SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C

Size: px
Start display at page:

Download "SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C"

Transcription

1 GENERL NOTTION : SOLUTION OF TRINGLE In tringle BC ngles t vertices re usully denoted by, B, C PGE # sides opposite to these vertices re denoted by, b, c respectively Circumrdius is denoted by R 3 Inrdius is denoted by r 4 Ex-rdii re denoted by r, r, r 3 opposite to vertices, B, C respectively 5 s + b + c s c + b c + b c (s c) + c b (s b)

2 PGE # b c b c b c 4s(s c) b c b c b c 4s s b s, s b, s c will be lwys +ve 6 or S is used for re of tringle 7 p p perpediculr r of opp side 8 B C D BD c b D 4 D b c length of medin, D b c In tringle the ngle opp to gretest side will be gretest 3 In centroid nd incenter will lwys lie within it wheres orthocentre nd circumcentre my lie outside the 4 The rtio of the re of the tringles mde on sme bse (ltitudes) will be equls to rtio of ltitudes (bse) r BD BD r DC DC

3 PGE # 3 r BC p r DBC p 4 In BC (i) sin, sin B, sin C > 0 (ii) () sin( + B) sin C (b) cos( + B) cos C (c) tn( + B) tn C (iii) () B C sin cos (b) B C cos sin B C (c) tn cot 5 # Sine Rule : In BC b c R sin sinb sinc In BD & CD : PROOF : D D c sinb bsinc In BD CD b sinb sin O is circumcentre In BOM BM sin R sin we hve b c R sin sinb sinc

4 PTTERN IDENTIFICTION : (i) sin (ii) b PROOF : b sin B sin B sincsin B 4R sin sin B 4R sin B sin B 4R sin B sinc (ie nd sin() re mutully convertible) PGE # 4 b sin sinb (iii) c sinc b R sin sinb B B 4R sin cos C B 4R sin sin (iv) cosb sin (v) tn cos 6 To find side indentify the in which it lies preferbly right ngle or the tringle one side of which nd two of the ngles re known 7 If in the ques two of the ngles sy & B nd one of the corresponding sides sy is given this my implies sine rute NPIER S NLOGY : b c sinb sinc b c sinb sinc B C B C sin cos B C B C sin cos B C B C tn cot B C tn tn B C b c tn cot b c

5 which gives the result : PGE # 5 B C b c tn tn b c Similrly C c B tn tn c & B tn b tn C b NOTE : If trigonometric rtio of difference of two of the ngles (sy B) nd the corresponding sides ( & b) re given in the ques this my imply Npier s nlogy PROJECTION FORMUL : BC BD + DC c cosb b cosc c cosb b cosc Similrly b cosc c cos & c cosb bcos COSINE RULE : In BD (refer bove figure) B D D C b cosc b sin C b cos C bcosc b sin C C b bcosc b c c cosb b c bc cos cosc b c b Similrly b c cos bc c b cosb c GENERL NOTE : (i) for three quntities, b, c (i) b 0 (ii) b (iii) b c 0

6 b c (iv) (v) b b b PGE # 6 NOTE: If two of the sides (sy & b) nd the third ngle (C) is given in the ques then this my imply ppliction of cosine rule bc cos b c 3 cot cot sin b c bc sin b c 4 c 4 4 b c 4 4 If BCD is cyclic qudrilterl : BD BD d dcos b c bc cos cos d bc b b c d b c cos d bc b c d cosb b cd cos C bc d b c d d bc b cd c bd BD Similrly b cd c bd d bc C

7 PGE # 7 BD C c bd BDC c + bd BDC BCD + DBC (Ptolemy s Theorem) NOTE : If then cos 3 cos 3 b c bc b c bc b c bc Q (i) If 5, b 4 & cos ( B) 3 3 find C Q PT b c cos Q3 PT bcos c c cosb b c Q4 If 3, b & c 60, Find other sides & ngles Q5 If C, 3, b 4 nd D is on B such tht BCD 6 Find CD 6 If,, re legnth of ltitudes of BC 7 PT cot TPT sin B b csin 8 If b c c b 3 TPT cos cosb cosc 7 5 b c sin 0 9 PT 0 PT sec tnbtnc cosb cosc

8 PGE # 8 B cos B tn cos B B cos B tn cos B Using Npier s 3/ 3 3/ B b c tn cot b c cot c 7 tn 3 7 / 9 cosc 7 / 9 cosc 8 c b bcosc c 6 Q LHS bcos c cos + cosb c cos B + cosc bcos C c + b + Q3 bcosc c cosb b c c b b c Q4 cosine Rule : b c c b bcosc 3 4 3

9 PGE # 9 c 6 Q5 BCD : CD BC sinb sin B 6 CD 3sinB sin B Q6 b c 4 b c 4 Q7 consider cot b c sinb sinc sin B C B C sin cos sin cos B C cos sin B C (s cos sin )

10 PGE # 0 C B cos sin B B cos sin b csin cos B sin B Q8 b c c b 3 b c 36 (Using C & D) c b c 5 b 6 7 pply cosine rule b c cos bc etc Q9 b c sin b c sin cos b c R cos b c b c Rbc b c 4 b c 0 Rbc 0 cosbcosc cos cosbcosc cos

11 PGE # cos cosbcosc R sin cos R 4sin sinbsinc cos cosbcosc (using sin 4 sin sec tnb tnc ) HLF NGLE FORMULE : cos b c bc b c cos bc b c cos bc b c bc bc b c bc s s bc s s cos bc Similrly B cos s s b c, C s s c cos b gin cos sin b c bc b c sin bc b c bc s b s c sin bc Similrly B sin s s c c lso, s b s c tn s s, s s c B tn s s b RE OF TRINGLE : ht bse c sinb

12 PGE # c sinb bc sin [using sin B b sin ] RsinB R sinc sin R lso C sin bc sin bcsin cos s bs c ss bc bc Ss s b s c bc bsinc R sin Ss s b s c * s b s c tn S s s b s c ss * Ss b B cot s s c s s c s s b * sin bc * If ques contins hlf s nd sides, then use bove formul for mnipultion COT - m-n THEOREM : If bse BC is divided by pt D in rtio m : n, then

13 () (m + n) cot m cot n cot () (m + n) cot n cot B m cot C Proof : in BD : PGE # 3 D sin In CD : BD sin () D DC sin sin () () () sin sin sin sin BD sin DC sin m sin n sin nsin sincos cossin msin sin cos cos sin Dividing by sin sin sin, we get (m + n) cot m cot n cot * If in question, one of the side is bisected/trisected etc then this my imply ppliction of cot m n theorem Q PT cot cot Q If b c, then find tn Q3 Let C, 75, If D is on C 3 r (BD) 3 r (BCD) Find BD Q4 If medin D B, in, PT tn + tn B 0 Q5 If medins D & BE intersects t, then PT b 5c Q6 Find, if ( + b + c) (b + c ) 3bc Q7 If, TPT 3 4D b bc c, where D is medin Q8 If, B, C re in P, nd if 3c b, then find ngles of

14 PGE # 4 Q9 In, PT B c tn tn b c Q0 If medin D is 'r to C, TPTs c cos cosc 3c ns cot ss ss 3s s lso lt : b c cot cot cot 4 cot 3 4 cot s s s b s c b c b c 4s b s c s s s s b s c 4 tn 4 s b s c tn s s s b s c tn tn tn cot m n th : 3 75 cot 75 3 cot 60

15 PGE # 5 4 cot B cot cot tnb tn tn tnb 0 5 Dist of frm centroid G D 3 b c 3 E G GE (where is mid pt of C) 6 b b c 9 s s 3 s s 3bc bc 4 + c b 36 cos cos 3 lt : b c 3bc b c bc b c cos bc b c bc lso

16 D b c 4D b c b c b c bc PGE # 6 b c bc 8, B, C P B 3 3c b c sinc b 3 sinb 3 sinc sin C B tn tn s b s c s s c s s s s b s c c c c s b c 0 b c b D b 4 4b b c c 3b b c cos bc b c cosc b

17 PGE # 7 b 3b b c 4b cos cosc 3bc b c 3c Q PT B C cos b c + B C sin b c Q BCD is trpezium such tht B & DC re & BC is 'r to then If DB, BC p & CD q, Q3 If TPT p q sin B bcos qsin b c tn sin, b TPT c b sec Q4 PT c c c b cos b sin Q5 PT cosbcosc cos c cos cosb cosc bcos cos C cosb Q6 cos B b cos bcos B c Q7 Q8 Q9 Q0 bc cos s b c cos 0 cos tn b c Sol LHS B C B C cos sin b c b c

18 PGE # 8 B C cos 4R sin B sin C + B C sin 4R sin B sin C 4R B C B C 4sin 4cos B C B C sin cos 4R B C B C 4sin cos 4R sin B C Sol In BD B sin BD sin B sin BD sin cos cos sin sin p q q p sin p q p q cos p q sin qsin pcos Sol3 sec tn C 4b sin b b b cosc b b bcos C b C b

19 PGE # 9 C C b cos b sin Sol4 C C b cos sin C C b cos sin b bcosc C Sol5 cos Bcos C cos cosbcosc cos B C cos B cos C cos BcosC sinbsin C sinbsinc Rsin sinb sinc Using symt ll terms re equls to R sin Sol6 cosb b cos bcos B cos B sin B + b cos sin + b cos cos B sin sinb cos B b cos b cos cos B sin B b sin b sin sinb cos B bcos sinb b sin c 0 c Sol7 bccos ss bc s s bc s(s) s Sol8 b c cos b c ss s b c s bc bc s s b c b c 0 bc

20 DIFFERENT CENTRES OF TRINGLE : PGE # 0 Circum centre : bc () R 4 () OM R cos Dist of BC frm cc B Incentre : Dist of side frm cc R cos, R cos B, R cos C () BD c DC b () () BD ly DC c b c b b c (3) In BD : I ID B BD c c b c b c (4) IB (5) (i) In BD : B c D sinb BD sin D sinb C [using sin B b sin ] sin / b c bc cos b c length of r bisector similrly, c B BE cos c (ii) r BC r IBC r (IC) + r(ib) rs r s r br r

21 PGE # (iii) r s s s r s s tn B s b tn C s c tn (iv) B C 4R sin sin sin s b s c s s c 4R bc c s s b b 4R s s b s c bc ss 4R bc s r s s r 4R sin (i) r s s tn 4R sin (iv) In BPI BI B r cosec C 4R sin sin Dis of vertex B from incenter Dis of vertices from incenter rcsc, rcsc B nd rcsc C

22 In BPI PGE # B r tn BP BP r s b B tn length of tngent from B to incircle BP BR s b CP CQ s c Q R s (vi) IO B B C B B C I O R In IO B C 4R sin sin IO I O OIcos IO B C IO R 6R sin sin B C B C R 4R sin sin cos B C B C B C R 8R sin sin sin sin cos R 8R sin IO R 8 sin R (i) R r (ii) Rr sin 8 Orhocentre : (i) BD ccosb (ii) DC bcos C

23 (iii) BD DC (iv) BD c cos B tn C bcos C tn B BH ccosb cosec C PGE # 3 c sinc Rcos B cos B HD c cosb cotc cos C ccos B sin C Rcos B cosc Hence Dis of verteces from orthocenter will be R cos () Rcos B, Rcos C nd the distnce of the sides from orthocenter will be R cos(b) cos(c), Rcos Ccos nd Rcos cosb HO B C H R cos() O R HC C OM B OM B HO C B B C OH O H OHcos B C R 4R cos RRcos cosb C R 4cos cos cosb C R 4cos cos B C cos B C R 8R cos OH R 8 cos (iii) EX-CIRCLE : (i) r s

24 (ii) r s b PGE # 4 (iii) r 3 s c B C r 4R sin cos cos B C r 4R cos sin cos 3 () r s tn B (b) r s tn C (c) r3 s tn 4 B r r s tn tn r r s 5 Proof: r r s s 3s s s r 6 r r r3 r Proof: s s b s c s s s Q Prove tht r cos R

25 Sol cos 4sin PGE # 5 4R sin R + r R Q Prove tht if r, r, r 3 in HP then BC re in P Sol,, r r r P 3 s s b s c,, r P s, s b, s c P, b, c P, b, c P Q3 Let dis of orthocenter from vertices is p, q, r then prove tht Proof: qr bc p Rcos q Rcos B r Rcos C LHS qr Rsin RcosB Rcos C 3 8R sin cosb cos C 3 8R sin bc LT : r BC qrsin B C qr 4R 3 bc qr bpr cpr 4R 4R 4R 4R

26 PGE # 6 bc qr Q If r r r 3 r PT is right ngled Q If B / PT r b c Q3 If ltitudes from, B, C re produced to meet circum centre, if length of produced prts is,, then prove tht centre, if length of produced prts is,, then prove tht tn Q4 If,, re length of internl bisectors TPT cos Q5 Q6 b Rr b c 0 r Q7 If,, re the distnce of the vertex of from the corresponding pts of contect with the in-circle TPT r s s b s c s s s s b s c s s s s s b c s b s c s s s b c s bc s b c bc b c b c bc b c bc bc b c B r s b tn 4 s b tn 4 s b

27 s b c b PGE # 7 5 b c bc c bc s bc 4 s bc R r b c s 6 b c s b c b c 0 b c r b c s s b c b c 0 7 s s b s c s s s s s s s r r 4 bc cos b c cos b c bc b c cos b c

28 PGE # 8 b c 3 s BP BC BP c lso, In BDP BDcot C cos C ccos B sin C Rcos BcosC Rcos B cos C sin cos B cos C C sin B C B C C tnb tnc q t B t C t Q If p, p, p 3 re length of (i) (ii) p r cos p R 'r from vertices to sides then PT (iii) bp c + cp + cp3 b b c R Q PT pro I bc B C tn tn tn Q3 If x, y, z re respectively distnce of the vertex from its orthocentre then prove tht x R r Q4 If x, y, z respectively re the 'r from the circum center to the sides of the tringle BC then PT bc x 4xyz Q5 (i) PT in tringle tn

29 PGE # 9 (ii) (iii) (iv) cos 3 4 s 3 3 sin 4 ns p p (iii) cos p s r cos R R sin 4 sin R sin R b (iii) bp c bp b bc pb p c bc R TP I tn LHS B C 4R sin sin 3 B C B C 64R s s s s s s Q3 x Rcos 3 s s B s C B C 64R t 8 bc tn

30 Rsin x Rcos tn PGE # 30 x tn tn x Rcos x R 4 sin R 4R sin R r Q4 x R cos x Rsin Rcos tn() tn x tn x 4 x Q5 pply M GM on tn, B tn B B tn tn tn tn similrly dding tn (s B tn tn ) (ii) cos b c cos cos

31 R sin 4R sin PGE # 3 4 sin 4 4 cos 8 sin (Using sin ) 8 / 3 s s b s c s 3 (iii) 3 s s 3 4 s s s 3 s 3 3 s mx ****-----

SOLUTION OF TRIANGLES

SOLUTION OF TRIANGLES SOLUTION OF TIANGLES DPP by VK Sir B.TEH., IIT DELHI VK lsses, -9-40, Indr Vihr, Kot. Mob. No. 989060 . If cos A + cosb + cos = then the sides of the AB re in A.P. G.P H.P. none. If in tringle sin A :

More information

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions ) - TRIGONOMETRY Pge P ( ) In tringle PQR, R =. If tn b c = 0, 0, then Q nd tn re the roots of the eqution = b c c = b b = c b = c [ AIEEE 00 ] ( ) In tringle ABC, let C =. If r is the inrdius nd R is the

More information

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these Q. If a, b, c are distinct positive real in H.P., then the value of the expression, b a b c + is equal to b a b c () (C) (D) 4 Q. In a triangle BC, (b + c) = a bc where is the circumradius of the triangle.

More information

GEOMETRICAL PROPERTIES OF ANGLES AND CIRCLES, ANGLES PROPERTIES OF TRIANGLES, QUADRILATERALS AND POLYGONS:

GEOMETRICAL PROPERTIES OF ANGLES AND CIRCLES, ANGLES PROPERTIES OF TRIANGLES, QUADRILATERALS AND POLYGONS: GEOMETRICL PROPERTIES OF NGLES ND CIRCLES, NGLES PROPERTIES OF TRINGLES, QUDRILTERLS ND POLYGONS: 1.1 TYPES OF NGLES: CUTE NGLE RIGHT NGLE OTUSE NGLE STRIGHT NGLE REFLEX NGLE 40 0 4 0 90 0 156 0 180 0

More information

DEEPAWALI ASSIGNMENT

DEEPAWALI ASSIGNMENT DEEPWLI SSIGNMENT CLSS & DOPPE FO TGET IIT JEE Get Solution & Video Tutorils online www.mthsbysuhg.com Downlod FEE Study Pckges, Test Series from w ww.tekoclsses.com Bhopl : Phone : (0755) 00 000 Wishing

More information

Trigonometric Functions

Trigonometric Functions Trget Publictions Pvt. Ltd. Chpter 0: Trigonometric Functions 0 Trigonometric Functions. ( ) cos cos cos cos (cos + cos ) Given, cos cos + 0 cos (cos + cos ) + ( ) 0 cos cos cos + 0 + cos + (cos cos +

More information

Objective Mathematics

Objective Mathematics . In BC, if angles, B, C are in geometric seq- uence with common ratio, then is : b c a (a) (c) 0 (d) 6. If the angles of a triangle are in the ratio 4 : :, then the ratio of the longest side to the perimeter

More information

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m.

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m. SET I. If y x y + 5 = 0 is (A) circle with centre (, ) (B) prbol with vertex (, ) (C) prbol with directrix x = 3. The focus of the prbol x 8x + y + 7 = 0 is (D) prbol with directrix x = 9 9 (A) 0, (B)

More information

Andrew Ryba Math Intel Research Final Paper 6/7/09 (revision 6/17/09)

Andrew Ryba Math Intel Research Final Paper 6/7/09 (revision 6/17/09) Andrew Ryb Mth ntel Reserch Finl Pper 6/7/09 (revision 6/17/09) Euler's formul tells us tht for every tringle, the squre of the distnce between its circumcenter nd incenter is R 2-2rR, where R is the circumrdius

More information

STRAIGHT LINES EXERCISE - 3

STRAIGHT LINES EXERCISE - 3 STRAIGHT LINES EXERCISE - 3 Q. D C (3,4) E A(, ) Mid point of A, C is B 3 E, Point D rotation of point C(3, 4) by angle 90 o about E. 3 o 3 3 i4 cis90 i 5i 3 i i 5 i 5 D, point E mid point of B & D. So

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

More information

SCORE JEE (Advanced)

SCORE JEE (Advanced) SLUTIN. ns. (D) L : x + y 0 S L : x + y 0 L : x + y 7 0 Point of intersection of L 0 & L 0 is (,9) Point of intersection of L 0 & L 0 is (0,) line perpendiculr to L nd pssing through (, 9) isx y + 0...

More information

Sect 10.2 Trigonometric Ratios

Sect 10.2 Trigonometric Ratios 86 Sect 0. Trigonometric Rtios Objective : Understnding djcent, Hypotenuse, nd Opposite sides of n cute ngle in right tringle. In right tringle, the otenuse is lwys the longest side; it is the side opposite

More information

1 cos. cos cos cos cos MAT 126H Solutions Take-Home Exam 4. Problem 1

1 cos. cos cos cos cos MAT 126H Solutions Take-Home Exam 4. Problem 1 MAT 16H Solutions Tke-Home Exm 4 Problem 1 ) & b) Using the hlf-ngle formul for cosine, we get: 1 cos 1 4 4 cos cos 8 4 nd 1 8 cos cos 16 4 c) Using the hlf-ngle formul for tngent, we get: cot ( 3π 1 )

More information

ICSE Board Class IX Mathematics Paper 4 Solution

ICSE Board Class IX Mathematics Paper 4 Solution ICSE Bord Clss IX Mthemtics Pper Solution SECTION A (0 Mrks) Q.. () Consider x y 6 5 5 x y 6 5 5 0 6 0 6 x y 6 50 8 5 6 7 6 x y 6 7 6 x y 6 x 7,y (b) Dimensions of the brick: Length (l) = 0 cm, bredth

More information

Lesson-5 ELLIPSE 2 1 = 0

Lesson-5 ELLIPSE 2 1 = 0 Lesson-5 ELLIPSE. An ellipse is the locus of point which moves in plne such tht its distnce from fied point (known s the focus) is e (< ), times its distnce from fied stright line (known s the directri).

More information

42nd International Mathematical Olympiad

42nd International Mathematical Olympiad nd Interntionl Mthemticl Olympid Wshington, DC, United Sttes of Americ July 8 9, 001 Problems Ech problem is worth seven points. Problem 1 Let ABC be n cute-ngled tringle with circumcentre O. Let P on

More information

Golden Sections of Triangle Centers in the Golden Triangles

Golden Sections of Triangle Centers in the Golden Triangles Forum Geometricorum Volume 16 (016) 119 14. FRUM GEM ISSN 1534-1178 Golden Sections of Tringle Centers in the Golden Tringles Emmnuel ntonio José Grcí nd Pul Yiu bstrct. golden tringle is one whose vertices

More information

NARAYANA I I T / N E E T A C A D E M Y

NARAYANA I I T / N E E T A C A D E M Y CODE Phase Test IV NARAYANA I I T / N E E T A C A D E M Y PHASE TEST - IV XII-NEW-REG BATCHES :: PAPER I & II :: Date: 8.0.8 PAPER I KEY PHYSICS CHEMISTRY MATHEMATICS. (7). (). (8) 4. (4) 5. (6) 6. ()

More information

IMPORTANT QUESTIONS FOR INTERMEDIATE PUBLIC EXAMINATIONS IN MATHS-IB

IMPORTANT QUESTIONS FOR INTERMEDIATE PUBLIC EXAMINATIONS IN MATHS-IB ` K UKATP ALLY CE NTRE IMPORTANT QUESTIONS FOR INTERMEDIATE PUBLIC EXAMINATIONS IN MATHS-IB 7-8 FIITJEE KUKATPALLY CENTRE: # -97, Plot No, Opp Ptel Kunt Hud Prk, Vijngr Colon, Hderbd - 5 7 Ph: -66 Regd

More information

TRIGONOMETRY INTRODUCTION. Objectives. SESSION 1-5 ANGLES A positive angle measures a rotation in an anticlockwise direction.

TRIGONOMETRY INTRODUCTION. Objectives. SESSION 1-5 ANGLES A positive angle measures a rotation in an anticlockwise direction. TRIGONOMETRY INTRODUCTION s the title of the unit suggests, it deals with the calculation of angles or the length of their sides. In this unit, the trigonometric ratios of acute angles, general angles

More information

Triangles The following examples explore aspects of triangles:

Triangles The following examples explore aspects of triangles: Tringles The following exmples explore spects of tringles: xmple 1: ltitude of right ngled tringle + xmple : tringle ltitude of the symmetricl ltitude of n isosceles x x - 4 +x xmple 3: ltitude of the

More information

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS PYTHGORS THEOREM,TRIGONOMETRY,ERINGS ND THREE DIMENSIONL PROLEMS 1.1 PYTHGORS THEOREM: 1. The Pythgors Theorem sttes tht the squre of the hypotenuse is equl to the sum of the squres of the other two sides

More information

3.1 Review of Sine, Cosine and Tangent for Right Angles

3.1 Review of Sine, Cosine and Tangent for Right Angles Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,

More information

STUDY PACKAGE. Subject : Mathematics Topic: Trigonometric Equation & Properties & Solution of Triangle ENJOY MATHEMA WITH

STUDY PACKAGE. Subject : Mathematics Topic: Trigonometric Equation & Properties & Solution of Triangle ENJOY MATHEMA WITH fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksMs rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksMs /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksmnklth

More information

JEE Advnced Mths Assignment Onl One Correct Answer Tpe. The locus of the orthocenter of the tringle formed the lines (+P) P + P(+P) = 0, (+q) q+q(+q) = 0 nd = 0, where p q, is () hperol prol n ellipse

More information

PROPERTIES OF TRIANGLES

PROPERTIES OF TRIANGLES PROPERTIES OF TRINGLES. RELTION RETWEEN SIDES ND NGLES OF TRINGLE:. tringle onsists of three sides nd three ngles lled elements of the tringle. In ny tringle,,, denotes the ngles of the tringle t the verties.

More information

US01CMTH02 UNIT Curvature

US01CMTH02 UNIT Curvature Stu mteril of BSc(Semester - I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT- 1 Curvture Let f : I R be sufficiently

More information

Set 1 Paper 2. 1 Pearson Education Asia Limited 2017

Set 1 Paper 2. 1 Pearson Education Asia Limited 2017 . A. A. C. B. C 6. A 7. A 8. B 9. C. D. A. B. A. B. C 6. D 7. C 8. B 9. C. D. C. A. B. A. A 6. A 7. A 8. D 9. B. C. B. D. D. D. D 6. D 7. B 8. C 9. C. D. B. B. A. D. C Section A. A (68 ) [ ( ) n ( n 6n

More information

MT - w A.P. SET CODE MT - w - MATHEMATICS (71) GEOMETRY- SET - A (E) Time : 2 Hours Preliminary Model Answer Paper Max.

MT - w A.P. SET CODE MT - w - MATHEMATICS (71) GEOMETRY- SET - A (E) Time : 2 Hours Preliminary Model Answer Paper Max. .P. SET CODE.. Solve NY FIVE of the following : (i) ( BE) ( BD) ( BE) ( BD) BE D 6 9 MT - w 07 00 - MT - w - MTHEMTICS (7) GEOMETRY- (E) Time : Hours Preliminary Model nswer Paper Max. Marks : 40 [Triangles

More information

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid hapter 6 asic triangle centers 6.1 The Euler line 6.1.1 The centroid Let E and F be the midpoints of and respectively, and G the intersection of the medians E and F. onstruct the parallel through to E,

More information

CONCURRENT LINES- PROPERTIES RELATED TO A TRIANGLE THEOREM The medians of a triangle are concurrent. Proof: Let A(x 1, y 1 ), B(x, y ), C(x 3, y 3 ) be the vertices of the triangle A(x 1, y 1 ) F E B(x,

More information

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2 SET I. If the locus of the point of intersection of perpendiculr tngents to the ellipse x circle with centre t (0, 0), then the rdius of the circle would e + / ( ) is. There re exctl two points on the

More information

+ R 2 where R 1. MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark)

+ R 2 where R 1. MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) 2. C h p t e r t G l n c e is the set of ll points in plne which re t constnt distnce from fixed point clled centre nd constnt distnce is known s rdius of circle. A tngent t ny point of circle is perpendiculr

More information

PARABOLA EXERCISE 3(B)

PARABOLA EXERCISE 3(B) PARABOLA EXERCISE (B). Find eqution of the tngent nd norml to the prbol y = 6x t the positive end of the ltus rectum. Eqution of prbol y = 6x 4 = 6 = / Positive end of the Ltus rectum is(, ) =, Eqution

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Drill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100.

Drill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100. Drill Exercise - 1 1 Find the coordintes of the vertices, foci, eccentricit nd the equtions of the directrix of the hperol 4x 5 = 100 Find the eccentricit of the hperol whose ltus-rectum is 8 nd conjugte

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time llowed Two hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions

More information

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet Ciro Governorte Nozh Directorte of Eduction Nozh Lnguge Schools Ismili Rod Deprtment : Mth Form : rd prep. Sheet Alg. Sheet () [] Find the vlues of nd in ech of the following if : ) (, ) ( -5, 9 ) ) (,

More information

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40 Maharashtra Board Class X Mathematics - Geometry Board Paper 04 Solution Time: hours Total Marks: 40 Note: - () All questions are compulsory. () Use of calculator is not allowed.. i. Ratio of the areas

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically. Liner Inequlities: Ech of the following crries five mrks ech:. Solve the system of equtions grphiclly. x + 2y 8, 2x + y 8, x 0, y 0 Solution: Considerx + 2y 8.. () Drw the grph for x + 2y = 8 by line.it

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, TECHNICAL MATHEMATICS- I (Common Except DCP and CABM)

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, TECHNICAL MATHEMATICS- I (Common Except DCP and CABM) TED (10)-1002 (REVISION-2010) Reg. No.. Signature. FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, 2010 TECHNICAL MATHEMATICS- I (Common Except DCP and CABM) (Maximum marks: 100)

More information

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1 1 Triangles: Basics This section will cover all the basic properties you need to know about triangles and the important points of a triangle.

More information

Solutions to RSPL/1. Mathematics 10

Solutions to RSPL/1. Mathematics 10 Solutions to RSPL/. It is given that 3 is a zero of f(x) x 3x + p. \ (x 3) is a factor of f(x). So, (3) 3(3) + p 0 8 9 + p 0 p 9 Thus, the polynomial is x 3x 9. Now, x 3x 9 x 6x + 3x 9 x(x 3) + 3(x 3)

More information

Actual Formula Test #1 Test #2 Formula. (x h) 2 + (y k) 2 = r 2 General equation of a circle

Actual Formula Test #1 Test #2 Formula. (x h) 2 + (y k) 2 = r 2 General equation of a circle Actul Formul Test # Test # Formul ( + b)( b + b ) 3 + b 3 = ( b)( + b + b ) 3 b 3 = x = b ± b 4c f(x) = f( x) f( x) = f(x) Qurtic Formul Test for even functions Test for o functions (x h) + (y k) = r Generl

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

A nest of Euler Inequalities

A nest of Euler Inequalities 31 nest of Euler Inequalities Luo Qi bstract For any given BC, we define the antipodal triangle. Repeating this construction gives a sequence of triangles with circumradii R n and inradii r n obeying a

More information

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A Time : hours 0 - Mthemtics - Mrch 007 Mrks : 100 Pg - 1 Instructions : 1. Answer ll questions.. Write your nswers ccording to the instructions given below with the questions.. Begin ech section on new

More information

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t A-PDF Wtermrk DEMO: Purchse from www.a-pdf.com to remove the wtermrk Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Functions Asolute Vlue Function Inverse Function If f ( x ), if f ( x ) 0 f ( x) y f

More information

The circumcircle and the incircle

The circumcircle and the incircle hapter 4 The circumcircle and the incircle 4.1 The Euler line 4.1.1 nferior and superior triangles G F E G D The inferior triangle of is the triangle DEF whose vertices are the midpoints of the sides,,.

More information

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS JEE(MAIN) 05 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 0 th APRIL, 05) PART B MATHEMATICS CODE-D. Let, b nd c be three non-zero vectors such tht no two of them re colliner nd, b c b c. If is the ngle

More information

3-Isoincircles Problem. Trigonometric Analysis of a Hard Sangaku Chalenge.

3-Isoincircles Problem. Trigonometric Analysis of a Hard Sangaku Chalenge. See discussions, stts, nd uthor profiles for this publiction t: https://www.reserchgte.net/publiction/300685 3-Isoincircles Problem. Trigonometric Anlysis of Hrd Sngku Chlenge. Article My 009 CITATIONS

More information

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES Lesson- TRIGONOMETRIC RATIOS AND IDENTITIES Angle in trigonometry In trigonometry, the measure of an angle is the amount of rotation from B the direction of one ray of the angle to the other ray. Angle

More information

Lesson-5 PROPERTIES AND SOLUTIONS OF TRIANGLES

Lesson-5 PROPERTIES AND SOLUTIONS OF TRIANGLES Leon-5 PROPERTIES ND SOLUTIONS OF TRINGLES Reltion etween the ide nd trigonometri rtio of the ngle of tringle In ny tringle, the ide, oppoite to the ngle, i denoted y ; the ide nd, oppoite to the ngle

More information

( β ) touches the x-axis if = 1

( β ) touches the x-axis if = 1 Generl Certificte of Eduction (dv. Level) Emintion, ugust Comined Mthemtics I - Prt B Model nswers. () Let f k k, where k is rel constnt. i. Epress f in the form( ) Find the turning point of f without

More information

PREVIOUS EAMCET QUESTIONS

PREVIOUS EAMCET QUESTIONS CENTRE OF MASS PREVIOUS EAMCET QUESTIONS ENGINEERING Two prticles A nd B initilly t rest, move towrds ech other, under mutul force of ttrction At n instnce when the speed of A is v nd speed of B is v,

More information

A LEVEL TOPIC REVIEW. factor and remainder theorems

A LEVEL TOPIC REVIEW. factor and remainder theorems A LEVEL TOPIC REVIEW unit C fctor nd reminder theorems. Use the Fctor Theorem to show tht: ) ( ) is fctor of +. ( mrks) ( + ) is fctor of ( ) is fctor of + 7+. ( mrks) +. ( mrks). Use lgebric division

More information

SUBJECT: MATHEMATICS ANSWERS: COMMON ENTRANCE TEST 2012

SUBJECT: MATHEMATICS ANSWERS: COMMON ENTRANCE TEST 2012 MOCK TEST 0 SUBJECT: MATHEMATICS ANSWERS: COMMON ENTRANCE TEST 0 ANSWERS. () π π Tke cos - (- ) then sin [ cos - (- )]sin [ ]/. () Since sin - + sin - y + sin - z π, -; y -, z - 50 + y 50 + z 50 - + +

More information

DEEPAWALI ASSIGNMENT CLASS 11 FOR TARGET IIT JEE 2012 SOLUTION

DEEPAWALI ASSIGNMENT CLASS 11 FOR TARGET IIT JEE 2012 SOLUTION DEEPAWALI ASSIGNMENT CLASS FOR TARGET IIT JEE 0 SOLUTION IMAGE OF SHRI GANESH LAXMI SARASWATI Director & H.O.D. IITJEE Mathematics SUHAG R. KARIYA (S.R.K. Sir) DOWNLOAD FREE STUDY PACKAGE, TEST SERIES

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes Quiz #1. Wednesday, 13 September. [10 minutes] 1. Suppose you are given a line (segment) AB. Using

More information

MH CET 2018 (QUESTION WITH ANSWER)

MH CET 2018 (QUESTION WITH ANSWER) ( P C M ) MH CET 8 (QUESTION WITH ANSWER). /.sec () + log () - log (3) + log () Ans. () - log MATHS () 3 c + c C C A cos + cos c + cosc + + cosa ( + cosc ) + + cosa c c ( + + ) c / / I tn - in sec - in

More information

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D . If * is the opertion defined by *b = b for, b N, then ( * ) * is equl to (A) 8 (B) 5 (C) 6 (D) 64 (E) 4. The domin of the function ( 9)/( ),if f( ) = is 6, if = (A) (0, ) (B) (-, ) (C) (-, ) (D) (, )

More information

Invention of the plane geometrical formulae - Part II

Invention of the plane geometrical formulae - Part II IOSR Journl of Mthemtics (IOSR-JM) e-issn: 78-578,p-ISSN: 319-765X, Volume 6, Issue 3 (My. - Jun. 013), PP 10-15 Invention of the plne geometricl formule - Prt II Mr. Stish M. Kple sst. Techer Mhtm Phule

More information

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

More information

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2 CIRCLE [STRAIGHT OBJECTIVE TYPE] Q. The line x y + = 0 is tangent to the circle at the point (, 5) and the centre of the circles lies on x y = 4. The radius of the circle is (A) 3 5 (B) 5 3 (C) 5 (D) 5

More information

Diophantine Steiner Triples and Pythagorean-Type Triangles

Diophantine Steiner Triples and Pythagorean-Type Triangles Forum Geometricorum Volume 10 (2010) 93 97. FORUM GEOM ISSN 1534-1178 Diophntine Steiner Triples nd Pythgoren-Type Tringles ojn Hvl bstrct. We present connection between Diophntine Steiner triples (integer

More information

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle. 6 CHAPTER We are Starting from a Point but want to Make it a Circle of Infinite Radius A plane figure bounded by three line segments is called a triangle We denote a triangle by the symbol In fig ABC has

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1 07 00 MT A.. Attempt ANY FIVE of the following : (i) Slope of the line (m) 5 intercept of the line (c) B slope intercept form, The equation of the line is m + c 5 () + ( ) 5 MT - GEOMETRY - SEMI PRELIM

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 2

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 2 07 00 MT MT - GEOMETRY - SEMI PRELIM - I : PAPER - Time : Hours Model Answer Paper Ma. Marks : 40 A.. Attempt ANY FIVE of the following : (i) Slope of the line (m) 4 intercept of the line (c) 3 B slope

More information

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1?

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1? 008 009 Log1 Contest Round Thet Individul Nme: points ech 1 Wht is the sum of the first Fiboncci numbers if the first two re 1, 1? If two crds re drwn from stndrd crd deck, wht is the probbility of drwing

More information

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin Circle and Cyclic Quadrilaterals MARIUS GHERGU School of Mathematics and Statistics University College Dublin 3 Basic Facts About Circles A central angle is an angle whose vertex is at the center of the

More information

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l Part Part P t Part Part Total A B C E 1 Mark 2 Marks 5 Marks M k 4 Marks CIRCLES 12 Marks approximately Definition ; A circle is defined as the locus of a point which moves such that its distance from

More information

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of Higher Mthemtics Ojective Test Prctice ook The digrm shows sketch of prt of the grph of f ( ). The digrm shows sketch of the cuic f ( ). R(, 8) f ( ) f ( ) P(, ) Q(, ) S(, ) Wht re the domin nd rnge of

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Year 12 Trial Examination Mathematics Extension 1. Question One 12 marks (Start on a new page) Marks

Year 12 Trial Examination Mathematics Extension 1. Question One 12 marks (Start on a new page) Marks THGS Mthemtics etension Tril 00 Yer Tril Emintion Mthemtics Etension Question One mrks (Strt on new pge) Mrks ) If P is the point (-, 5) nd Q is the point (, -), find the co-ordintes of the point R which

More information

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0 Q.No. The bisector of the acute angle between the lines x - 4y + 7 = 0 and x + 5y - = 0, is: Option x + y - 9 = 0 Option x + 77y - 0 = 0 Option x - y + 9 = 0 Correct Answer L : x - 4y + 7 = 0 L :-x- 5y

More information

An Introduction to Trigonometry

An Introduction to Trigonometry n Introduction to Trigonoetry First of ll, let s check out the right ngled tringle below. The LETTERS, B & C indicte the ngles nd the letters, b & c indicte the sides. c b It is iportnt to note tht side

More information

Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q5 of Paper 2 Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

MATHEMATICS CLASS : XI. 1. Trigonometric ratio identities & Equations Exercise Fundamentals of Mathematics - II Exercise 28-38

MATHEMATICS CLASS : XI. 1. Trigonometric ratio identities & Equations Exercise Fundamentals of Mathematics - II Exercise 28-38 CONTENT Preface MATHEMATICS CLASS : XI Page No.. Trigonometric ratio identities & Equations Eercise 0-7. Fundamentals of Mathematics - II Eercise 8-8. Straight Line Eercise 9-70 4. Circle Eercise 70-9

More information

LESSON 11: TRIANGLE FORMULAE

LESSON 11: TRIANGLE FORMULAE . THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.

More information

TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION. Contents. Theory Exercise Exercise Exercise Exercise

TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION. Contents. Theory Exercise Exercise Exercise Exercise TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION Contents Toic Pge No. Theory 0-08 Exercise - 09-9 Exercise - 0-8 Exercise - 9 - Exercise - - Answer Key - 7 Syllbus Trigonometric functions, their eriodicity

More information

SSC [PRE+MAINS] Mock Test 131 [Answer with Solution]

SSC [PRE+MAINS] Mock Test 131 [Answer with Solution] SS [PRE+MINS] Mock Test [nswe with Solution]. () Put 0 in the given epession we get, LHS 0 0. () Given. () Putting nd b in b + bc + c 0 we get, + c 0 c /, b, c / o,, b, c. () bc b c c b 0. b b b b nd hee,

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

More information

Figure 1: Problem 1 diagram. Figure 2: Problem 2 diagram

Figure 1: Problem 1 diagram. Figure 2: Problem 2 diagram Geometry A Solutions 1. Note that the solid formed is a generalized cylinder. It is clear from the diagram that the area of the base of this cylinder (i.e., a vertical cross-section of the log) is composed

More information

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y LOCUS 50 Section - 4 NORMALS Consider n ellipse. We need to find the eqution of the norml to this ellipse t given point P on it. In generl, we lso need to find wht condition must e stisfied if m c is to

More information

Time : 2 Hours Preliminary Model Answer Paper Max. Marks : 40. [Given] [Taking square roots]

Time : 2 Hours Preliminary Model Answer Paper Max. Marks : 40. [Given] [Taking square roots] .P. SET CODE MT - w 05 00 - MT - w - MTHEMTICS (7) GEOMETRY - (E) Time : Hours Preliminary Model nswer Paper Max. Marks : 40.. ttempt NY FIVE of the following : (i) BC ~ PQ [Given] ( BC) ( PQ) BC PQ [reas

More information

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS 6. CONCEPTS FOR ADVANCED MATHEMATICS, C (475) AS Objectives To introduce students to number of topics which re fundmentl to the dvnced study of mthemtics. Assessment Emintion (7 mrks) 1 hour 30 minutes.

More information

MT - MATHEMATICS (71) GEOMETRY - PRELIM II - PAPER - 6 (E)

MT - MATHEMATICS (71) GEOMETRY - PRELIM II - PAPER - 6 (E) 04 00 Seat No. MT - MTHEMTIS (7) GEOMETRY - PRELIM II - (E) Time : Hours (Pages 3) Max. Marks : 40 Note : ll questions are compulsory. Use of calculator is not allowed. Q.. Solve NY FIVE of the following

More information

Prerequisite Knowledge Required from O Level Add Math. d n a = c and b = d

Prerequisite Knowledge Required from O Level Add Math. d n a = c and b = d Prerequisite Knowledge Required from O Level Add Mth ) Surds, Indices & Logrithms Rules for Surds. b= b =. 3. 4. b = b = ( ) = = = 5. + b n = c+ d n = c nd b = d Cution: + +, - Rtionlising the Denomintor

More information

MATHEMATICS PAPER IA. Note: This question paper consists of three sections A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS.

MATHEMATICS PAPER IA. Note: This question paper consists of three sections A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. MATHEMATICS PAPER IA TIME : hrs Mx. Mrks.75 Note: This question pper consists of three sections A,B nd C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0. If A = {,, 0,, } nd f : A B is surjection defined

More information

Well Centered Spherical Quadrangles

Well Centered Spherical Quadrangles Beiträge zur Algebr und Geometrie Contributions to Algebr nd Geometry Volume 44 (003), No, 539-549 Well Centered Sphericl Qudrngles An M d Azevedo Bred 1 Altino F Sntos Deprtment of Mthemtics, University

More information

Solved Paper SSC Maharashtra Exam March 207 Class - X Geometry Time : 2 Hours Max. Marks : 40 Note : (i) Solve all questions. Draw diagrams wherever necessary. (ii) Use of calculator is not allowed. (iii)

More information

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6

Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6 Form HK 9 Mthemtics II.. ( n ) =. 6n. 8n. n 6n 8n... +. 6.. f(). f(n). n n If = 0 p, = 0 q, epress log 6 in terms of p nd q.. p q. pq. p q pq p + q Let > b > 0. If nd b re respectivel the st nd nd terms

More information

Lesson Notes: Week 40-Vectors

Lesson Notes: Week 40-Vectors Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples

More information

4037 ADDITIONAL MATHEMATICS

4037 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinry Level MARK SCHEME for the October/November 0 series 07 ADDITIONAL MATHEMATICS 07/ Pper, mximum rw mrk 80 This mrk scheme is published s n id to techers

More information