TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION. Contents. Theory Exercise Exercise Exercise Exercise

Size: px
Start display at page:

Download "TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION. Contents. Theory Exercise Exercise Exercise Exercise"

Transcription

1 TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION Contents Toic Pge No. Theory 0-08 Exercise Exercise Exercise Exercise - - Answer Key - 7 Syllbus Trigonometric functions, their eriodicity nd grhs, ddition nd subtrction formule, formule involving multile nd submultile ngles, generl solution of trigonometric equtions. Nme : Contct No. ARRIDE LEARNING ONLINE E-LEARNING ACADEMY A-79 indr Vihr, Kot Rjsthn 00 Contct No

2 TRIGONOMETRIC RATIOS & IDETITIE AND EQUATION v Bsic Trigonometric Identities: KEY CONCEPTS () sin² q + cos² q = ; - sin q ; - cos q " q Î R (b) sec² q - tn² q = ; ½sec q½ ³ " q Î R ( n ) ì í î ü +, n Î Iý þ n, n Î I (c) cosec² q - cot² q = ; ½cosec q½ ³ " q Î R { } v Circulr Definition Of Trigonometric Functions: PM sin q = OP OM cos q = OP tn q = sin q cos q, cos q ¹ 0 cos q cot q = sin q, sin q ¹ 0 v sec q =, cos q ¹ 0 cosec q =, sin q ¹ 0 cosq sin q Trigonometric Functions Of Allied Angles: If q is ny ngle, then - q, 90 ± q, 80 ± q, 70 ± q, 60 ± q etc. re clled ALLIED ANGLES. () sin (- q) = - sin q ; cos (- q) = cos q (b) sin (90 - q) = cos q ; cos (90 - q) = sin q (c) sin (90 + q) = cos q ; cos (90 + q) = - sin q (d) sin (80 - q) = sin q ; cos (80 - q) = - cos q (e) sin (80 + q) = - sin q ; cos (80 + q) = - cos q (f) sin (70 - q) = - cos q ; cos (70 - q) = - sin q (g) sin (70 + q) = - cos q ; cos (70 + q) = sin q (h) tn (90 - q) = cot q ; cot (90 - q) = tn q v Grhs of Trigonometric functions: () y = sin x x Î R; y Î [, ] A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

3 (b) y = cos x x Î R; y Î [, ] (c) y = tn x x Î R (n + ) /, n Î I ; y Î R (d) y = cot x x Î R n, n Î I; y Î R (e) y = cosec x x Î R n, n Î I ; y Î (-, - ] È [, ) (f) y = sec x x Î R (n + ) /, n Î I ; y Î (-, - ] È [, ) A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

4 v Trigonometric Functions of Sum or Difference of Two Angles: () (b) sin (A ± B) = sina cosb ± cosa sinb cos (A ± B) = cosa cosb m sina sinb (c) sin²a - sin²b = cos²b - cos²a = sin (A+B). sin (A- B) (d) cos²a - sin²b = cos²b - sin²a = cos (A+B). cos (A - B) (e) tn (A ± B) = tn A ± tnb m tn A tnb cot A cot B m (f) cot (A ± B) = cotb ± cot A tn A + tnb + tnc-tn A tnb tnc (g) tn (A + B + C) = - tna tnb - tnb tnc- tnc tn A. v Fctoristion of the Sum or Difference of Two Sines or Cosines: C+ D () sinc + sind = sin cos C-D C+ D (b) sinc - sind = cos sin C-D v C+ D (c) cosc + cosd = cos cos C-D (d) cosc - cosd = - C+ D sin sin C-D Trnsformtion of Products into Sum or Difference of Sines & Cosines: () sina cosb = sin(a+b) + sin(a-b) (b) cosa sinb = sin(a+b) - sin(a-b) (c) cosa cosb = cos(a+b) + cos(a-b) (d) sina sinb = cos(a-b) - cos(a+b) v Multile nd Sub-multile Angles : () sin A = sina cosa ; sin q = sin q cos q (b) cos A = cos²a - sin²a = cos²a - = - sin²a; cos² q = + cos q, sin² q = - cos q. tna (c) tn A = - tn A tn ; tn q = - tn q q tn A (d) sin A = + tn A -tn A, cos A = + tn A (e) (f) sin A = sina - sin A cos A = cos A - cosa (g) tn A = tn A - tn - tn A A A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

5 v Imortnt Trigonometric Rtios: () sin n = 0 ; cos n = (-) n ; tn n = 0, where n Î I (b) sin or sin cos or cos = = - = cos 7 or cos + = sin 7 or sin ; ; tn = - = - = cot 7 ; tn 7 = + + = + = cot - - (c) sin or sin 8 = 0 + & cos 6 or cos = v Conditionl Identities: If A + B + C = then : (i) sina + sinb + sinc = sina sinb sinc (ii) (iii) (iv) (v) sina + sinb + sinc = cos A cos B cos C cos A + cos B + cos C = - - cos A cos B cos C cos A + cos B + cos C = + sin A sin B sin C tna + tnb + tnc = tna tnb tnc (vi) tn A tn B + tn B tn C + tn C tn A = (vii) cot A + cot B + cot C = cot A. cot B. cot C (viii) cot A cot B + cot B cot C + cot C cot A = (ix) A + B + C = then tn A tn B + tn B tn C + tn C tn A = v Rnge of Trigonometric Exression: E = sin q + b cos q b E = + b sin (q + ), where tn = = + b cos (q - b), where tn b = b v Hence for ny rel vlue of q, - + b E + b Sine nd Cosine Series: sin + sin ( + b) + sin ( + b ) sin ( + - b ) nb sin n = b sin æ sin ç + è n - ö b ø cos + cos ( + b) + cos ( + b ) cos ( + - b ) nb sin n = b sin æ n - ö cos ç + b è ø A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

6 . DEFINITION : TRIGONOMETRIC EQUATION An eqution contining trigonometric function of unknown ngles re known s trigonometric equtions.. PERIODIC FUNCTION : A function f(x) is sid to be eriodic if there exists T > 0 such tht f(x + T) = f(x) for ll x in the domin of definitions of f(x). If T is the smllest ositive rel numbers such tht f(x + T) = f(x), then it is clled the eriod of f(x). The eriod of sin x, cos x, sec x, cosec x is nd eriod of tn x nd cot x is.. GENERAL SOLUTION OF STANDARD TRIGONOMETRICAL EQUATIONS : Since Trigonometricl functions re eriodic functions, therefore, solutions of Trigonometricl equtions cn be generlised with the hel of eriodicity of Trigonometricl functions. The solution consisting of ll ossible solutions of Trigonometricl eqution is clled its generl solution.. Generl Solution of the eqution sin q = 0. By Grhicl roch, The bove grh of sin q clerly shows tht sinq = 0 t q = 0, ±, ±, ±... It follows tht when sin q = 0 is q = n : n Î I i.e. n = 0, ±, ±.... Generl solution of cos q = 0. By grhicl roch, + / / O / / The bove grh of cosq clerly shows tht cosq= 0 t q = ± /, ± /, ± /,... It follows tht when cosq = 0 q = (n + ) /, n Î I. i.e. n = 0, ±, ±... A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

7 . Generl solution of tn q = 0. Proof: If tnq = 0 or sinq cos q = 0 sin q = 0, it follows tht generl solution of tnq = 0, it sme s of sinq = 0 so tht, generl solution of tn q = 0 is q = n ; n Î I Note : Generl solution of secq = 0 nd cosecq =0 does not exist becuse secq nd cosecq cn never be equl to 0.. Generl solution of the eqution sin q = sin. Proof : If sinq = sin or, sinq sin = 0 F HG F HG or, sin q- I K J I K J or, sin q - or, q+ q - = (m + ) F HG cos q + I K J = 0 = 0 or cos q+ = m ; m Î I nd q = m + ; m Î I or q = (m + ) ; m Î I F HG ; m Î I q = (ny even multile of ) + or q = (ny odd multile of ) by combining these two results q = n + ( ) n ; n Î I.. Generl solution of the eqution sinq = k, where k. Note: I K J Let be the numericlly lest ngle such tht k = sin then, sinq = sin \ q = n + ( ) n, where n Î I nd = sin k = 0 The eqution cosec q = cosec is equivlent to sin q = sin so these two equtions hving the sme generl solution.. Generl solution of the eqution cos q = cos. Proof : If cos q = cos or, cos q cos = 0 or, sin q+ F HG F HG or, sin q+ I K J I K J F HG.sin q- I K J F HG = 0 = 0 nd sin q- q+ = n ; n Î I I K J = 0 A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 6

8 nd q- = n ; n Î I q = n ; n Î I nd q = n + ; n Î I for the generl solution of cos q = cos, combine these two result which gives. q = n ±, n Î I.. Generl solution of the eqution cosq = k, where k. Let be the numericlly lest ngle such tht k = cos, then cosq = cos \ q = n ±, where n Î I nd = cos k Note : The eqution secq = sec is equivlent to cosq = cos, so the generl solution of these two equtions re sme..6 Generl solution of the eqution tn q = tn. Proof : If tn q = tn or, sinq sin = cosq cos or, sinq.cos cosq sin = 0 or, sin(q ) = 0 or, q = n ; n Î I q = n + ; n Î I.6. Generl solution of the eqution tnq = k. Let be the numericlly lest ngle such tht k = tn, then tnq = tn \ q = n +, where n Î I nd = tn k Note : The eqution cotq = cot is equivlent to tnq = tn so these two equtions hving the sme generl solution.. GENERAL SOLUTION OF SQUARE OF THE TRIGONOMETRICAL EQUATIONS :. Generl solution of sin q = sin. Proof : If or, sin q = sin sin q = sin (Both the sides multile by ) or, or, cosq = cos cosq = cos q = n ± ; n Î I q = n ± ; n Î I. Generl solution of cos q = cos. Proof : If or, cos q = cos cos q = cos q (multily both the side by ) or, or, or, + cosq = + cos cosq = cos q = n ± q = n ± ; n Î I A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 7

9 . Generl solution of tn q = tn. Proof: If tn q = tn or, tn q tn = (using como. nd divid. rule) tn tn q + tn q - = + tn - or, + tn q + tn - tn q = - tn or, - tn q - tn + tn q = + tn or, cosq = cos Þ q = n ± ; n Î I. GENERAL SOLUTION OF TRIGONOMETRICAL EQUATION : cos q + bsin q = c Ste I Ste II Ste III Consider trigonometricl eqution cosq + bsinq = c, where, b, c Î R nd c b + To solve this tye of eqution, first we reduce them in the form cosq = cos or sinq = sin. Algorithm to solve eqution of the form cosq + bsinq = c. Obtin the eqution cosq + bsinq = c Put = r cos nd b = rsin, F I HG K J where r = + b nd tn = b i.e. = b tn Using the substitution in ste - II, the eqution reduces r cos(q ) = c Þ cos(q ) = c r Þ cos(q ) = cosb (sy) Ste IV Solve the eqution obtined in ste III by using the formul. Generl solution of Trigonometricl eqution cosq + bsinq = c. A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 8

10 PART - I : OBJECTIVE QUESTIONS * Mrked Questions re hving more thn one correct otion. Section : Bsic Formul nd Angle trnsformtion A-. The vlues of the exression (sinx + cosecx) + (cosx + secx) (tnx + cotx) wherever defined is equl to 0 7 (D) 9 A-. The vlue of tn º tn º tn º... tn 89º is 0 (D) A-. The vlue of sin ( + q) sin ( q)cosec q is equl to 0 sinq (D) none of these A-. æ ö æ ö æ7 ö ç ç ç è ø è ø è ø æ ö æ ö cosç x -.tnç + x è ø è ø tn x -.cos + x -sin -x when simlified reduces to: sin x cos x sin x sin x cos x (D) sin x é æ ö ù A-. The exression êsin ç - + sin ( + ) ú ë è ø û é 6 æ ö 6 ù êsin ç + + sin ( + ) ú ë è ø û is equl to 0 (D) sin + sin 6 A-6. cos (0 q) sin (60 q) is equl to 0 cos q sin q (D) sin q cos q A-7. If cos cos cos... cos79 = x +, then x is equl to 0 (D) none of these A-8. Given tn = tn b, then the vlue of sin( + b) is equl to sin( - b) 0 (D) A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 9

11 A-9. The vlue of the exression æ ö æ ö æ 7 ö æ 9 ö ç + cos ç + cos ç + cos ç + cos is è 0 ø è 0 ø è 0 ø è 0 ø 8 6 (D) 0 A-0. If (sec A + tn A) (sec B + tn B) (sec C + tn C) = (sec A tn A) (sec B tn B) (sec C tn C) then ech side is equl to 0 (D) none A-. In tringle ABC, ngle (, q) is : o A = 6, AB = AC = & BC = x. If + q x = then the ordered ir Section :Addition of Angles nd Multile Angles Formul B-. sin qcos q - cosqsin q when simlified reduces to sinq sin q cosq (D) cos q B-. If q = 9, then sinq - sinq is equl to sin6q + sinq - (D) - B-. sin cos 8 + cos8 cos98 Exct vlue of sin cos7 + cos7 cos97 is- 0 (D) none of these B-. The vlue of cos 90 + is sin 0 (D) none B-. If A nd B re comlimentry ngles, then : æ A ö æ B ö æ A ö æ B ö ç + tn ç + tn = ç + cot ç + cot = è ø è ø è ø è ø æ A ö æ B ö æ A ö æ B ö ç + sec ç + cosec = (D) ç - tn ç - tn = è ø è ø è ø è ø B-6. q & q re cute ngles such tht sinq = nd cosq =, then- 0 tn(q + q ) = tn(q + q ) = tn(q + q ) = (D) cot(q + q ) = 6 A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 0

12 B-7. cosq cos F H I F + q.cos q K H - K equls, I cos q sinq cosq (D) sinq æ cot A B-8. If A + B =, then the vlue of ö æ cot B ç. è+ cot A ö ç ø è+ cotb ø is (D) B-9. + b tn If sin = sinb, then is equl to - b tn (D) B-0. In tringle ABC if tn A < 0 then: tn B. tn C > tn B. tn C < tn B. tn C = (D) none B-. If tn º = x, then tnº -tnº + tnº tnº is equl to - x x + x x + x - x (D) - x + x B-. B-. B-. If sin sinb cos cosb + = 0, then the vlue of cot tnb is 0 (D) none of these The vlue of tn 0 + tn + tn 0 tn is 0 (D) If A lies in the third qudrnt nd tn A = 0, then sin A + sina + cosa is equl to 0 (D) 8 B-. If cos q = æ ö ç + è, then cos q in terms of is ø æ ö ç + è ø æ ö æ ö ç + è ç + ø è ø (D) none B-6. B-7. If tn q = tn f +, then the vlue of cos q + sin f is (D) Indeendent of f (cos + sin ) The vlue of is (cos - sin ) tn 0 tn 6 cot (D) cot A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

13 Section :Hlf Angles Formul nd Rnge of Trigonometry Function C-. The vlue of -tn º tn º + is (D) C-. If cos A = /, then the vlue of 6 cos (A/) sin (A/) sin (A/) is (D) C-. If sinq = sinq then tn q cn hve the vlue equl to C-. If cos q + b sin q = & sin q - b cos q = then + b hs the vlue = 7 (D) none æ 7 ö C-. Given tht cos - sin - = 0ç < <, the vlue of è ø (D) - /Ö Ö (D) Ö/ cot is- C-6. If sin t + cos t = then tn t is equl to: - (D) 6 C-7. If f(q) = sin q + cos q, then rnge of f(q) is é ù ê, ú ë û é ù ê, ú ë û é ù ê, ú ë û (D) None of these C-8. The mximum vlue of + sinq-cosq is 0 (D) Section (D) :Miscellneous D-. cos0 + 8sin70 sin0 sin0 is equl to: sin 80 / (D) none of these D-. If A = tn 6 tn nd B = cot 66 cot 78, then A = B A = B A = B (D) A = B D-. If + b + g =, then tn + tn b + tn g = tn tn b tn g tn tn b + tn b tn g + tn g tn = tn + tn b + tn g = tn tn b tn g (D) tn tn b + tn b tn g + tn g tn = 0 A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

14 D-. D-*. If x + y = z, then cos x + cos y + cos z cos x cos y cos z is equl to cos z sin z cos (x + y z) (D) In tringle tn A + tn B + tn C = 6 nd tn A tn B =, then the vlues of tn A, tn B nd tn C re,,,,,, 0 (D) none D-6. If tn + cot = then the vlue of tn + cot = (D) none D-7. If < q <, then + + cosq is equl to cosq sinq cosq (D) sinq D-8. If sinx = cos x then cos x ( + cos x) equls to 0 (D) none of these Section (E) :Trigonometric Equtions E-. E-. E-. The generl solution of the eqution, cosx =.cos x - is x = n x = n x = n/ (D) x = n/ Angles A & B re obtuse ngles such tht, tna + tnb + tna tnb =. If A - B = o then t A = º, B = 9º A = º, B = 0º A = 7º, B = º (D) A = 6º, B = º All solutions of the eqution, sinq + tnq = 0 re obtined by tking ll integrl vlues of m nd n in: n + n & m ± n & m ± (D) n & m ± E-. The generl solution of the eqution: tn + tn = is given by: = n = (n + ) = (6n + ) (D) = n E-. sinx - cos x - ssumes the lest vlue for the set of vlues of x given by: x = n + (-) n+ (/6) x = n + (-) n (/6) x = n + (-) n (/) (D) x = n - (-) n (/6) where n Î I E-6. sin q sinq - - cos q cosq - cosq + cot q - tn q cot q = - if: q Î æ 0, ö æ ç q Î ç è ø è, ö æ q Î, ö æ ç (D) q Î ö ç, ø è ø è ø æ ö E-7. The generl solution of the eqution, tn x + tn çx + è ø + tn æ ç è x + ö = is ø n + n Î I n + n Î I n + n Î I (D) none 6 E-8. sin q = sin q. sin q. sin q in 0 q hs: rel solutions rel solutions 6 rel solutions (D) 8 rel solutions. A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

15 E-9. The generl solution of the eqution, cot q = ( + cot q) is n + (- ) n n + (- ) n n + (- ) n 6 (D) none E-0. The generl solution of sin x + sin x = sin x + sin x is: n ; n Î I n ; n Î I n/ ; n Î I (D) n/ ; n Î I E-. Generl solution of the eqution, cot q - cot q = 0 is q = (n - ) q = (n - ) q = (n - ) (D) none E-. tn x- tn x The set of vlues of x for which + tn x tnx = is f {/} {n + / n =,,...} (D) {n + / n =,,...} E-. The set of ngles between 0 & stisfying the eqution cos q - cos q - = 0 is ì 9 ü í,,, ý î þ ì 9ü í,, ý î þ E-. The eqution sin x + 0 cos x 6 = 0 is stisfied if ( n Î I ) (D) ì 7 7 ü í,,, ý î þ ì 7 9 ü í,,, ý î þ x = n + cos (/) x = n cos (/) x = n ± cos (/) (D) x = n cos (/) E-. Number of solutions of the eqution tnx + secx = cosx lying in the intervl [0, ] is 0 (D) E-6. The number of solutions of the eqution, cot x = cot x + (0 x ) is : sin x 0 (D) E-7. The generl solution of, sin x - sin x + sin x = cos x - cos x + cos x is n + 8 n + 8 æ nö æ (- ) n ç + (D) n + cos è ø - ç ö 8 è ø E-8. The rincil solution set of the eqution cos x = + sinx is ì ü í, ý î 8 8 þ ì ü í, ý î 8 þ ì ü í, ý î 0 þ (D) ì ü í, ý î8 0 þ A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

16 E-9. The number of solutions of the eqution sinx = cosx in [, ] is : 8 (D) 0 é nù E-0. If tn x secx = 0 hs 7 different roots in ê0, ú, n Î N, then gretest vlue of n is ë û 8 0 (D) E-. The solution of cosx = cosx sinx is x = n, n Î I x = n +, n Î I x = n + ( ) n, n Î I (D) x = (n + ) +, n Î I E-. The number of solutions of sinq + sinq + sinq + sinq = 0 in(0, ) is (D) 0 E-. The solution set of the eqution sinq.cosq cosq sinq + = 0 in the intervl (0, ) is ì 7ü í, ý î þ ì ü í, ý î þ ì í,,, î ü ý þ (D) ì ü í,, ý î6 6 6 þ E-. Totl number of solutions of eqution sinx. tnx = cosx belonging to (0, ) re : 7 8 (D) E-. If x Î é 0, ù ê ë ú û, the number of solutions of the eqution sin 7x + sin x + sin x = 0 is: 6 (D) None E-6. If cos ( + x) + sin ( + x) vnishes then the vlues of x lying in the intervl from 0 to re x = /6 or /6 x = / or / x = / or / (D) x = / or / E-7. cos q cos q- = if q = n +, n Î I q = n ±, n Î I q = n ± 6, n Î I (D) q = n + 6, n Î I E-8. If sinx + cosx = y +, xî[0, ], then y x = / x = x = 6 (D) x = / E-9. E-0. If x x + siny = 0, yî[0, ), then x =, y = 0 x =, y = / x =, y = 0 (D) x =, y = / The number of integrl vlues of for which the eqution cos x + sin x = - 7 ossesses solution is (D) A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

17 Comrehension # PART - II : MISCELLANEOUS OBJECTIVE QUESTIONS If q increses from 0 to then vlue of sinq, tnq nd secq increses while cosq, cotq nd cosecq decreses. The following irs (sinq, cosq), (tnq, secq) nd (secq, cosecq) hve the sme vlue t q =. If A = then cosa sina will be ositive negtive zero (D) Ö. If A = 9 then seca + coseca will be ositive negtive zero (D) not defined. If A = 8 then cota tna will be- ositive negtive zero (D) two Comrehension # sin cos x x Consider the eqution + =, 0 x nd nswer the following questions b + b. From the given eqution sin x cos x = b sin x cosx = b sin x cos x = (D) none of these b. In terms of nd b the vlue of sin x must be b + b 8 8 sin x cos x 6. The vlue of + must be b ( + b) ( + b) -b + b ( + b) (D) none of these (D) none of these Comrehension # Let, b, c, d Î R. Then the cubic eqution of the tye x + bx + cx + d = 0 hs either one root rel or ll three roots re rel. But in cse of trigonometric equtions of the tye sin x + b sin x + c sinx + d = 0 cn ossess severl solutions deending uon the domin of x. To solve n eqution of the tye cosq + b sinq = c. The eqution cn be written s cos (q ) = c/ ( + b ). The solution is q = n + ± b, where tn = b/, cos b = c/ ( + b ). 7. On the domin [, ] the eqution sin x + sin x sinx = 0 ossess only one rel root three rel roots four rel roots (D) six rel roots 8. In the intervl [ /, /], the eqution, cos x + 0tnx + tn x = hs no solution one solution two solutions (D) three solutions 9. tn x = tn x + cosx (0 x ) hs no solution one solution two solutions (D) three solutions A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 6

18 Comrehension # To solve trigonometric ineqution of the tye sin x ³ where, we tke hill of length in the sine curve nd write the solution within tht hill. For the generl solution, we dd n. For instnce, to solve sinx ³, we tke the hill é ê, ú ù over which solution is ë û 6 7 < x <. The generl solution is n 6 7 < x < n +, n is ny integer. Agin to solve n ineqution of the tye sin x, where, we 6 6 tke hollow of length in the sine curve. (since on hill, sinx is stisfied over two intervls). Similrly cos x ³ or cosx, re solved. 0. Solution to the ineqution sin 6 x + cos 6 x < 6 7 must be n + < x < n + n + < x < n + n n + < x < + (D) none of these 6. Solution to inequlity cos x + cos x + ³ 0 over [, ] is é ù [, ] ê, ú ë 6 6 û é ù [0, ] (D) ê, ú ë û. æ ö Over [, ], the solution of sin çx + + è ø cos x ³ 0 is [, ] é ù ê, ú ë 6 6 û [0, ] é 7ù é ù é ù (D) ê, ú È ë ê, ú È û ë ê, ú û ë û Mtch the Column :. Mtch the following Column-I Given tn = is equl to tn b, then the vlue of sin( + b) sin( - b) Column-II (P) æ ö æ ö If sinç x + + cosç x - + b then the vlue (Q) è 6 ø è ø of + b is equl to cos 90 + sin0 is equl to (R) (D) cos0 + sin Ösin 6 is equl to (S) the vlue of ( + ) (b ) where tnq cotq = nd cosq sinq = b A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 7

19 Mtch the Column :. Mtch the following Let E = + sina + -sin A, mtch the following vlues of E : Column-I Column-II 0 A 80 () sin 80 A 60 (q) cos 60 A 0 (r) sin (D) 0 A 70 (s) cos. Mtch the following If cosa = m (0 < m < ) where A lies between 0 nd 0 then mtch the following Column-I Column-II sina () - -m + m sin A (q) -m cos A -m (r) (D) tn A +m (s) + 6. If nd b re the roots of the eqution, cos q + b sin q = c then mtch the entries of column- I with the entries of column-ii. Column-I sin + sin b () sin. sin b (q) tn + tn b Column-II (r) b + c c- c+ bc b (D) tn. tn b = (s) + c - + b A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 8

20 7. Solve the eqution for 'x' given in Column-I nd mtch with the entries of Column-II Column-I Column-II cos x. cos x + sin x. sin x = 0 () n ± sin = sin sin(x + ) sin(x - ) (q) n +, n Î I where is constnt ¹ n. tn x + cot x =. (r) n +, n Î I 8 (D) sin 0 x + cos 0 x = 9 6 cos x. (s) Assersion-Reson Tye n ± Sttement - is true, Sttement - is true ; Sttement - is correct exlntion for Sttement - Sttement - is true, Sttement - is true ; Sttement - is NOT correct exlntion for Sttement - Sttement - is true, Sttement - is flse. (D) Sttement - is flse, Sttement - is true. 8. Sttement- If A, B, C re the ngles of tringle such tht ngle A is obtuse, then tnb tn C > tn B + tn C Sttement-: In ny tringle tna = tn B tn C - 9. Sttement- The number sin8 nd sin re the roots of sme qudrtic eqution with integer co-efficients. Sttement-: If x = 8, then x = 90, if y =, then y = Sttement- The number of roots of the eqution sinx= x - x+ is. Sttement-: In [0, ], sinx= hs exctly two solutions.. Sttement-: In (0, ), the number of solutions of the eqution tnq + tn q + tn q = tn q.tnq.tnq is. Sttement-: Ech solution of tn 6q = 0 is solution of tnq + tn q + tn q = tn q.tnq.tnq.. Sttement- If 0 x, 0 y nd cos x. sin y =, then the ossible number of vlues of the ordered ir (x, y) is. Sttement-: sinx, cosx 0.. Sttement- The number of integrl vlues of n so tht sinx(sinx + cosx) = n hs t lest one solution re. Sttement-: + b sinx + b cosx + b A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 9

21 PART - I : OBJECTIVE QUESTIONS. The vlue of cos cos cos 8 cos 6 cos is : cos( /0) 6 6 (D) If o A = 0 then A sin is identicl to + sin A + - sin A - + sin A - - sin A + sin A - - sin A (D) - + sin A + - sin A. A mn running on circulr trck t the rte of Km/hr trverses n rc which subtends n ngle of 6 t the centre in 0 seconds. The dimeter of the circle is (Assume is roximtely equl to meters 0 meters 7 meters (D) 00 meters ) 7. - tn A =, - - tn B =, if A nd B re ositive then A + B is (D) none. +b + g =, S = sin ( + b) sin g + sin ( b + g) sin + sin ( g + ) sinb nd, C = cos ( + b) cos g + cos ( b + g) cos + cos ( g + ) cosb then S C equls : - 0 (D) 7 6. cos cos cos cos is equl to (D) The vlue of tn0 + tn0 + tn0 tn0 is equl to (D) / 8. 6 cos + cos + cos + cos + cos + cos is equl to (D) sin( +q) -sin( -q) 9. The exression cos( b-q) -cos( b+q) indeendent of indeendent of q is indeendent of b (D) indeendent of nd b A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 0

22 0. 8{sin 7 sin 60 } + is-. 8sin sin8 sin is equl to 8 (D) 8 (D) 6 æ C ö C A B. If A + B + C = & sin ç A + = k sin, then tn tn isè ø k - k + k + k - k k +. Vlue of exression tn8 + cot8 + tn7 + cot7 is (D) k + k (D) o o o o cos sin 70 sin0 sin0. o is equl to : sin 80 / (D) None. cotq tnq tnq tnq is equl to- 0 when q 8 when q = 6 8 when q = 6 (D) 0 when q = = 6. cos + cos8 cos cos8 is equl to- 7. If cot ( + b) = 0, then sin ( + b) is equl to- 0 (D) 0 cos cosb sin (D) sinb 8. In right ngled tringle the hyotenuse is times the erendiculr drwn from the oosite vertex. Then the other cute ngles of the tringle re & 6 & 8 8 & (D) & 0 9. If < <, - cos then, + + cos sin - sin + cos - cos is- sin (D) - sin cos6x + 6cosx + cosx The exression is equl to cosx + cosx + 0cosx cos x cos x cos x (D) + cos x cosq. If cos + cos b =, sin + sin b = b nd b = q, then = cosq + b + b b (D) ( + b ) / A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

23 é ù. If Î ê, ú ë û cos then the vlue of sin +sin - -sin is equl to: (D) none of these æ C ö. If A + B + C = & sin ça + C A B = k sin, then tn tn = è ø k - k + k k + - k k + (D) k + k æ ö æ x ö. If x Î ç, then cos ç - + è ø è sin x + sin x is lwys equl to ø (D) none of these. If three ngles A, B, C re such tht cos A + cos B + cos C = 0 nd if cos A cos B cos C = l ( cos A + cos B + cos C), then vlue of l is : 8 (D) 6 6. In ny tringle ABC, which is not right ngled å cosa.cosecb.cosecc is equl to (D) none of these 7. If x = y cos = z cos, then xy + yz + zx is equl to 0 (D) 8. If cos (A B) = nd tn A tn B =, cos A cos B = sin A sin B = cos (A + B) = (D) sin A cos B = 9. If A + B + C =, then cos A + cosb + cosc is equl to cos A cosb cosc sin A sin B sin C + cos A cos B cos C (D) sin A sin B sin C 0. If A + B + C = & cosa = cosb. cosc then tnb. tnc hs the vlue equl to: / (D) MULTIPLE OPTIONS CORRECT *. If the sides of right ngled tringle re {cos + cosb + cos( + b)} nd {sin + sinb + sin( + b)}, then the length of the hyotenuse is: - b [+cos( - b)] [ - cos( + b)] cos b *. If tn x =, ( ¹ c) - c y = cos x + b sin x cos x + c sin x z = sin x b sin x cos x + c cos x, then + b (D) sin y = z y + z = + c y z = c (D) y z = ( c) + b A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

24 *. For 0 < q < /, tn q + tn q + tn q = 0 if tn q = 0 tn q = 0 tn q = 0 (D) tn q tn q = *. ( + ) sin + ( ) cos = ( + ) if tn = æ cosa + cosb ö *. The vlue of ç è sin A - sinb ø A -B tn n 0 : n is odd n æ sin A + sinb ö + ç è cosa - cosb ø n is + cot n (D) none A -B (D) : n is even - 6*. The extreme vlues of f(q) = sin q + sin q.cos q + cos q, " q Î R, re 0 6 Ö (D) 8 7*. Which of the following when simlified reduces to unity? - sin æ ö æ ö cotç + cos ç - è ø è ø sin( - ) + cos ( - ) sin -cos tn sin cos + (- tn tn ) + sin (D) (sin + cos ) 8*. If sin =, then the vlue of exression tn sin - cos 9*. If cos(a B) = /, nd tna tnb =, then 8 my be - (D) 8 cos A cosb = cos( A+ B) = - sina sinb = - (D) none of these 8 6 0*. The vlue of cos cos cos cos cos is : cos( /0) 6 cos( /0) (D) 6. The solutions set of (cosx ) ( + cosx) = 0 in the intervl 0 x is ì ü í ý î þ ì ü í, ý î þ ì,, cos - æ - öü í ç ý î è øþ (D) none of these A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

25 . The number of ordered ir (x, y) where x nd y stisfy x + y = / nd cosx + cosy = / is 0 (D) infinity. The number of solution of cos q + sin q + = 0, for (q Î [0, ]) is 0 (D) infinity. The number of vlues of x for which sinx + sinx = is 0 infinite (D) none of these. The number of solutions of cos(x/) = x + x, x Î [0, ] is 0 (D) infinite 6. If cos q + cos q = 0, then æ q = n ± where = cos ö ç 7 - è ø æ q = n ± where = cos ö ç ± 7 - è ø æ q = n ± where = cos ö ç - 7- è ø (D) none of these 7. If sin q + 7 cos q =, then tn (q/) is root of the eqution x - 6x + = 0 6x - x - = 0 6x + x + = 0 (D) x - x + 6 = 0 8. The most generl solution of tnq = nd cosq = is : n + 7 7, n Î I n + ( ) n, n Î I n + 7, n Î I (D) none of these 9.* cosx cos8x - cosx cos9x = 0 if cosx = cos x sin x = 0 sinx = 0 (D) cosx = 0 0.* If sin(x - y) = cos(x + y) = / then the vlues of x & y lying between 0 nd re given by: x = /, y = / x = /, y = / x = /, y = / (D) x = /, y = /.* The eqution sin x. cos x + sin x = sin x. sin x + cos x hs root for which sinx = sinx = cosx = (D) cosx =.* sinx - cos x - ssumes the lest vlue for the set of vlues of x given by: x = n + (-) n+ (/6), n Î I x = n + (-) n (/6), n Î I x = n + (-) n (/), n Î I (D) x = n - (-) n (/6), n Î I.* The generl solution of the eqution cosx. cos6x =, is : x = (n + ), n Î I x = n, n Î I x = (n ), n Î I (D) none of these.* The generl vlue of q, stisfying the eqution cos q + sinq =, is n n + ( ) n n + ( ) n 6 (D) none of these A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

26 PART - II : SUBJECTIVE QUESTIONS. Prove tht : () sec A ( sin A) tn A = (b) tn A sin A = sin A sec A = tn A sin A (c) cosa coseca - sin A sec A cosa + sin A = cosec A sec A (d) (cosec q sin q) (sec q cos q) (tn q + cot q) = (e) cot q (sec q -) = sec + sin q q. - sin q + sec q (f) ( + cot A + tn A) (sin A cos A) = sec A cosec A - cosec A sec A sin q tnq ( - tnq) + sin q sec (g) (+ tnq) q = sin q (+ tnq). If the rcs of the sme length in two circles subtend ngles 7 nd 0 t the centre, find the rtio of their rdii.. Find the rdin mesures corresonding to the following degree mesures (i) (ii) 0 (iii) 0. Find the degree mesures corresonding to the following rdin mesures (i) (ii) (iii) 7 (iv) 6. Prove tht : () sin 6 + cos tn = 9 (c) cos + sec + tn = 7 (b) sin + cosec cos = (d) cot + cosec + tn = (e) sin + cos + sec = 0 6. Find the vlue of : (i) cos 0 (ii) sin (iii) tn 0 (iv) cot ( ) 7. cos( + q)cos( -q) æ ö sin( - q)cosç + q è ø = cot q. 8. cosq + sin (70 + q) sin (70 q) + cos (80 + q) = 0. æ ö 9. cos ç + q è ø cos ( + q) é æ ö ù êcot ç - q + cot( + q) ú ë è =. ø û A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

27 æ A ö 0. sin ç + è 8 ø æ A ö sin ç - è 8 ø æ = ö ç è ø s i n A q 9 q q. cos q cos cos q cos = sin q sin.. cos² + cos² ( + b) - cos cos b cos ( + b) = sin²b.. For ll vlues of, b, g rove tht, cos + cos b + cos g + cos ( + b + g) = cos + b b + g g +. cos. cos. x x. If tn x =, < x <, find the vlue of sin nd cos.. If cos ( + b) = ; sin ( - b) = &, b lie between 0 &, then find the vlue of tn. 6. If sin (q + ) = & sin (q + b) = b (0 <, b, q < /) then find the vlue of cos ( - b) - b cos( - b) 7. Prove tht, sin x. sin x + cos x. cos x = cos x. 8. rove tht ì æ - ö ü ï- cot ç ï è ø í + cos cot ý ï æ - ö + cot ç ï ïî è ø ïþ 9 sec = cosec. 9. Prove tht tn - tn - cot-cot = cot. 0. Find the gretest nd lest vlue of y (i) y = 0 cos²x - 6 sin x cos x + sin²x (ii) y = + sin x + cos x (iii) æ ö y = cos çq + è + cos q + ø. If f is the exterior ngle of regulr olygon of n sides nd q is ny constnt, then rove tht sin q + sin (q + f) + sin (q +f) +... u to n terms = 0. If x + y + z = show tht, sin x + sin y + sin z = cosx cosy cosz.. If x + y = + z, then rove tht sin x + sin y sin z = sin x sin y cos z.. Prove tht : (i) cosa coseca - sin A sec A cosa + sin A = cosec A sec A (ii) sec - tn cos = cos sec + tn (iii) cos A + sin A cosa + sin A + cos A - sin A cos A - sin A = A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 6

28 . Show tht: (i) cot 7 or tn 8 = ( ) ( + ) + or (ii) tn = Prove tht, tn + tn + tn + 8 cot 8 = cot. 7. Clculte the following without using trigonometric tbles: (i) tn 9 - tn 7 - tn 6 + tn 8 (ii) cosec 0 sec 0 (iii) ésec cos 0 ù sin0 ê + sin ú ë sin û (iv) cot 70º + cos 70º (v) tn 0 - tn 0 + tn Let A, A,..., A n be the vertices of n n-sided regulr olygon such tht; Find the vlue of n. A = +. A AA AA 9. Prove tht % cos = sin b + cos( + b) sin sinb + cos( + b) 0. If cos (b - g) + cos (g - ) + cos ( - b) = -, rove tht cos + cos b + cos g = 0, sin + sin b + sin g = 0.. If x cosq + by sinq xsin q = b, cos q Show tht (x) / + (by) / = ( b ) / bycosq = 0. sin q m+ n. If m tn (q - 0 ) = n tn (q + 0 ), show tht cos q = (m-n). tn + tn g sin + sin g. If tn b = + tn.tn g, rove tht sin b = + sin. sin g.. If sin x + sin y = & cos x + cos y = b, show tht, b sin (x + y) = + b nd tn x-y - -b = ± + b. If sin (q + ) = & sin (q + b) = b (0 <, b, q < /) then find the vlue of cos ( - b) - b cos( - b) 6. If P n = cos n q + sin n q nd Q n = cos n q sin n q, then show tht P n P n = sin q cos q P n Q n Q n = sin q cos q Q n nd hence show tht P = sin q cos q Q = cos q sin q. A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 7

29 Trignometric Eqution 7. Wht re the most generl vlues of q which stisfy the equtions: () sinq= (b) tn (x - ) = (c) tn q = - (d) cosec q = (e) cot q = cosec q 8. Solve sin 9q = sin q 9. Solve cot q + tn q = cosec q 0. Solve sin q = cos q. Solve cot q = tn 8q. Solve cot q - tn q =. Solve cosec q = cot q +. Solve tn q tn q =. Solve tn q + tn q + tn q tn q = 6. Solve sinq + sin q + sin q = Solve cos q + sin q = cos q + sin q 8. find ll vlues of q between 0º nd 80º stisfying the eqution cos 6q + cos q + cos q + = Solve cos x + cos x + cos x =. 0. Solve sin nq - sin (n -) q = sin q, where n is constnt nd n¹ 0,. find the most generl solution of the following : (i) sin6x = sinx sinx (ii) secx secx =. If sina = sinb nd cosa = cosb, find ll the vlue of A in terms of B.. Solve tnx + tnx = 0. Solve ( tnq) ( + sinq) = + tnq.. Solve sinx + cosx =. 6. Solve sinq =, tnq = 7. Solve the equlity: sin x + cos x + sin x = 0 8. Find ll vlue of q, between 0 &, which stisfy the eqution; cos q. cos q. cos q = /. 9. Find the generl solution of the eqution, + tn x cot x + cot x tn x = Solve for x, the eqution - 8tnx = 6 tn x, where < x <. 6. Determine the smllest ositive vlue of x which stisfy the eqution, + sinx - cosx = 0. æ ö 6. sin çx + = + 8sin x. cos x è ø 6. Find the number of rincil solution of the eqution, sin x sin x + sin x = cos x cos x + cos x. æ ö ç + log(cos x+ sin x) è ø log (cos x-sin x) 6. Find the generl solution of the trigonometric eqution - =. 6. Find ll vlues of q between 0 & 80 stisfying the eqution; cos 6 q + cos q + cos q + = 0. A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 8

30 PART-I IIT-JEE (PREVIOUS YEARS PROBLEMS). Let f (q) = sin q (sin q + sin q). Then [IIT-JEE-000, Scr., /] f (q) ³ 0 only when q ³ 0 f (q) 0 for ll rel q f (q) ³ 0 for ll rel q (D) f (q) 0 only when q 0.. The mximum vlue of (cos ). (cos )... (cos n ) under the restrictions, 0,,..., n nd (cot ). (cot )... (cot n ) = is: [IIT-JEE - 00, Scr - (- M), ] / n/ / n / n (D). If + b = nd b + g =, then tn equls [IIT-JEE - 00,Scr - (- M), ] (tn b + tn g) tn b + tn g tn b + tn g (D) tn b + tn g. The number of integrl vlues of ' k ' for which the eqution 7 cos x + sin x = k + hs solution is: [IIT-JEE-00, Scr., (, )/90] 8 0 (D). If sin = / nd cos q = /, then the vlues of + q (if q, re both cute) will lie in the intervl [IIT-JEE-00, Scr., (, )/8] é ù ê, ú ë û é ù ê, ú ë û é ù ê, ú ë 6 û é (D) ê ë, 6 ù ú û 6. Find the rnge of vlues of ' t ' for which sin t = - x + x é ù, t Î x - x - ê-, ú. ë û [IIT-JEE - 00, Min, (-M), 60] 7. In n equilterl tringle, coins of rdii unit ech re ket so tht they touch ech other nd lso the sides of the tringle. Are of the tringle is [IIT-JEE - 00, Scr- (, ), 8] (D) cos ( b) = nd cos ( + b) =, where, b Î [, ]. Pirs, b which stisfy both the equtions is/ e re [IIT-JEE-00, Scr., (, )/8] 0 (D) æ ö 9. Let q Î ç0, nd t è ø = (tn q) tn q, t = (tn q) cot q, t = (cot q) tn q nd t = (cot q) cot q, then [IIT-JEE - 006, Min - (, ), 8] t > t > t > t t < t < t < t t > t > t > t (D) t > t > t > t A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 9

31 0. The number of solutions of the ir of equtions sin q cos q = 0, cos q sin q = 0 in the intervl [0, ] is [IIT-JEE-007, Per-, (, )/8] zero one two (D) four. For 0 < q < /, the solution(s) of 6 6 æ (m-) ö æ m ö å cosecç q + cosec + = m= ç q is/re : è ø è ø (D) [IIT-JEE 009, (, )/8].* If sin x cos x + =, then [IIT-JEE - 009,Per-, (, ), 80] tn x = tn x = (D) sin 8 x cos 8 x + = 8 7 sin 8 x cos 8 x + = 8 7. The mximum vlue of the exression sin q + sin qcosq + cos q is æ ö n. The number of vlues of q in the intervl ç, such tht q ¹ è for n = 0, ±, ± nd ø tnq = cot q s well s sin q = cos q is [IIT-JEE-00, Per-, (, 0)/8]. Let P = { q : sinq - cosq = cosq} nd Q { q : sinq cosq sinq} P ÌQ nd Q - P ¹Æ Q Ë P = + = be two sets. Then [IIT-JEE-0, Per-/80] P Ë Q (D) P = Q PART-II AIEEE (PREVIOUS YEARS PROBLEMS). If is root of cos q + cos q = 0, < <, then sin is equl to [AIEEE - 00] () () () 8 () 8. The eqution sin x + b cos x = c, where c > + b hs [AIEEE - 00] () unique solution () infinite number of solutions () no solution () None of the bove. If y = sin q + cosec q, q ¹ 0, then [AIEEE - 00] () y = 0 () y () y ³ () y ³. If sin ( + b) =, sin ( b) = then tn( + b) tn( + b) is equl to [AIEEE - 00] () () () 0 () None of these A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 0

32 . If tnq = then sin q is [AIEEE - 00] () - but not () - or () but not - () None of these tn º 6. The vlue of is [AIEEE - 00] + tn º () () () () xy 7. sin q = is true if nd only if [AIEEE - 00] (x + y) () x y ¹ 0 () x = y, x ¹ 0 () x = y () x ¹ 0, y ¹ 0 8. In DABC, medins AD nd BE re drwn. If AD =, ÐDAB = 6 & ÐABE =, then the re of DABC is [AIEEE - 00] () squre unit () squre unit () squre unit () squre unit 7 9. Let, b be such tht < b <. If sin + sin b = nd cos + cos b =, then the vlue of 6 6 æ cos ç è b ö ø is [AIEEE - 00] () 0 () 0 () 6 6 () 6 6 æ P ö æ Q ö 0. In tringle PQR, Ð R =. If tn ç nd tn ç re the roots of x è ø è + bx + c = 0; ¹0 then ø [AIEEE - 00] () b = + c () b = c () c = + b () = b + c. If 0 < x < nd cos x + sin x =, then tn x is [AIEEE-006] () 7 æ () ö ç + 7 è () ø (). A tringulr rt is enclosed on two sides by fence nd the third side by stright river bnk. The two sides hving fence re of sme length x. The mximum re enclosed by the rk is [AIEEE-006] () x x () () 8 x () x. Let A nd B denote the sttements [AIEEE-009] A : cos + cos b + cos g = 0 B : sin + sin b + sin g = 0 If cos (b g) + cos (g ) + cos ( b) =, then : A is flse nd B is true both A nd B re flse both A nd B re true (D) A is true nd B is flse A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

33 . Let cos( + b) = nd let sin( b) =, where 0, b. Then tn = () 6 9 () () 0 7 () 6. If tn q =, then sin q is [AIEEE 00] but not or but not (D) None of these 6. If is root of cos q + cos q = 0, < <, then sin is equl to [AIEEE 00] 8 (D) 8 7. If sin ( + b) =, sin( b) =, then tn( + b) tn ( + b) is equl to [AIEEE 00] zero (D) none of these 8. If y = sin q + cosec q, q ¹ 0, then [AIEEE 00] y = 0 y y ³ (D) y ³ 9. The eqution sin x + b cos x = c where c > + b hs [AIEEE 00] unique solution infinite number of solutions no solution (D) none of the bove 7 0. Let, b be such tht < b <. If sin + sin b = nd cos + cos b =, then the vlue of cos 6 6 æ - ç è b ö ø is [AIEEE 00] (D) 6 6. The number of vlues of x in the intervl [0, ] stisfying the eqution sin x + sin x = 0 is 6 (D) [AIEEE 006]. If 0 < x < nd cos x + sin x =, then tn x is [AIEEE 006] ( - 7 ) ( + 7 ) ( + 7 ) ( - 7 ) (D) tna cota. The exression + -cot A -tn A cn be written s [JEE MAINS 0] () sin A cos A + () sec A cosec A + () tn A + cot A () sec A + cosec A A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

34 NCERT BOARD QUESTIONS. Prove tht tna + sec A - + sina = tn A - sec A + cosa. If sin -cos+ sin = y, then rove tht + cos+ sin + sin is lso equl to y.. If m sin q = n sin (q + ), then rove tht tn (q + ) cot = m + n m- n. If cos ( + b) = nd sin ( - b) =, where lie between 0 nd, find the vlue of tn. If tn x = b, then find the vlue of + b -b + - b + b q 9q 6. Prove tht cos q cos - cos q cos =sin 7q sin 8q. 7. If cos q + b sin q = m nd sin q - b cos q = n, then show tht + b = m + n. 8. Find the vlue of tn º0'. 9. Prove tht sin A = sin A cos A - cosa sin A. 0. If tn q + sin q = m nd tn q - sin q = n, then rove tht m - n = sin q tnq.. If tn (A + B) =, tn (A B) = q, then show tht tn A = + q - q. If cos + cosb = 0 = sin + sin b, then rove tht cos + cos b = cos ( + b).. If sin(x+ y) + b tnx = sin(x-y) - b, then show tht = tny b. If tn q = sin-cos sin+ cos, then show tht sin + cos = cosq.. If sin q + cos q =, then find the generl vlue of q. A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

35 6. Find the most generl vlue of q stisfying the eqution tn q = nd cosq = 7. If cot q + tn q = cosecq, then find the generl vlue of q. 8. If sin q = cos q, where 0 q, then find the vlue of q. 9. If sec x cos x + = 0, where 0 < x, then find the vlue of x. 0. If sin (q + ) = nd sin (q + b) = b, then rove tht cos ( b) -b cos ( - b) = - - b. If cos (q + f) = m cos (q - f), then rove tht tn q = - m cot f. + m. Find the vlue of the exression 6 6 [sin ( -) + sin ( +)] - {sin ( + ) + sin ( -)]. If cos q + b sin q = c hs nd b t its roots, then rove tht tn + tnb = b + c. If x = sec f - tn f nd y = cosec f + cot f then show tht xy + x - y + = 0. If q lies in the first qudrnt nd cosq = 8,then find the vlue of cos (0º + q) + cos (º - q) + cos (0º - q) Find the vlue of the exression cos 7 + cos + cos + cos Find the generl solution of the eqution cos q + 7 sin q 6 = 0 8. Find the generl solution of the eqution sin x - sin x + sin x = cos x - cos x + cos x 9. Find the generl solution of the eqution ( -) cosq+ ( + ) sin q = A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

36 EXERCISE # PART # I A-. A-. A-. A-. (D) A-. A-6. A-7. (D) A-8. (D) A-9. A-0. A-. B-. B-. B-. B-. B-. B-6. B-7. B-8. B-9. (D) B-0. B-. B-. B-. B-. B-. B-6. (D) B-7. (A, B, C, D) C-. C-. C-. C-. C-. C-6. (B, C) C-7. C-8. D-. D-. D-. D-. D-*. (A, B) D-6. D-7. (D) D-8. E-. E-. E-. E-. E-. E-6. E-7. E-8. (D) E-9. E-0. E-. E-. E-. E-. E-. E-6. E-7. E-8. E-9. E-0. (D) E-. (D) E-. (D) E-. (D) E-. (D) E-. E-6. E-7. E-8. E-9. (D) E-0. (D) PART # II (D) (D). (D). A-q B-rs C-rs D-. A-q, B- C-s D-r. (A-q) (B-r) (C-s) (D-) 6. (A-r) (B-s) (C -) (D-q) 7. (A-s) (B-) (C-q) (D-r) 8. (D) (D). A-79 Indr Vihr, Kot Rjsthn 00 Pge No. #

37 EXERCISE # PART # I. (D). (D).. (D) (D) (D) 0. *. (A,C) *. (B, C) *. (C, D) *. (B, D) *. (B,C) 6*. (A, B) 7*. (A, B, D) 8*. (B,D) 9*. (A,C) 0* * (A, B, C) 0.* (B, D).* (A, B, C, D).* (A, D).* (A, C).* (A, C) PART # II 0. (i) y mx = ; y min = (ii) y mx = ; ymin = (iii) y mx = 0; y min = 7. (i) (ii) (iii) (iv) (v) 8. n = b n n 7. () n + (-),nî I (b) n+ +,nî I (c) n -,nî I (d) n + (-),nî I (e) n ±,nîi m 8.,m Î I or (m + ) æ ö,m ÎI 9. n ±,nîi 0. ç n +,nîi orn -,nîi 0 è ø æ ö. ç n +,nîi è ø9 æ ö. ç n +,n ÎI è ø. n +, n Î I æ ö. (n + ),nîi. ç n +,nîi 6 è ø 6. n æ ö,n ÎI orç n ±,n ÎI è ø n 7. n, n Î I or +,nî I 8. 0º, º, 90º, º, 0º 6 9. x = (n + ),nî I or x = (n +) nîiorx = n ±,nîi 6 A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 6

38 0. m, m Î I or m,mîi n- æ ö or ç m +,mîi è øn. (i) (n + ) 6, (m + ), k (ii) (n + ) 0, (m + ). A = n + B. x = n, n ± tn. q = n, n. x = n +, n 6. q = n x = n n or x = + 7, n Î I ,,,,, ;,, + where tn = 6. x = /6 6. x = n + or n 7 + ; n Î I 6. 0 solutions 6. x = n º, º, 90º, º, 0º EXERCISE # PART # I é ù ê-, - ú ë 0 û È é ù ê, ú ë0 û (D) * (A, B)... (D) PART # II. (). (). (). (). () 6. () 7. () 8. () 9. () 0. (). (). ().. () (D) (D).. () EXERCISE # cosx cosx 7 q= n+ 7. q= n± q = n n ( ) q=, 9. x =,,. 6. æ - ö + 7ç è ø n± 8. n q = n± + A-79 Indr Vihr, Kot Rjsthn 00 Pge No. # 7

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions ) - TRIGONOMETRY Pge P ( ) In tringle PQR, R =. If tn b c = 0, 0, then Q nd tn re the roots of the eqution = b c c = b b = c b = c [ AIEEE 00 ] ( ) In tringle ABC, let C =. If r is the inrdius nd R is the

More information

SOLUTION OF TRIANGLES

SOLUTION OF TRIANGLES SOLUTION OF TIANGLES DPP by VK Sir B.TEH., IIT DELHI VK lsses, -9-40, Indr Vihr, Kot. Mob. No. 989060 . If cos A + cosb + cos = then the sides of the AB re in A.P. G.P H.P. none. If in tringle sin A :

More information

DEEPAWALI ASSIGNMENT

DEEPAWALI ASSIGNMENT DEEPWLI SSIGNMENT CLSS & DOPPE FO TGET IIT JEE Get Solution & Video Tutorils online www.mthsbysuhg.com Downlod FEE Study Pckges, Test Series from w ww.tekoclsses.com Bhopl : Phone : (0755) 00 000 Wishing

More information

INVERSE TRIGONOMETRIC FUNCTION. Contents. Theory Exercise Exercise Exercise Exercise

INVERSE TRIGONOMETRIC FUNCTION. Contents. Theory Exercise Exercise Exercise Exercise INVERSE TRIGONOMETRIC FUNCTION Toic Contents Page No. Theory 0-06 Eercise - 07 - Eercise - - 6 Eercise - 7-8 Eercise - 8-9 Answer Key 0 - Syllabus Inverse Trigonometric Function (ITF) Name : Contact No.

More information

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

More information

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically. Liner Inequlities: Ech of the following crries five mrks ech:. Solve the system of equtions grphiclly. x + 2y 8, 2x + y 8, x 0, y 0 Solution: Considerx + 2y 8.. () Drw the grph for x + 2y = 8 by line.it

More information

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS JEE(MAIN) 05 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 0 th APRIL, 05) PART B MATHEMATICS CODE-D. Let, b nd c be three non-zero vectors such tht no two of them re colliner nd, b c b c. If is the ngle

More information

Trigonometric Functions

Trigonometric Functions Trget Publictions Pvt. Ltd. Chpter 0: Trigonometric Functions 0 Trigonometric Functions. ( ) cos cos cos cos (cos + cos ) Given, cos cos + 0 cos (cos + cos ) + ( ) 0 cos cos cos + 0 + cos + (cos cos +

More information

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2) Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. (a) Using the identity cos (A + B) º cos A cos B sin A sin B, rove that cos A º sin A. () (b) Show that sin q 3 cos q 3

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=! 7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

More information

PART - III : MATHEMATICS

PART - III : MATHEMATICS JEE(Advnced) 4 Finl Em/Pper-/Code-8 PART - III : SECTION : (One or More Thn One Options Correct Type) This section contins multiple choice questions. Ech question hs four choices (A), (B), (C) nd (D) out

More information

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS 33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t A-PDF Wtermrk DEMO: Purchse from www.a-pdf.com to remove the wtermrk Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Functions Asolute Vlue Function Inverse Function If f ( x ), if f ( x ) 0 f ( x) y f

More information

Lesson-5 ELLIPSE 2 1 = 0

Lesson-5 ELLIPSE 2 1 = 0 Lesson-5 ELLIPSE. An ellipse is the locus of point which moves in plne such tht its distnce from fied point (known s the focus) is e (< ), times its distnce from fied stright line (known s the directri).

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

MATHEMATICS PART A. 1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC

MATHEMATICS PART A. 1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC FIITJEE Solutions to AIEEE MATHEMATICS PART A. ABC is tringle, right ngled t A. The resultnt of the forces cting long AB, AC with mgnitudes AB nd respectively is the force long AD, where D is the AC foot

More information

1 cos. cos cos cos cos MAT 126H Solutions Take-Home Exam 4. Problem 1

1 cos. cos cos cos cos MAT 126H Solutions Take-Home Exam 4. Problem 1 MAT 16H Solutions Tke-Home Exm 4 Problem 1 ) & b) Using the hlf-ngle formul for cosine, we get: 1 cos 1 4 4 cos cos 8 4 nd 1 8 cos cos 16 4 c) Using the hlf-ngle formul for tngent, we get: cot ( 3π 1 )

More information

is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to -

is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to - J-Mthemtics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR). The vlue of determinnt c c c c c c (A) c (B) c (C) 0 (D) 4c. If sin x cos x cos 4x cos x cos x sin x 4 cos x sin x

More information

Mathematics Extension 1

Mathematics Extension 1 04 Bored of Studies Tril Emintions Mthemtics Etension Written by Crrotsticks & Trebl. Generl Instructions Totl Mrks 70 Reding time 5 minutes. Working time hours. Write using blck or blue pen. Blck pen

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m.

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m. SET I. If y x y + 5 = 0 is (A) circle with centre (, ) (B) prbol with vertex (, ) (C) prbol with directrix x = 3. The focus of the prbol x 8x + y + 7 = 0 is (D) prbol with directrix x = 9 9 (A) 0, (B)

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet Ciro Governorte Nozh Directorte of Eduction Nozh Lnguge Schools Ismili Rod Deprtment : Mth Form : rd prep. Sheet Alg. Sheet () [] Find the vlues of nd in ech of the following if : ) (, ) ( -5, 9 ) ) (,

More information

INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE TRIGONOMETRIC FUNCTIONS MIT INVERSE TRIGONOMETRIC FUNCTIONS C Domins Rnge Principl vlue brnch nd Grphs of Inverse Trigonometric/Circulr Functions : Function Domin Rnge Principl vlue brnch = [ / /] Domin Rnge Principl vlue brnch

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission M 30 Coimisiún n Scrúduithe Stáit Stte Exmintions Commission LEAVING CERTIFICATE EXAMINATION, 005 MATHEMATICS HIGHER LEVEL PAPER ( 300 mrks ) MONDAY, 3 JUNE MORNING, 9:30 to :00 Attempt FIVE questions

More information

A LEVEL TOPIC REVIEW. factor and remainder theorems

A LEVEL TOPIC REVIEW. factor and remainder theorems A LEVEL TOPIC REVIEW unit C fctor nd reminder theorems. Use the Fctor Theorem to show tht: ) ( ) is fctor of +. ( mrks) ( + ) is fctor of ( ) is fctor of + 7+. ( mrks) +. ( mrks). Use lgebric division

More information

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2 SET I. If the locus of the point of intersection of perpendiculr tngents to the ellipse x circle with centre t (0, 0), then the rdius of the circle would e + / ( ) is. There re exctl two points on the

More information

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF DOWNLOAD FREE FROM www.tekoclsses.com, PH.: 0 903 903 7779, 98930 5888 Some questions (Assertion Reson tpe) re given elow. Ech question contins Sttement (Assertion) nd Sttement (Reson). Ech question hs

More information

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1?

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1? 008 009 Log1 Contest Round Thet Individul Nme: points ech 1 Wht is the sum of the first Fiboncci numbers if the first two re 1, 1? If two crds re drwn from stndrd crd deck, wht is the probbility of drwing

More information

SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C

SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C GENERL NOTTION : SOLUTION OF TRINGLE In tringle BC ngles t vertices re usully denoted by, B, C PGE # sides opposite to these vertices re denoted by, b, c respectively Circumrdius is denoted by R 3 Inrdius

More information

METHODS OF DIFFERENTIATION. Contents. Theory Objective Question Subjective Question 10. NCERT Board Questions

METHODS OF DIFFERENTIATION. Contents. Theory Objective Question Subjective Question 10. NCERT Board Questions METHODS OF DIFFERENTIATION Contents Topic Page No. Theor 0 0 Objective Question 0 09 Subjective Question 0 NCERT Board Questions Answer Ke 4 Sllabus Derivative of a function, derivative of the sum, difference,

More information

PARABOLA EXERCISE 3(B)

PARABOLA EXERCISE 3(B) PARABOLA EXERCISE (B). Find eqution of the tngent nd norml to the prbol y = 6x t the positive end of the ltus rectum. Eqution of prbol y = 6x 4 = 6 = / Positive end of the Ltus rectum is(, ) =, Eqution

More information

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks Edexcel GCE Core Mthemtics (C) Required Knowledge Informtion Sheet C Formule Given in Mthemticl Formule nd Sttisticl Tles Booklet Cosine Rule o = + c c cosine (A) Binomil Series o ( + ) n = n + n 1 n 1

More information

US01CMTH02 UNIT Curvature

US01CMTH02 UNIT Curvature Stu mteril of BSc(Semester - I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT- 1 Curvture Let f : I R be sufficiently

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS 6. CONCEPTS FOR ADVANCED MATHEMATICS, C (475) AS Objectives To introduce students to number of topics which re fundmentl to the dvnced study of mthemtics. Assessment Emintion (7 mrks) 1 hour 30 minutes.

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

TABLE OF CONTENTS 3 CHAPTER 1

TABLE OF CONTENTS 3 CHAPTER 1 TABLE OF CONTENTS 3 CHAPTER 1 Set Lnguge & Nottion 3 CHAPTER 2 Functions 3 CHAPTER 3 Qudrtic Functions 4 CHAPTER 4 Indices & Surds 4 CHAPTER 5 Fctors of Polynomils 4 CHAPTER 6 Simultneous Equtions 4 CHAPTER

More information

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6 Form HK 9 Mthemtics II.. ( n ) =. 6n. 8n. n 6n 8n... +. 6.. f(). f(n). n n If = 0 p, = 0 q, epress log 6 in terms of p nd q.. p q. pq. p q pq p + q Let > b > 0. If nd b re respectivel the st nd nd terms

More information

3.1 Review of Sine, Cosine and Tangent for Right Angles

3.1 Review of Sine, Cosine and Tangent for Right Angles Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,

More information

[STRAIGHT OBJECTIVE TYPE] Q.4 The expression cot 9 + cot 27 + cot 63 + cot 81 is equal to (A) 16 (B) 64 (C) 80 (D) none of these

[STRAIGHT OBJECTIVE TYPE] Q.4 The expression cot 9 + cot 27 + cot 63 + cot 81 is equal to (A) 16 (B) 64 (C) 80 (D) none of these Q. Given a + a + cosec [STRAIGHT OBJECTIVE TYPE] F HG ( a x) I K J = 0 then, which of the following holds good? (A) a = ; x I a = ; x I a R ; x a, x are finite but not possible to find Q. The minimum value

More information

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h AM Mthemticl Anlysis Oct. Feb. Dte: October Exercises Lecture Exercise.. If h, prove the following identities hold for ll x: sin(x + h) sin x h cos(x + h) cos x h = sin γ γ = sin γ γ cos(x + γ) (.) sin(x

More information

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties M.Sc. (Mths), B.Ed, M.Phil (Mths) MATHEMATICS Mob. : 947084408 9546359990 M.Sc. (Mths), B.Ed, M.Phil (Mths) RAM RAJYA MORE, SIWAN XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII

More information

Sample Problems for the Final of Math 121, Fall, 2005

Sample Problems for the Final of Math 121, Fall, 2005 Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.

More information

SCORE JEE (Advanced)

SCORE JEE (Advanced) SLUTIN. ns. (D) L : x + y 0 S L : x + y 0 L : x + y 7 0 Point of intersection of L 0 & L 0 is (,9) Point of intersection of L 0 & L 0 is (0,) line perpendiculr to L nd pssing through (, 9) isx y + 0...

More information

The Product Rule state that if f and g are differentiable functions, then

The Product Rule state that if f and g are differentiable functions, then Chpter 6 Techniques of Integrtion 6. Integrtion by Prts Every differentition rule hs corresponding integrtion rule. For instnce, the Substitution Rule for integrtion corresponds to the Chin Rule for differentition.

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R rern Tower, Rod No, Contrctors Are, Bistupur, Jmshedpur 800, Tel 065789, www.prernclsses.com IIT JEE 0 Mthemtics per I ART III SECTION I Single Correct Answer Type This section contins 0 multiple choice

More information

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D . If * is the opertion defined by *b = b for, b N, then ( * ) * is equl to (A) 8 (B) 5 (C) 6 (D) 64 (E) 4. The domin of the function ( 9)/( ),if f( ) = is 6, if = (A) (0, ) (B) (-, ) (C) (-, ) (D) (, )

More information

Quadratic Residues. Chapter Quadratic residues

Quadratic Residues. Chapter Quadratic residues Chter 8 Qudrtic Residues 8. Qudrtic residues Let n>be given ositive integer, nd gcd, n. We sy tht Z n is qudrtic residue mod n if the congruence x mod n is solvble. Otherwise, is clled qudrtic nonresidue

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of Higher Mthemtics Ojective Test Prctice ook The digrm shows sketch of prt of the grph of f ( ). The digrm shows sketch of the cuic f ( ). R(, 8) f ( ) f ( ) P(, ) Q(, ) S(, ) Wht re the domin nd rnge of

More information

MTH 4-16a Trigonometry

MTH 4-16a Trigonometry MTH 4-16 Trigonometry Level 4 [UNIT 5 REVISION SECTION ] I cn identify the opposite, djcent nd hypotenuse sides on right-ngled tringle. Identify the opposite, djcent nd hypotenuse in the following right-ngled

More information

GEOMETRICAL PROPERTIES OF ANGLES AND CIRCLES, ANGLES PROPERTIES OF TRIANGLES, QUADRILATERALS AND POLYGONS:

GEOMETRICAL PROPERTIES OF ANGLES AND CIRCLES, ANGLES PROPERTIES OF TRIANGLES, QUADRILATERALS AND POLYGONS: GEOMETRICL PROPERTIES OF NGLES ND CIRCLES, NGLES PROPERTIES OF TRINGLES, QUDRILTERLS ND POLYGONS: 1.1 TYPES OF NGLES: CUTE NGLE RIGHT NGLE OTUSE NGLE STRIGHT NGLE REFLEX NGLE 40 0 4 0 90 0 156 0 180 0

More information

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES Lesson- TRIGONOMETRIC RATIOS AND IDENTITIES Angle in trigonometry In trigonometry, the measure of an angle is the amount of rotation from B the direction of one ray of the angle to the other ray. Angle

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chter Trigonometric Functions Chter Trigonometric Functions Section. Angles nd Their Mesures Exlortion. r. rdins ( lengths of ted). No, not quite, since the distnce r would require iece of ted times s

More information

CET MATHEMATICS 2013

CET MATHEMATICS 2013 CET MATHEMATICS VERSION CODE: C. If sin is the cute ngle between the curves + nd + 8 t (, ), then () () () Ans: () Slope of first curve m ; slope of second curve m - therefore ngle is o A sin o (). The

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

10 If 3, a, b, c, 23 are in A.S., then a + b + c = 15 Find the perimeter of the sector in the figure. A. 1:3. A. 2.25cm B. 3cm

10 If 3, a, b, c, 23 are in A.S., then a + b + c = 15 Find the perimeter of the sector in the figure. A. 1:3. A. 2.25cm B. 3cm HK MTHS Pper II P. If f ( x ) = 0 x, then f ( y ) = 6 0 y 0 + y 0 y 0 8 y 0 y If s = ind the gretest vlue of x + y if ( x, y ) is point lying in the region O (including the boundry). n [ + (n )d ], then

More information

Chapter 28. Fourier Series An Eigenvalue Problem.

Chapter 28. Fourier Series An Eigenvalue Problem. Chpter 28 Fourier Series Every time I close my eyes The noise inside me mplifies I cn t escpe I relive every moment of the dy Every misstep I hve mde Finds wy it cn invde My every thought And this is why

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx... Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus ES 111 Mthemticl Methods in the Erth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry nd bsic clculus Trigonometry When is it useful? Everywhere! Anything involving coordinte systems

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time llowed Two hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bord-pproved clcultors my be used A tble of stndrd

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

k and v = v 1 j + u 3 i + v 2

k and v = v 1 j + u 3 i + v 2 ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Quick Review a=bc/d 2. b=ad/c 3. c=ad/b 4. d=bc/a 7 sin L sin 23 9 sin

Quick Review a=bc/d 2. b=ad/c 3. c=ad/b 4. d=bc/a 7 sin L sin 23 9 sin Section 5.5 The Lw of Sines 9 () The sine regression curve through the oints defined y L nd L is y4.656 sin(0.05x-0.85)-.473. This is firly good fit, ut not relly s good s one might exect from dt generted

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x

Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x Further integrtion Stndrd derivtives nd integrls The following cn be thought of s list of derivtives or eqully (red bckwrds) s list of integrls. Mke sure you know them! There ren t very mny. f(x) f (x)

More information

JEE Advnced Mths Assignment Onl One Correct Answer Tpe. The locus of the orthocenter of the tringle formed the lines (+P) P + P(+P) = 0, (+q) q+q(+q) = 0 nd = 0, where p q, is () hperol prol n ellipse

More information

c n φ n (x), 0 < x < L, (1) n=1

c n φ n (x), 0 < x < L, (1) n=1 SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

ICSE Board Class IX Mathematics Paper 4 Solution

ICSE Board Class IX Mathematics Paper 4 Solution ICSE Bord Clss IX Mthemtics Pper Solution SECTION A (0 Mrks) Q.. () Consider x y 6 5 5 x y 6 5 5 0 6 0 6 x y 6 50 8 5 6 7 6 x y 6 7 6 x y 6 x 7,y (b) Dimensions of the brick: Length (l) = 0 cm, bredth

More information

LUMS School of Science and Engineering

LUMS School of Science and Engineering LUMS School of Science nd Engineering PH- Solution of ssignment Mrch, 0, 0 Brvis Lttice Answer: We hve given tht c.5(î + ĵ + ˆk) 5 (î + ĵ + ˆk) 0 (î + ĵ + ˆk) c (î + ĵ + ˆk) î + ĵ + ˆk + b + c î, b ĵ nd

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

Prerequisite Knowledge Required from O Level Add Math. d n a = c and b = d

Prerequisite Knowledge Required from O Level Add Math. d n a = c and b = d Prerequisite Knowledge Required from O Level Add Mth ) Surds, Indices & Logrithms Rules for Surds. b= b =. 3. 4. b = b = ( ) = = = 5. + b n = c+ d n = c nd b = d Cution: + +, - Rtionlising the Denomintor

More information

A sequence is a list of numbers in a specific order. A series is a sum of the terms of a sequence.

A sequence is a list of numbers in a specific order. A series is a sum of the terms of a sequence. Core Module Revision Sheet The C exm is hour 30 minutes long nd is in two sections. Section A (36 mrks) 8 0 short questions worth no more thn 5 mrks ech. Section B (36 mrks) 3 questions worth mrks ech.

More information

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year 1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information