# Definite integral. Mathematics FRDIS MENDELU

Size: px
Start display at page:

Transcription

1 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1

2 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the region bounded by y = f(x), the x-xis nd the lines x = nd x = b? The re cn be pproximted with the sum of rectngles: We cut the intervl [, b] into subintervls. Ech of these subintervls forms the bse of rectngle, where the height of the rectngle is equl to the vlue of the function f evluted t n rbitrry point from the given subintervl. The pproximtion improves s the rectngles become nrrower nd the number of rectngles increses. We define the re of the region to be the limit of the rectngle re sums s the rectngles become smller nd smller nd the number of rectngles we use pproches infinity. Such limit cn be defined even for more generl functions nd we cll it definite integrl. The definite integrls cn be defined in mny different wys, we will define the Riemnn definite integrl. Construction of the Riemnn integrl Let f be function defined on n intervl [, b] nd suppose tht f is bounded on this intervl. The sequence of points D = {x, x 1, x,..., x n } such tht = x < x 1 < x < < x n = b is sid to be prtition of the intervl [, b]. The intervls [x, x 1 ], [x 1, x ],..., [x n 1, x n ] re clled subintervls of the prtition. The number ν(d) = mx{x i x i 1, i = 1,,..., n} is clled norm of the prtition D, i.e., the norm of the prtition is the length of the longest subintervl of the prtition. We choose n rbitrry number from ech of the subintervls ξ 1 [x, x 1 ], ξ [x 1, x ],..., ξ n [x n 1, x n ] nd we denote Ξ = {ξ 1, ξ,..., ξ n } the set of these numbers. Then the sum σ(f, D, Ξ) = n f(ξ i )(x i x i 1 ) i=1 is clled the integrl sum ssocited to the function f, the prtition D nd the choice of the numbers ξ i in Ξ. 1

3 Integrl sum: ξ 1 ξ ξ ξ 4 ξ 5 ξ 6 = x x 1 x x x 4 x 5 x 6 = b σ(f, D, Ξ) = f(ξ 1 )(x 1 x ) + f(ξ )(x x 1 ) + f(ξ )(x x ) +f(ξ 4 )(x 4 x ) + f(ξ 5 )(x 5 x 4 ) + f(ξ 6 )(x 6 x 5 ) 6 = f(ξ i )(x i x i 1 ) i=1 Refinement of the prtition: ξ 1 ξ ξ ξ n = x x 1 x x n 1 x n = b σ(f, D, Ξ) = f(ξ 1 )(x 1 x ) + f(ξ )(x x 1 ) + + f(ξ n )(x n x n 1 ) n = f(ξ i )(x i x i 1 ) i=1

4 Definition (Riemnn integrl) Let f be function defined nd bounded on n intervl [, b]. Let D 1, D, D,..., D n,... be sequence of prtitions of [, b] which stisfies lim n ν(d n) = nd Ξ 1, Ξ, Ξ,..., Ξ n,... be sequence of the corresponding choices of numbers ξ i from subintervls of the prtitions. The function f is sid to be integrble on [, b] (in sense of Riemnn) if there exists number I R with the property lim σ(f, D n, Ξ n ) = I n for every sequence of prtitions (with the bove given property) nd for rbitrry prticulr choice of the points ξ i in Ξ n. The number I is sid to be Riemnn integrl of the function f on [, b] nd it is denoted I = f(x) dx. The number is clled lower limit of the integrl nd the number b is clled n upper limit of the integrl. We hve to distinguish the definite integrls from the indefinite integrls: Indefinite integrl is set of functions. Definite integrl is limit (number). We will see, tht there is connection between the definite nd indefinite integrls, since definite integrls cn be evluted using indefinite integrls.

5 Theorem (Sufficient conditions for integrbility) Let f be function which stisfies t lest one of the following conditions: 1 f is continuous on [, b], f is monotone on [, b], f is bounded on [, b] nd contins t most finite number of discontinuities on this intervl. Then the function f is integrble (in sense of Riemnn) on [, b], i.e., f(x) dx exists. Properties of the Riemnn integrl Theorem (Additivity nd homogenity with respect to the integrnd) Let f nd g be functions which re integrble on [, b], c R. Then the functions f + g nd cf re lso integrble on [, b] nd it holds: [f(x) + g(x)] dx = cf(x) dx = c f(x) dx + f(x) dx g(x) dx Theorem (Additivity with respect to the domin of integrtion) Let f be function defined of [, b], nd let c (, b) be ny number. Then the function f is integrble on [, b] if nd only if it is integrble on both the intervls [, c] nd [c, b] nd it holds: f(x) dx = c f(x) dx + c f(x) dx 4

6 Theorem Let f nd g be functions integrble on [, b] such tht f(x) g(x) on this intervl. Then It follows from the lst theorem tht f(x) dx g(x) dx. if g(x), then g(x) dx, i.e., integrl of the nonnegtive function is nonnegtive. Evlution of the Riemnn integrl Theorem (Newton - Leibniz formul) Let f be function integrble on [, b] nd let F be n ntiderivtive of f on (, b) which is continuous on [, b]. Then f(x) dx = [F (x)] b = F (b) F (). The previous theorem sys tht to clculte the Riemnn integrl of f over [, b], ll we need to do is: 1 find n ntiderivtive F of f, clculte the number F (b) F (). 5

7 Exmple 1 x dx = [ x ] = = 19. π sin x dx = [ cos x ] π = cos π + cos = 1. 1 x dx = ( x) dx + 1 x dx = ] [ x [ x + ] 1 = = 5. Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple 1 x ln x dx = u = ln x u = 1 x v = x v = x [ ] x = ln x x x dx [ ] x = 4 ln 1 ln 1 1 = ln 1 [ 4 1 ] 1 x dx = ln 1 = ln

8 Theorem (Substitution method) Let f be function continuous on [, b] nd let ϕ be function which hs continuous derivtive ϕ on [α, β]. Further suppose tht ϕ(x) b for x [α, β]. Then β α f[ϕ(x)]ϕ (x) dx = ϕ(β) ϕ(α) f(t) dt. The formul in the theorem cn be used from left to right (the 1 st substitution method) nd from right to left (the nd substitution method). It my hppen in some prticulr cses tht the lower limit the upper limit fter the substitution. For this reson we introduce the following extension: Extension The symbol f(x) dx cn be extended for b s follows: f(x) dx =, f(x) dx = f(x) dx. b We hve two possibilities when evluting the definite integrl with using the substitution method: 1 We use the previous theorem, i.e., we trnsform the limits of the integrl nd then we use the Newton-Leibniz formul with the new limits. (We do not substitute the originl vrible into the ntiderivtive obtined fter the integrtion.) We do not use the previous theorem. We evlute the indefinite integrl (i.e., we substitute the originl vrible fter integrtion) nd then we pply the Newton-Leibniz formul with the originl limits. 7

9 Exmple Evlute π sin x cos x dx. 1 We trnsform the limits: π sin x cos x dx = t = sin x dt = cos x dx t 1 = sin = t = sin π = 1 = 1 t dt = [ t ] 1 = 1. We do not trnsform the limits: sin x cos x dx = t = sin x dt = cos x dx = Tedy t dt = t = sin x + c. π sin x cos x dx = [ sin x ] π = sin π sin = 1. Applictions of the Riemnn integrl in geometry The re under curve nd between two curves Let f be nonnegtive nd continuous function on [, b]. The re S of the region in the plne bounded by y = f(x), the x-xis nd the lines x = nd x = b is: S = f(x) dx Let f, g be continuous functions nd suppose f(x) g(x) for x [, b]. The re S of the region in the plne bounded by y = f(x), y = g(x) nd the lines x = nd x = b is: S = [f(x) g(x)] dx (The signs of f nd g re rbitrry.) 8

10 Volume of the solid of revolution I Let f be nonnegtive nd continuous function on [, b]. The volume V of the solid generted by revolving the region bounded by y = f(x), the x-xis nd the lines x = nd x = b bout the x-xis is: V = π f (x) dx Volume of the solid of revolution II Let f, g be nonnegtive continuous functions nd suppose f(x) g(x) for x [, b]. The volume V of the solid generted by revolving the region bounded by y = f(x), y = g(x) nd the lines x = nd x = b bout the x-xis is: V = π [ f (x) g (x) ] dx 9

11 Mny other res nd volumes cn be clculted using the bove formuls since we cn cut the given region into severl pieces which stisfy the bove conditions. S = S 1 + S = c [f(x) h(x)] dx + c [g(x) h(x)] dx Exmple (Volume of the cone) Find the formul for volume of cone such tht the rdius of the bse is r nd the ltitude of the cone is v. Solution: If the following tringle revolves bout the x-xis, we obtin the cone: V = π v ( r v x ) dx = πr v v x dx = πr v [ x ] v = πr v v = πr v 1

12 Exmple (Volume of the bll) Find the formul for the volume of bll with the rdius r. Solution: The eqution of circle with rdius r nd the center t [, ] is x + y = r. The upper hlf-circle is the grph of the function y = r x, the lower hlf-circle is the grph of the function y = r x. If the hlf-circle revolves bout the x-xis, we obtin bll. If qurter of circle revolves bout the x-xis, we obtin hlf of the bll. V = π r r = π [r x x (r x ) dx = π ] r = π r (r r (r x ) dx ) = 4πr Appliction of the definite integrl in physics Consider region bounded by the grphs of the functions y = f(x), y = g(x), nd the lines x =, x = b, where g(x) f(x) on, b. Suppose tht the region hs constnt density ρ. Then: Mss of the region: m = ρ [f(x) g(x)] dx Moments of force with respect to x-xis, y-xis: S x = 1 ρ [ f (x) g (x) ] dx, S y = ρ x [f(x) g(x)] dx Center of mss: T = [ Sy m, S ] x m 11

13 Exmple (Center of mss) Find the center of mss of the tringle given by the vertices [, ], [, ], [, ]. Suppose tht the density ρ is constnt. Mss: m = ρ Moments of force: S x = 1 ρ S y = ρ [ ] x x dx = ρ Center of mss: T 1 = S y m =, 4 9 x dx = 9 ρ x x dx = ρ [ x = ρ 9 = ρ ] = 9 ρ 9 = ρ x dx = ρ [ x T = S x m = = T = [, ] ] = ρ 9 = 6ρ Approximtion of definite integrls Numericl methods for pproximting the definite integrl the following cses: f(x) dx re used in The ntiderivtive of the function f hs no elementry formul, hence the Newton-Leibniz formul cnnot be used ( sin x x, sin x, ex x, e x,... ). A formul for the function f is not known, we hve only set of mesured vlues. 1

14 The trpezoidl rule The trpezoidl rule for the evlution definite integrl is bsed on pproximting the region between curve nd the x-xis with trpezoids. = x x 1 x x x 4 = b Let f be function bounded on [, b]. To evlute f(x) dx : We cut the intervl [, b] into n subintervls [x, x 1 ], [x 1, x ],..., [x n 1, x n ], (x =, x n = b). Suppose tht the length of ech subintervl is h = b n. Denote y = f(x ), y 1 = f(x 1 ),..., y n = f(x n ). We pproximte the function f on [x i 1, x i ], (i = 1,,..., n) with the liner function pssing through [x i 1, y i 1 ], [x i, y i ]. This liner function is of the form Hence xi x i 1 f(x) dx y = y i 1 + y i y i 1 h xi x i 1 (x x i 1 ). [ y i 1 + y ] i y i 1 (x x i 1 ) h dx 1

15 xi x i 1 f(x) dx = xi [ y i 1 + y ] i y i 1 (x x i 1 ) dx x i 1 h [ y i 1 x + y ] xi i y i 1 (x x i 1 ) h x i 1 = y i 1 h + y i y i 1 h = h (y i 1 + y i ), h which (in cse when f is positive function ) is the well-known formul for evluting n re of the trpezoid with corners [x i 1, ], [x i 1, y i 1 ], [x i, ], [x i, y i ]. Hence, f(x) dx = x1 x xn f(x) dx + f(x) dx + + f(x) dx x x 1 x n 1 h (y + y 1 ) + h (y 1 + y ) + + h (y n 1 + y n ) = h (y + y 1 + y + + y n 1 + y n ). The trpezoidl rule Let f be function bounded on [, b], nd let = x < x 1 < < x n = b be prtition of [, b] such tht the length of ech subintervl of this prtition is h = b n. Then f(x) dx h (y + y 1 + y + + y n 1 + y n ), where y = f(x 1 ), y = f(x ),..., y n = f(x n ). (We suppose tht f is defined t the points x, x 1,..., x n.) Some other rules for pproximting the definite integrls cn be used, e.g., the so-clled Simpson s rule is bsed on pproximting curves with prbols insted of lines. 14

16 Using the computer lgebr systems Wolfrm Alph: Mthemticl Assistnt on Web (MAW): wood.mendelu.cz/mth/mw-html/index.php?lng=en&form=min Exmple Using the Wolfrm Alph find the integrl π sin x dx. Solution: integrte sin x dx from x= to pi 15

### Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

### 1 The Riemann Integral

The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

### Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

### INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

### The Riemann Integral

Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

### Indefinite Integral. Chapter Integration - reverse of differentiation

Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

### The Regulated and Riemann Integrals

Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

### Week 10: Riemann integral and its properties

Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

### 7.2 Riemann Integrable Functions

7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous

### Integrals - Motivation

Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

### a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

### Section 6.1 Definite Integral

Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

### Riemann Sums and Riemann Integrals

Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

### Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

### Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwth-chen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:

### Riemann Sums and Riemann Integrals

Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

### Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

### Chapter 6. Riemann Integral

Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

### n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

### We divide the interval [a, b] into subintervals of equal length x = b a n

Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

### Math 554 Integration

Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

### Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

### Math& 152 Section Integration by Parts

Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

### APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

### Integration Techniques

Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

### Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

### A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

### The Fundamental Theorem of Calculus

The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls

### Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

Test 3 Review Jiwen He Test 3 Test 3: Dec. 4-6 in CASA Mteril - Through 6.3. No Homework (Thnksgiving) No homework this week! Hve GREAT Thnksgiving! Finl Exm Finl Exm: Dec. 14-17 in CASA You Might Be Interested

### f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

### The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

### 38 Riemann sums and existence of the definite integral.

38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

### Numerical Analysis: Trapezoidal and Simpson s Rule

nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

### NUMERICAL INTEGRATION

NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

### Review of Calculus, cont d

Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

### Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

### APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

### Chapter 6 Notes, Larson/Hostetler 3e

Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

### The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

### Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

### 5.2 Volumes: Disks and Washers

4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

### Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

### Big idea in Calculus: approximation

Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

### Math 131. Numerical Integration Larson Section 4.6

Mth. Numericl Integrtion Lrson Section. This section looks t couple of methods for pproimting definite integrls numericlly. The gol is to get good pproimtion of the definite integrl in problems where n

### Fundamental Theorem of Calculus

Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

### 63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

### Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

### NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

### Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

### MA 124 January 18, Derivatives are. Integrals are.

MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

### Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

### 5.7 Improper Integrals

458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

### Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

Mth 118: Honours Clculus II Winter, 2005 List of Theorems Lemm 5.1 (Prtition Refinement): If P nd Q re prtitions of [, b] such tht Q P, then L(P, f) L(Q, f) U(Q, f) U(P, f). Lemm 5.2 (Upper Sums Bound

### FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

FINALTERM EXAMINATION 011 Clculus &. Anlyticl Geometry-I Question No: 1 { Mrks: 1 ) - Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...

### different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

### Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Improper Integrls MATH 2, Clculus II J. Robert Buchnn Deprtment of Mthemtics Spring 28 Definite Integrls Theorem (Fundmentl Theorem of Clculus (Prt I)) If f is continuous on [, b] then b f (x) dx = [F(x)]

### F (x) dx = F (x)+c = u + C = du,

35. The Substitution Rule An indefinite integrl of the derivtive F (x) is the function F (x) itself. Let u = F (x), where u is new vrible defined s differentible function of x. Consider the differentil

### l 2 p2 n 4n 2, the total surface area of the

Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

### We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

### Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

### Midpoint Approximation

Midpoint Approximtion Sometimes, we need to pproximte n integrl of the form R b f (x)dx nd we cnnot find n ntiderivtive in order to evlute the integrl. Also we my need to evlute R b f (x)dx where we do

### Math 8 Winter 2015 Applications of Integration

Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

### For a continuous function f : [a; b]! R we wish to define the Riemann integral

Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This

### Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

### f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

### Math 0230 Calculus 2 Lectures

Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

### THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

### Review of Riemann Integral

1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

### Chapter 5 : Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

### MATH , Calculus 2, Fall 2018

MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

### Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

### Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

### Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Section 5. - Ares nd Distnces Exmple : Suppose cr trvels t constnt 5 miles per hour for 2 hours. Wht is the totl distnce trveled? Exmple 2: Suppose cr trvels 75 miles per hour for the first hour, 7 miles

### 6.5 Numerical Approximations of Definite Integrals

Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 6.5 Numericl Approximtions of Definite Integrls Sometimes the integrl of function cnnot be expressed with elementry functions, i.e., polynomil,

### Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

### Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

### Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

### Riemann Integrals and the Fundamental Theorem of Calculus

Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

### Calculus I-II Review Sheet

Clculus I-II Review Sheet 1 Definitions 1.1 Functions A function is f is incresing on n intervl if x y implies f(x) f(y), nd decresing if x y implies f(x) f(y). It is clled monotonic if it is either incresing

### 7.2 The Definite Integral

7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

### We know that if f is a continuous nonnegative function on the interval [a, b], then b

1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

### LECTURE. INTEGRATION AND ANTIDERIVATIVE.

ANALYSIS FOR HIGH SCHOOL TEACHERS LECTURE. INTEGRATION AND ANTIDERIVATIVE. ROTHSCHILD CAESARIA COURSE, 2015/6 1. Integrtion Historiclly, it ws the problem of computing res nd volumes, tht triggered development

### Math Calculus with Analytic Geometry II

orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

### Calculus II: Integrations and Series

Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

### Math 120 Answers for Homework 13

Mth 12 Answers for Homework 13 1. In this problem we will use the fct tht if m f(x M on n intervl [, b] (nd if f is integrble on [, b] then (* m(b f dx M(b. ( The function f(x = 1 + x 3 is n incresing

### Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

### Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

Section 5.4 Fundmentl Theorem of Clculus 2 Lectures College of Science MATHS : Clculus (University of Bhrin) Integrls / 24 Definite Integrl Recll: The integrl is used to find re under the curve over n

### Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

### P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

### MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

### Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

### Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

### 1 The fundamental theorems of calculus.

The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

### Summer MTH142 College Calculus 2. Section J. Lecture Notes. Yin Su University at Buffalo

Summer 6 MTH4 College Clculus Section J Lecture Notes Yin Su University t Bufflo yinsu@bufflo.edu Contents Bsic techniques of integrtion 3. Antiderivtive nd indefinite integrls..............................................

### 1 Part II: Numerical Integration

Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

### 4.4 Areas, Integrals and Antiderivatives

. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

### Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

### CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy