Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4"

Transcription

1 Semnti nlysis SI 16 Priniples of Progrmming Lnguges Fulty of omputer Siene Dlhousie University Winter 2012 Reding: hpter 4

2 Motivtion Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree Prser (syntti nlysis) Token strem k end Modified intermedite form Modified trget lnguge Semnti nlysis nd ode genertion Mhine-independent ode improvement Trget ode genertion Mhine-speifi ode improvement strt syntx tree or other intermedite form Trget lnguge (e.g., ssemly) Symol tle Semnti nlysis

3 Syntx nd Semntis Syntx Desries form of vlid progrm n e desried y ontext-free grmmr Semntis Desries mening of progrm nnot e e desried y ontext-free grmmr Some onstrints tht my pper syntti re enfored y semnti nlysis: E.g., use of identifier only fter its delrtion Semnti nlysis

4 Semnti nlysis Enfores semnti rules uilds intermedite representtion (e.g., strt syntx tree) Fills symol tle Psses results to intermedite ode genertor Two pprohes Interleved with syntti nlysis s seprte phse Forml mehnism: ttriutes grmmrs Semnti nlysis

5 Enforing Semnti Rules Stti semnti rules Enfored y ompiler t ompile time Exmple: Do not use undelred vrile Dynmi semnti rules ompiler genertes ode for enforement t run time Exmples: division y zero, rry index out of ounds Some ompilers llow these heks to e disled Semnti nlysis

6 ttriute Grmmrs n ttriute grmmr is n ugmented ontext-free grmmr: Eh symol in prodution hs numer of ttriutes. Eh prodution is ugmented with semnti rules tht opy ttriute vlues etween symols, Evlute ttriute vlues using semnti funtions, Enfore onstrints on ttriute vlues. Semnti nlysis

7 ttriute Grmmrs: Exmple E E + T E E - T E T T T * F T T / F T F F -F F ( E ) F onst Semnti nlysis

8 ttriute Grmmrs: Exmple E E + T E E - T E T T T * F T T / F T F F -F F ( E ) E 1 E 2 + T E 1 E 2 - T E T T 1 T 2 * F T 1 T 2 / F T F F 1 -F 2 F ( E ) F onst F onst E 1.vl := sum(e 2.vl, T.vl) E 1.vl := differene(e 2.vl, T.vl) E.vl := T.vl T 1.vl := produt(t 2.vl, F.vl) T 1.vl := quotient(t 2.vl, F.vl) T.vl := F.vl F 1.vl := negte(f 2.vl) F.vl := E.vl F.vl := onst.vl Semnti nlysis

9 Synthesized ttriutes (ottom-up) The lnguge { n n n n 1} = {,,,... } is not ontext-free ut n e reognized y n ttriute grmmr. Synthesized ttriutes: ttriutes of LHS re omputed from ttriutes of RHS. S ondition:.ount =.ount =.ount.ount := ount := 2.ount + 1.ount := ount := 2.ount + 1.ount := ount := 2.ount + 1 Semnti nlysis

10 Synthesized ttriutes: Prse Tree Deortion (1) Input: Prse tree S Semnti nlysis

11 Synthesized ttriutes: Prse Tree Deortion (1) Input: Prse tree S = = Semnti nlysis

12 Synthesized ttriutes: Prse Tree Deortion (2) Input: Prse tree S Semnti nlysis

13 Synthesized ttriutes: Prse Tree Deortion (2) Input: Prse tree S Semnti nlysis

14 Inherited ttriutes (Top-Down) Inherited ttriutes: ttriutes flow from left to right (from LHS to RHS nd from symols of RHS to symols of RHS further to the right). S.inhount :=.ount;.inhount :=.ount.ount := ount := 2.ount + 1 ondition:.inhount = inhount := 1.inhount 1 ondition:.inhount := inhount := 1.inhount 1 Semnti nlysis

15 Inherited ttriutes: Prse Tree Deortion (1) Input: Prse tree S Semnti nlysis

16 Inherited ttriutes: Prse Tree Deortion (1) Input: Prse tree S = 1 1 = 1 Semnti nlysis

17 Inherited ttriutes: Prse Tree Deortion (2) Input: Prse tree S Semnti nlysis

18 Inherited ttriutes: Prse Tree Deortion (2) Input: Prse tree S = 1 Semnti nlysis

19 ttriute Flow nnottion or deortion of prse tree Proess of evluting ttriutes Synthesized ttriutes ttriutes of LHS of prodution re omputed from ttriutes of the symols in its RHS. ttriutes flow ottom-up in the prse tree. Inherited ttriutes ttriutes for symols in RHS re omputed from ttriutes of LHS nd symols in RHS preeding them. ttriutes flow top-down in the prse tree. Semnti nlysis

20 S-ttriuted nd L-ttriuted Grmmrs S-ttriuted grmmr ll ttriutes re synthesized. ttriutes flow ottom-up. L-ttriuted grmmr For eh prodution X Y 1 Y 2... Y k, X.syn depends on X.inh nd Y 1.inh, Y 1.syn, Y 2.inh, Y 2.syn,..., Y k.inh, Y k.syn. For ll 1 i k, Y i.inh depends on X.inh nd Y 1.inh, Y 1.syn, Y 2.inh, Y 2.syn,..., Y i 1.inh, Y i 1.syn. S-ttriuted grmmrs re speil se of L-ttriuted grmmrs. Semnti nlysis

21 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs simple grmmr for rithmeti expressions using only ddition nd sutrtion = (10 ) + 5 = ( + 5) = 2 Semnti nlysis

22 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs simple grmmr for rithmeti expressions using only ddition nd sutrtion E T E ET = (10 ) + 5 = ( + 5) = 2 T n + - E E T E T + 5 T - 10 Semnti nlysis

23 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs simple grmmr for rithmeti expressions using only ddition nd sutrtion E T E ET = (10 ) + 5 = ( + 5) = 2 T n + - E E T E T + 5 T - 10 This grmmr ptures left-ssoitivity. Semnti nlysis

24 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs simple grmmr for rithmeti expressions using only ddition nd sutrtion E T E ET = (10 ) + 5 = ( + 5) = 2 T n + - E 7 E 12 dd T 5 E 10 su T T This grmmr ptures left-ssoitivity. Semnti nlysis

25 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs simple grmmr for rithmeti expressions using only ddition nd sutrtion E T E ET = (10 ) + 5 = ( + 5) = 2 T n + - E 7 E 12 dd T 5 Rule R PREDIT(R) E T su T E T E ET T n + - {n} {n} {n} {+} {-} This grmmr ptures left-ssoitivity. It is not LL(1). Semnti nlysis

26 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs n LL(1) grmmr for the sme lnguge E T E $ E ɛ E 1 T E 2 T n + - Rule R E T E $ {n} E 2.op :=.fun(e E 1.op, T.vl); ɛ E 1.vl {$} := E 2.vl E T E {+,-} T n + - PREDIT(R) {n} {+} {-} Semnti nlysis

27 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs n LL(1) grmmr for the sme lnguge E T E $ E ɛ E 1 T E 2 T n + - Rule R E T E $ {n} E 2.op :=.fun(e E 1.op, T.vl); ɛ E 1.vl {$} := E 2.vl E T E {+,-} T n + - PREDIT(R) {n} {+} {-} E T E $ 10 T E - T E + 5 ɛ Semnti nlysis

28 LL(1) Prsing, Left-ssoitivity, nd L-ttriuted Grmmrs n LL(1) grmmr for the sme lnguge E T E $ E ɛ E 1 T E 2 T n + - E.op := T.vl; E.vl := E.vl E.vl := E.op E 2.op :=.fun(e 1.op, T.vl); E 1.vl := E 2.vl T.vl := n.vl.fun := dd.fun := su E T E $ su T 7 E 12 - dd T 5 12 E ɛ Semnti nlysis

29 tion Routines tion routines re instrutions for d-ho trnsltion interleved with prsing. Prser genertors llow progrmmers to speify tion routines in the grmmr. tion routines n pper nywhere in rule (s long s the grmmr is LL(1)). Exmple E 1 T { E 2.op =.fun(e 1.op, T.vl) } E 2 { E 1.vl = E 2.vl } tion routines re supported, for exmple, in y nd ison. Semnti nlysis

SEMANTIC ANALYSIS PRINCIPLES OF PROGRAMMING LANGUAGES. Norbert Zeh Winter Dalhousie University 1/28

SEMANTIC ANALYSIS PRINCIPLES OF PROGRAMMING LANGUAGES. Norbert Zeh Winter Dalhousie University 1/28 SEMNTI NLYSIS PRINIPLES OF PROGRMMING LNGUGES Norbert Zeh Winter 2018 Dlhousie University 1/28 PROGRM TRNSLTION FLOW HRT Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree Prser (syntti

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages C 314 Principles of Progrmming Lnguges Lecture 6: LL(1) Prsing Zheng (Eddy) Zhng Rutgers University Ferury 5, 2018 Clss Informtion Homework 2 due tomorrow. Homework 3 will e posted erly next week. 2 Top

More information

CS241 Week 6 Tutorial Solutions

CS241 Week 6 Tutorial Solutions 241 Week 6 Tutoril olutions Lnguges: nning & ontext-free Grmmrs Winter 2018 1 nning Exerises 1. 0x0x0xd HEXINT 0x0 I x0xd 2. 0xend--- HEXINT 0xe I nd ER -- MINU - 3. 1234-120x INT 1234 INT -120 I x 4.

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

FABER Formal Languages, Automata and Models of Computation

FABER Formal Languages, Automata and Models of Computation DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

More information

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch.

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch. Overview H9 Vertlerouw H 9: Prsing: op-down & LL(1) do 3 mei 2001 56 heo Ruys h. 8 - Prsing 8.1 ontext-free Grmmrs 8.2 op-down Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough

More information

Bottom-Up Parsing. Canonical Collection of LR(0) items. Part II

Bottom-Up Parsing. Canonical Collection of LR(0) items. Part II 2 ottom-up Prsing Prt II 1 Cnonil Colletion of LR(0) items CC_LR(0)_I items(g :ugmented_grmmr){ C = {CLOURE({ })} ; repet{ foreh(i C) foreh(grmmr symol X) if(goto(i,x) && GOTO(I,X) C) C = C {GOTO(I,X)};

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

CSE 401 Compilers. Today s Agenda

CSE 401 Compilers. Today s Agenda CSE 401 Compilers Leture 3: Regulr Expressions & Snning, on?nued Mihel Ringenurg Tody s Agend Lst?me we reviewed lnguges nd grmmrs, nd riefly strted disussing regulr expressions. Tody I ll restrt the regulr

More information

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 9 1. (4pts) ((p q) (q r)) (p r), prove tutology using truth tles. p

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

Parsing and Pattern Recognition

Parsing and Pattern Recognition Topics in IT Prsing nd Pttern Recognition Week Context-Free Prsing College of Informtion Science nd Engineering Ritsumeikn University this week miguity in nturl lnguge in mchine lnguges top-down, redth-first

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 2 1. Prove ((( p q) q) p) is tutology () (3pts) y truth tle. p q p q

More information

2.4 Theoretical Foundations

2.4 Theoretical Foundations 2 Progrmming Lnguge Syntx 2.4 Theoretil Fountions As note in the min text, snners n prsers re se on the finite utomt n pushown utomt tht form the ottom two levels of the Chomsky lnguge hierrhy. At eh level

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

Normal Forms for Context-free Grammars

Normal Forms for Context-free Grammars Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Compiler Design. Spring Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Spring Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz University of Southern Cliforni Computer Siene Deprtment Compiler Design Spring 7 Lexil Anlysis Smple Exerises nd Solutions Prof. Pedro C. Diniz USC / Informtion Sienes Institute 47 Admirlty Wy, Suite

More information

Formal Languages Simplifications of CFGs

Formal Languages Simplifications of CFGs Forml Lnguges implifictions of CFGs ubstitution Rule Equivlent grmmr b bc ubstitute b bc bbc b 2 ubstitution Rule b bc bbc ubstitute b bc bbc bc Equivlent grmmr 3 In generl: xz y 1 ubstitute y 1 xz xy1z

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

The transformation to right derivation is called the canonical reduction sequence. Bottom-up analysis

The transformation to right derivation is called the canonical reduction sequence. Bottom-up analysis Bottom-up nlysis Shift-reduce prsing. Constructs the derivtion tree from ottom to top. Reduces the string to the strt symol. Produces reverse right derivtion. Exmple: G(E): 1. E E + T 2. T 3. T T * F 4.

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

arxiv: v2 [cs.lo] 24 Feb 2017

arxiv: v2 [cs.lo] 24 Feb 2017 Lol Lexing teven Ou University of dinurgh steven.ou@gmil.om Phil ott University of dinurgh phil.sott@ed..u Jques Fleuriot University of dinurgh jdf@inf.ed..u rxiv:1702.03277v2 [s.lo] 24 Fe 2017 strt We

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

SWEN 224 Formal Foundations of Programming WITH ANSWERS

SWEN 224 Formal Foundations of Programming WITH ANSWERS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Time Allowed: 3 Hours EXAMINATIONS 2011 END-OF-YEAR SWEN 224 Forml Foundtions of Progrmming

More information

Prefix-Free Regular-Expression Matching

Prefix-Free Regular-Expression Matching Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

Memory Minimization for Tensor Contractions using Integer Linear Programming.

Memory Minimization for Tensor Contractions using Integer Linear Programming. Memory Minimiztion for Tensor Contrtions using Integer Liner Progrmming A. Allm 1, J. Rmnujm 1, G. Bumgrtner 2, nd P. Sdyppn 3 1 Deprtment of Eletril nd Computer Engineering, Louisin Stte University, USA

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1 ELETRIL ND OMPUTER ENGINEERING DEPRTMENT, OKLND UNIVERSIT EE-78: omputer Hrdwre Design Winter 016 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl systems. It dels with the cse where vriles ssume only one o two vlues: TRUE (usully represented

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints) C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

More information

BİL 354 Veritabanı Sistemleri. Relational Algebra (İlişkisel Cebir)

BİL 354 Veritabanı Sistemleri. Relational Algebra (İlişkisel Cebir) BİL 354 Veritnı Sistemleri Reltionl lger (İlişkisel Ceir) Reltionl Queries Query lnguges: llow mnipultion nd retrievl of dt from dtse. Reltionl model supports simple, powerful QLs: Strong forml foundtion

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1 ELETRIL ND OMPUTER ENGINEERING DEPRTMENT, OKLND UNIVERSIT EE-700: Digitl Logic Design ll 017 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl systems.

More information

TIME AND STATE IN DISTRIBUTED SYSTEMS

TIME AND STATE IN DISTRIBUTED SYSTEMS Distriuted Systems Fö 5-1 Distriuted Systems Fö 5-2 TIME ND STTE IN DISTRIUTED SYSTEMS 1. Time in Distriuted Systems Time in Distriuted Systems euse eh mhine in distriuted system hs its own lok there is

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

@#? Text Search ] { "!" Nondeterministic Finite Automata. Transformation NFA to DFA and Simulation of NFA. Text Search Using Automata

@#? Text Search ] { ! Nondeterministic Finite Automata. Transformation NFA to DFA and Simulation of NFA. Text Search Using Automata g Text Serh @#? ~ Mrko Berezovský Rdek Mřík PAL 0 Nondeterministi Finite Automt n Trnsformtion NFA to DFA nd Simultion of NFA f Text Serh Using Automt A B R Power of Nondeterministi Approh u j Regulr Expression

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd T. vn Lrhoven Institute for Computing nd Informtion Sciences Intelligent

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering Petri Nets Ree Alreht Seminr: Automt Theory Chir of Softwre Engeneering Overview 1. Motivtion: Why not just using finite utomt for everything? Wht re Petri Nets nd when do we use them? 2. Introdution:

More information

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines CI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 16: Non-Context-Free Lnguges Chpter 16: Non-Context-Free Lnguges I. Theory of utomt II. Theory of Forml Lnguges III. Theory of Turing Mchines

More information

CSCI565 - Compiler Design

CSCI565 - Compiler Design CSCI565 - Compiler Deign Spring 6 Due Dte: Fe. 5, 6 t : PM in Cl Prolem [ point]: Regulr Expreion nd Finite Automt Develop regulr expreion (RE) tht detet the longet tring over the lphet {-} with the following

More information

= state, a = reading and q j

= state, a = reading and q j 4 Finite Automt CHAPTER 2 Finite Automt (FA) (i) Derterministi Finite Automt (DFA) A DFA, M Q, q,, F, Where, Q = set of sttes (finite) q Q = the strt/initil stte = input lphet (finite) (use only those

More information

Test Generation from Timed Input Output Automata

Test Generation from Timed Input Output Automata Chpter 8 Test Genertion from Timed Input Output Automt The purpose of this hpter is to introdue tehniques for the genertion of test dt from models of softwre sed on vrints of timed utomt. The tests generted

More information

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9. Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

More information

Alpha Algorithm: A Process Discovery Algorithm

Alpha Algorithm: A Process Discovery Algorithm Proess Mining: Dt Siene in Ation Alph Algorithm: A Proess Disovery Algorithm prof.dr.ir. Wil vn der Alst www.proessmining.org Proess disovery = Ply-In Ply-In event log proess model Ply-Out Reply proess

More information

Refined interfaces for compositional verification

Refined interfaces for compositional verification Refined interfces for compositionl verifiction Frédéric Lng INRI Rhône-lpes http://www.inrilpes.fr/vsy Motivtion Enumertive verifiction of concurrent systems Prllel composition of synchronous processes

More information

XML and Databases. Outline. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths

XML and Databases. Outline. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths Outline Leture Effiient XPth Evlution XML n Dtses. Top-Down Evlution of simple pths. Noe Sets only: Core XPth. Bottom-Up Evlution of Core XPth. Polynomil Time Evlution of Full XPth Sestin Mneth NICTA n

More information

Digital Circuit Design

Digital Circuit Design 2017-10-11 0 Introdution Digitl Ciruit Design Eri Hehner University of Toronto The word iruit is relted to the word irle. It ws used to desrie losed eletril pth tht goes from one end of n eletril ttery,

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

Cyclic Inputs. Surface Generation (Part II) Ambiguity-preserving Generation. Ambiguity-preserving Generation. Ambiguity-preserving Generation

Cyclic Inputs. Surface Generation (Part II) Ambiguity-preserving Generation. Ambiguity-preserving Generation. Ambiguity-preserving Generation Cyli Inputs The set of strings tht grmmr reltes to yli input struture might e non-ontext-free Surfe Genertion (Prt II) Amiguity-preserving Genertion Amiguity-preserving Genertion Motivtion Motivtion ()

More information

AVL Trees. D Oisín Kidney. August 2, 2018

AVL Trees. D Oisín Kidney. August 2, 2018 AVL Trees D Oisín Kidne August 2, 2018 Astrt This is verified implementtion of AVL trees in Agd, tking ides primril from Conor MBride s pper How to Keep Your Neighours in Order [2] nd the Agd stndrd lirr

More information

Languages and Computation (G52LAC) Lecture notes Spring 2018

Languages and Computation (G52LAC) Lecture notes Spring 2018 Lnguges nd Computtion (G52LAC) Leture notes Spring 28 Thorsten Altenkirh, Vennzio Cprett, nd Henrik Nilsson Contents Ferury 2, 28 Introdution 4. Exmple: Vlid Jv progrms................... 4.2 Exmple: The

More information

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

More information

NFAs continued, Closure Properties of Regular Languages

NFAs continued, Closure Properties of Regular Languages lgorithms & Models of omputtion S/EE 374, Spring 209 NFs continued, losure Properties of Regulr Lnguges Lecture 5 Tuesdy, Jnury 29, 209 Regulr Lnguges, DFs, NFs Lnguges ccepted y DFs, NFs, nd regulr expressions

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 330 Forml Methods nd Models Dn Richrds, section 003, George Mson University, Fll 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 7 1. Prove (p q) (p q), () (5pts) using truth tles. p q

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 0 Forml Methods nd Models Dn Richrds, George Mson University, Fll 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 8 1. Prove q (q p) p q p () (4pts) with truth tle. p q p q p (q p) p q

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

More information

Thoery of Automata CS402

Thoery of Automata CS402 Thoery of Automt C402 Theory of Automt Tle of contents: Lecture N0. 1... 4 ummry... 4 Wht does utomt men?... 4 Introduction to lnguges... 4 Alphets... 4 trings... 4 Defining Lnguges... 5 Lecture N0. 2...

More information

3 Regular expressions

3 Regular expressions 3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll

More information

Table of contents: Lecture N Summary... 3 What does automata mean?... 3 Introduction to languages... 3 Alphabets... 3 Strings...

Table of contents: Lecture N Summary... 3 What does automata mean?... 3 Introduction to languages... 3 Alphabets... 3 Strings... Tle of contents: Lecture N0.... 3 ummry... 3 Wht does utomt men?... 3 Introduction to lnguges... 3 Alphets... 3 trings... 3 Defining Lnguges... 4 Lecture N0. 2... 7 ummry... 7 Kleene tr Closure... 7 Recursive

More information

2. Lexical Analysis. Oscar Nierstrasz

2. Lexical Analysis. Oscar Nierstrasz 2. Lexicl Anlysis Oscr Nierstrsz Thnks to Jens Plserg nd Tony Hosking for their kind permission to reuse nd dpt the CS132 nd CS502 lecture notes. http://www.cs.ucl.edu/~plserg/ http://www.cs.purdue.edu/homes/hosking/

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

Some Theory of Computation Exercises Week 1

Some Theory of Computation Exercises Week 1 Some Theory of Computtion Exercises Week 1 Section 1 Deterministic Finite Automt Question 1.3 d d d d u q 1 q 2 q 3 q 4 q 5 d u u u u Question 1.4 Prt c - {w w hs even s nd one or two s} First we sk whether

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

NFAs continued, Closure Properties of Regular Languages

NFAs continued, Closure Properties of Regular Languages Algorithms & Models of Computtion CS/ECE 374, Fll 2017 NFAs continued, Closure Properties of Regulr Lnguges Lecture 5 Tuesdy, Septemer 12, 2017 Sriel Hr-Peled (UIUC) CS374 1 Fll 2017 1 / 31 Regulr Lnguges,

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Nme Dte hpter 9 Mintining Mthemtil Profiieny Simplify the epression. 1. 500. 189 3. 5 4. 4 3 5. 11 5 6. 8 Solve the proportion. 9 3 14 7. = 8. = 9. 1 7 5 4 = 4 10. 0 6 = 11. 7 4 10 = 1. 5 9 15 3 = 5 +

More information

XML and Databases. Exam Preperation Discuss Answers to last year s exam. Sebastian Maneth NICTA and UNSW

XML and Databases. Exam Preperation Discuss Answers to last year s exam. Sebastian Maneth NICTA and UNSW XML n Dtses Exm Prepertion Disuss Answers to lst yer s exm Sestin Mneth NICTA n UNSW CSE@UNSW -- Semester 1, 2008 (1) For eh of the following, explin why it is not well-forme XML (is WFC or the XML grmmr

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER LANGUAGES AND COMPUTATION ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER LANGUAGES AND COMPUTATION ANSWERS The University of Nottinghm SCHOOL OF COMPUTER SCIENCE LEVEL 2 MODULE, SPRING SEMESTER 2016 2017 LNGUGES ND COMPUTTION NSWERS Time llowed TWO hours Cndidtes my complete the front cover of their nswer ook

More information

Vectors. a Write down the vector AB as a column vector ( x y ). A (3, 2) x point C such that BC = 3. . Go to a OA = a

Vectors. a Write down the vector AB as a column vector ( x y ). A (3, 2) x point C such that BC = 3. . Go to a OA = a Streth lesson: Vetors Streth ojetives efore you strt this hpter, mrk how onfident you feel out eh of the sttements elow: I n lulte using olumn vetors nd represent the sum nd differene of two vetors grphilly.

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Review for the Midterm

Review for the Midterm Review for the Midterm Stephen A. Edwrds Columi University Fll 2018 The Midterm Structure of Compiler Scnning Lnguges nd Regulr Expressions NFAs Trnslting REs into NFAs: Thompson s Construction Building

More information

Regular languages refresher

Regular languages refresher Regulr lnguges refresher 1 Regulr lnguges refresher Forml lnguges Alphet = finite set of letters Word = sequene of letter Lnguge = set of words Regulr lnguges defined equivlently y Regulr expressions Finite-stte

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

Greedy regular expression matching

Greedy regular expression matching Alin Frisch INRIA Luc Crdelli MSRC 2004-05-15 ICALP The mtching prolem The prolem Project the structure of regulr expression on flt sequence. R = ( ) w = 1 2 1 2 3 v = [1 : [ 1 ; 2 ]; 2 : 1 ; 2 : 2 ; 1

More information

q 2 in δ 2. [4: 1 mark q 1 in δ 1 and q 2 and (q 1, q 2 ) (q 1, q 2) whenever q 1 for each component] (b) The resulting DFA:

q 2 in δ 2. [4: 1 mark q 1 in δ 1 and q 2 and (q 1, q 2 ) (q 1, q 2) whenever q 1 for each component] (b) The resulting DFA: Module Title: Informtics 2A Exm Diet (Dec/April/Aug): Aug 2015 Brief notes on nswers: 1. () Lexing: The input is progrm text [1].The output is strem of lexemes pired with their lexicl clsses [1]. For exmple

More information

Review: The Riemann Integral Review: The definition of R b

Review: The Riemann Integral Review: The definition of R b eview: The iemnn Integrl eview: The definition of b f (x)dx. For ontinuous funtion f on the intervl [, b], Z b f (x) dx lim mx x i!0 nx i1 f (x i ) x i. This limit omputes the net (signed) re under the

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.6.: Push Down Automt Remrk: This mteril is no longer tught nd not directly exm relevnt Anton Setzer (Bsed

More information

CHAPTER 1 PROGRAM OF MATRICES

CHAPTER 1 PROGRAM OF MATRICES CHPTER PROGRM OF MTRICES -- INTRODUCTION definition of engineering is the science y which the properties of mtter nd sources of energy in nture re mde useful to mn. Thus n engineer will hve to study the

More information

Chapter 8 Roots and Radicals

Chapter 8 Roots and Radicals Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi

More information

A Functorial Query Language

A Functorial Query Language A Funtoril Query Lnguge Ryn Wisnesky, Dvid Spivk Deprtment of Mthemtis Msshusetts Institute of Tehnology {wisnesky, dspivk}@mth.mit.edu Presented t Boston Hskell April 16, 2014 Outline Introdution to FQL.

More information

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir CSCI 2400 Models of Computtion, Section 3 Solutions to Homework 4 Problem 1. ll the solutions below refer to the Pumping Lemm of Theorem 4.8, pge 119. () L = f n b l k : k n + lg Let's ssume for contrdiction

More information

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines CI 3104 /Winter 2011: Introduction to Forml Lnguges Chter 13: Grmmticl Formt Chter 13: Grmmticl Formt I. Theory of Automt II. Theory of Forml Lnguges III. Theory of Turing Mchines Dr. Neji Zgui CI3104-W11

More information

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy:

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy: Scnner Specifying ptterns source code tokens scnner prser IR A scnner must recognize the units of syntx Some prts re esy: errors mps chrcters into tokens the sic unit of syntx x = x + y; ecomes

More information

Lecture 09: Myhill-Nerode Theorem

Lecture 09: Myhill-Nerode Theorem CS 373: Theory of Computtion Mdhusudn Prthsrthy Lecture 09: Myhill-Nerode Theorem 16 Ferury 2010 In this lecture, we will see tht every lnguge hs unique miniml DFA We will see this fct from two perspectives

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007

ENGR 3861 Digital Logic Boolean Algebra. Fall 2007 ENGR 386 Digitl Logi Boole Alger Fll 007 Boole Alger A two vlued lgeri system Iveted y George Boole i 854 Very similr to the lger tht you lredy kow Sme opertios ivolved dditio sutrtio multiplitio Repled

More information

arxiv: v1 [cs.fl] 13 Oct 2010

arxiv: v1 [cs.fl] 13 Oct 2010 Regulr Expressions, u point Andre Asperti Deprtment of Computer Siene, University of Bologn Mur Anteo Zmoni 7, 40127, Bologn, ITALY sperti@s.unio.it Cludio Serdoti Coen Deprtment of Computer Siene, University

More information