f : [, b] R be continuous. We dene F : [, b] R, F (y) = y f (x)dx Then F is continuous on [, b], dierentible on (, b), with F (x) = f (x), x (, b). Conversely, suppose tht G : [, b] R is continuous, dierentible on (, b) with G = f. Then the integrl is computed s b f (x)dx = G b := G(b) G()
23 Integrtion nd ntiderivtives Remrks: Let f : [, b] R be continuous function. A dierentible function F with F = f is clled ntiderivtive or primitive of f. Hence f hs primitive given by F (y) = y f (x)dx. Two primitives F, G of f only dier by constnt: F (x) = G(x) c, with c R xed. By letting F (y) = y f (x)dx one obtins the unique primitive of f stisfying F () = 0. It is customry to denote primitives s F = f (x)dx (without bounds), nd refer to them s indenite integrls of f.
24 Appliction: The length of curve Denition. Let f : [, b] R n be given, i.e., f (x) = (f 1 (x), f 2 (x),..., f n (x)) T. The set C = {f (x) : x [, b]} is clled curve in R n, nd f is clled prmeteriztion of C. We ssume tht ll f i re continuously dierentible on (, b) nd continuous on [, b]. We dene the length of C s l(c) = b f 1 (x)2 + f 2 (x) f n(x) 2 dx
25 Exmple: Circumference of the circle We consider the mp f : [0, 2π] R 2, with f (x) = (sin(x), cos(x)). The resulting curve is the unit circle. We compute nd thus, using sin 2 + cos 2 = 1, 2π 0 f 1(x) = cos(x), f 2(x) = sin(x) 2π f 1 (x)2 + f 2 (x)2 dx = 1dx = 2π. 0
26 Exmple: Length of grph We wnt to determine the length of the grph G f t [0, 1]. G f is prmeterized by of f (t) = t 2, for g : [0, 1] R 2, g(t) = (t, t 2 ) T. Using g 1 (t) = 1, g 2 (t) = 2t, we obtin 1 l(g f ) = 1 + 4t 2 dt. One cn check tht F (t) = ( 2t 1 + 4t 2 + ln(2t + ) 1 + 4t 2 )) is primitive of g(t) = 1 + 4t 2. Hence, l(g f ) = F 1 0 = 1 ( ln(2 + ) 5) 0 4
27 Summry Denition nd interprettion of integrls; re under the grph Integrbility criteri: Continuity, monotonicity Properties of the integrl: Linerity, monotonicity Evlution of integrls vi ntiderivtives ( New problem: How to obtin ntiderivtives) Appliction of integrls: Curve length
Week 10: Riemann integral and its properties
Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the
More informationSection 4.8. D v(t j 1 ) t. (4.8.1) j=1
Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationMath 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we
More informationMath 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
More informationMATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.
MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded
More informationUnit #10 De+inite Integration & The Fundamental Theorem Of Calculus
Unit # De+inite Integrtion & The Fundmentl Theorem Of Clculus. Find the re of the shded region ove nd explin the mening of your nswer. (squres re y units) ) The grph to the right is f(x) = x + 8x )Use
More informationUNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE
UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More informationl 2 p2 n 4n 2, the total surface area of the
Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n nsided regulr polygon of perimeter p n with vertices on C. Form cone
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More information7.6 The Use of Definite Integrals in Physics and Engineering
Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems
More informationFINALTERM EXAMINATION 2011 Calculus &. Analytical GeometryI
FINALTERM EXAMINATION 011 Clculus &. Anlyticl GeometryI Question No: 1 { Mrks: 1 )  Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...
More informationTest , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes
Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl
More information1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.
Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the
More informationIntegrals along Curves.
Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More informationLine Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationBest Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
More informationThe problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.
ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion
More informationWe know that if f is a continuous nonnegative function on the interval [a, b], then b
1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going
More informationMath 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
More informationOrthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationx = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :
Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given
More informationLecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationMapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
More information7.2 The Definition of the Riemann Integral. Outline
7.2 The Definition of the Riemnn Integrl Tom Lewis Fll Semester 2014 Upper nd lower sums Some importnt theorems Upper nd lower integrls The integrl Two importnt theorems on integrbility Outline Upper nd
More informationx 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx
. Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute
More informationDistance And Velocity
Unit #8  The Integrl Some problems nd solutions selected or dpted from HughesHllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl
More informationContinuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom
Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive
More information7. Numerical evaluation of definite integrals
7. Numericl evlution of definite integrls Tento učení text yl podpořen z Operčního progrmu Prh  Adptilit Hn Hldíková Numericl pproximtion of definite integrl is clled numericl qudrture, the formuls re
More informationMath 0230 Calculus 2 Lectures
Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two
More informationSTEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
More informationCalculus MATH 172Fall 2017 Lecture Notes
Clculus MATH 172Fll 2017 Lecture Notes These notes re concise summry of wht hs been covered so fr during the lectures. All the definitions must be memorized nd understood. Sttements of importnt theorems
More information7  Continuous random variables
71 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7  Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin
More informationNumerical Integration
Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl
More informationNOTES AND PROBLEMS: INTEGRATION THEORY
NOTES AND PROBLEMS: INTEGRATION THEORY SAMEER CHAVAN Abstrct. These re the lecture notes prepred for prticipnts of AFSI to be conducted t Kumun University, Almor from 1st to 27th December, 2014. Contents
More informationCzechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction
Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCKKURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When relvlued
More informationNumerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
More information5.5 The Substitution Rule
5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n ntiderivtive is not esily recognizble, then we re in
More informationMath 324 Course Notes: Brief description
Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd
More information(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35
7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know
More informationPDE Notes. Paul Carnig. January ODE s vs PDE s 1
PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................
More informationNecessary and Sufficient Conditions for Differentiating Under the Integral Sign
Necessry nd Sufficient Conditions for Differentiting Under the Integrl Sign Erik Tlvil 1. INTRODUCTION. When we hve n integrl tht depends on prmeter, sy F(x f (x, y dy, it is often importnt to know when
More informationWeek 7 Riemann Stieltjes Integration: Lectures 1921
Week 7 Riemnn Stieltjes Integrtion: Lectures 1921 Lecture 19 Throughout this section α will denote monotoniclly incresing function on n intervl [, b]. Let f be bounded function on [, b]. Let P = { = 0
More informationSection 14.3 Arc Length and Curvature
Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in
More informationx ) dx dx x sec x over the interval (, ).
Curve on 6 For , () Evlute the integrl, n (b) check your nswer by ifferentiting. ( ). ( ). ( ).. 6. sin cos 7. sec csccot 8. sec (sec tn ) 9. sin csc. Evlute the integrl sin by multiplying the numertor
More informationNotes on Calculus II Integral Calculus. Miguel A. Lerma
Notes on Clculus II Integrl Clculus Miguel A. Lerm November 22, 22 Contents Introduction 5 Chpter. Integrls 6.. Ares nd Distnces. The Definite Integrl 6.2. The Evlution Theorem.3. The Fundmentl Theorem
More informationIf u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du
Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find ntiderivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible
More information3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
More informationLecture 14 Numerical integration: advanced topics
Lecture 14 Numericl integrtion: dvnced topics Weinn E 1,2 nd Tiejun Li 2 1 Deprtment of Mthemtics, Princeton University, weinn@princeton.edu 2 School of Mthemticl Sciences, Peking University, tieli@pku.edu.cn
More informationNumerical quadrature based on interpolating functions: A MATLAB implementation
SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in
More informationTHE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS
THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS CARLOS SUERO, MAURICIO ALMANZAR CONTENTS 1 Introduction 1 2 Proof of Gussin Qudrture 6 3 Iterted 2Dimensionl Gussin Qudrture 20 4
More informationLecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at UrbanaChampaign. March 20, 2014
Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t UrbnChmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method
More informationImproper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.
Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More information1 Error Analysis of Simple Rules for Numerical Integration
cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion
More informationC1M14. Integrals as Area Accumulators
CM Integrls s Are Accumultors Most tetbooks do good job of developing the integrl nd this is not the plce to provide tht development. We will show how Mple presents Riemnn Sums nd the ccompnying digrms
More informationThe Trapezoidal Rule
_.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationIII. Lecture on Numerical Integration. File faclib/dattab/lecturenotes/numericalinter03.tex /by EC, 3/14/2008 at 15:11, version 9
III Lecture on Numericl Integrtion File fclib/dttb/lecturenotes/numericalinter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the
More information[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves
Gols: 1. To find the re etween two curves Section 6.1 Are of Regions etween two Curves I. Are of Region Between Two Curves A. Grphicl Represention = _ B. Integrl Represention [ ( ) ( )] f x g x dx = C.
More information2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).
AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following
More informationFunctions of bounded variation
Division for Mthemtics Mrtin Lind Functions of bounded vrition Mthemtics Clevel thesis Dte: 20060130 Supervisor: Viktor Kold Exminer: Thoms Mrtinsson Krlstds universitet 651 88 Krlstd Tfn 054700 10
More informationThe Basic Functional 2 1
2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................
More informationChapter 6 Continuous Random Variables and Distributions
Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete
More informationLecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics  A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the
More informationu(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.
Lecture 4 Complex Integrtion MATHGA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex
More informationa n+2 a n+1 M n a 2 a 1. (2)
Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside
More informationA. Limits  L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.
A. Limits  L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c
More informationChapter 4. Lebesgue Integration
4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.
More informationBIFURCATIONS IN ONEDIMENSIONAL DISCRETE SYSTEMS
BIFRCATIONS IN ONEDIMENSIONAL DISCRETE SYSTEMS FRANCESCA AICARDI In this lesson we will study the simplest dynmicl systems. We will see, however, tht even in this cse the scenrio of different possible
More informationRiemann Stieltjes Integration  Definition and Existence of Integral
 Definition nd Existence of Integrl Dr. Adity Kushik Directorte of Distnce Eduction Kurukshetr University, Kurukshetr Hryn 136119 Indi. Prtition Riemnn Stieltjes Sums Refinement Definition Given closed
More informationFact: All polynomial functions are continuous and differentiable everywhere.
Dierentibility AP Clculus Denis Shublek ilernmth.net Dierentibility t Point Deinition: ( ) is dierentible t point We write: = i nd only i lim eists. '( ) lim = or '( ) lim h = ( ) ( ) h 0 h Emple: The
More informationMath 4200: Homework Problems
Mth 4200: Homework Problems Gregor Kovčič 1. Prove the following properties of the binomil coefficients ( n ) ( n ) (i) 1 + + + + 1 2 ( n ) (ii) 1 ( n ) ( n ) + 2 + 3 + + n 2 3 ( ) n ( n + = 2 n 1 n) n,
More informationA Convergence Theorem for the Improper Riemann Integral of Banach Spacevalued Functions
Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 24512460 HIKARI Ltd, www.mhikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch
More informationChapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1
Chpter 5. Let g ( e. on [, ]. The derivtive of g is g ( e ( Write the slope intercept form of the eqution of the tngent line to the grph of g t. (b Determine the coordinte of ech criticl vlue of g. Show
More informationNew Integral Inequalities of the Type of HermiteHadamard Through Quasi Convexity
Punjb University Journl of Mthemtics (ISSN 11656) Vol. 45 (13) pp. 3338 New Integrl Inequlities of the Type of HermiteHdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,
More informationMTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008
MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul
More informationThe Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
More information2 Definitions and Basic Properties of Extended Riemann Stieltjes Integrals
2 Definitions nd Bsic Properties of Extended Riemnn Stieltjes Integrls 2.1 Regulted nd Intervl Functions Regulted functions Let X be Bnch spce, nd let J be nonempty intervl in R, which my be bounded or
More informationNot for reproduction
AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type
More informationA basic logarithmic inequality, and the logarithmic mean
Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, BbeşBolyi University Str. Koglnicenu
More informationS. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:
FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy
More informationF is n ntiderivtive èor èindeæniteè integrlè off if F 0 èxè =fèxè. Nottion: F èxè = ; it mens F 0 èxè=fèxè ëthe integrl of f of x dee x" Bsic list: xn
Mth 70 Topics for third exm Chpter 3: Applictions of Derivtives x7: Liner pproximtion nd diæerentils Ide: The tngent line to grph of function mkes good pproximtion to the function, ner the point of tngency.
More informationThe RiemannStieltjes Integral
Chpter 6 The RiemnnStieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0
More informationPractice final exam solutions
University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More informationMath RE  Calculus II Area Page 1 of 12
Mth RE  Clculus II re Pge of re nd the Riemnn Sum Let f) be continuous function nd = f) f) > on closed intervl,b] s shown on the grph. The Riemnn Sum theor shows tht the re of R the region R hs re=
More informationMA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
More informationB Veitch. Calculus I Study Guide
Clculus I Stuy Guie This stuy guie is in no wy exhustive. As stte in clss, ny type of question from clss, quizzes, exms, n homeworks re fir gme. There s no informtion here bout the wor problems. 1. Some
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationCS667 Lecture 6: Monte Carlo Integration 02/10/05
CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of
More informationMACsolutions of the nonexistent solutions of mathematical physics
Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences  Finite Elements  Finite Volumes  Boundry Elements MACsolutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More information