Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)


 Sharon Garrison
 1 years ago
 Views:
Transcription
1 Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne)
2 Grph Stte: Introdution A grphsed representtion of the entnglement of some (lrge) quntum stte. Verties: quits Edges: entnglement etween the quits Grph Sttes p.1
3 Grph Sttes Introdution Complexity of grph stte preprtion Grph Sttes p.2
4 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then Grph Sttes p.3
5 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then in pplying, for eh edge etween two quits nd, the unitry trnsformtion C Z on the quits nd C Z = = Grph Sttes p.4
6 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then in pplying, for eh edge etween two quits nd, the unitry trnsformtion C Z on the quits nd. Grph Sttes p.5
7 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then in pplying, for eh edge etween two quits nd, the unitry trnsformtion C Z on the quits nd. Grph Sttes p.6
8 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then in pplying, for eh edge etween two quits nd, the unitry trnsformtion C Z on the quits nd. Grph Sttes p.7
9 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then in pplying, for eh edge etween two quits nd, the unitry trnsformtion C Z on the quits nd. Grph Sttes p.8
10 A Construtive Definition For given grph G, preprtion of the orresponding grph stte G onsists: in ssoiting with eh vertex quit in the stte = 0 1 2, then in pplying, for eh edge etween two quits nd, the unitry trnsformtion C Z on the quits nd. G Grph Sttes p.9
11 Entnglement Property: Two quntum sttes "hve the sme entnglement" iff they re LUequivlent. Definition [LUequivlene] : φ LU ψ iff there exists lol unitry trnsformtion U (i.e U = U 1... U n, where eh U i is 1quit unitry) suh tht φ = U ψ. Definition [LCequivlene] : φ LC ψ iff there exists lol Clifford trnsformtion C (i.e. C = C 1... C n, where C i H,S ) suh tht φ = C ψ. Grph Sttes p.10
12 Properties Grphsed representtion of entnglement is not unique: G,G / G LU G nd G G LU Grph Sttes p.11
13 Properties Conjeture: G LU G G LC G Theorem [Vn den Nest, 2004]: G LC G iff there exists sequene of lol omplementtions whih trnsforms G into G. Lol Complementtion ording to : G = G K N() Grph Sttes p.12
14 Properties Conjeture: G LU G G LC G Theorem [Vn den Nest, 2004]: G LC G iff there exists sequene of lol omplementtions whih trnsforms G into G. Lol Complementtion ording to : G = G K N() Grph Sttes p.13
15 Properties Conjeture: G LU G G LC G Theorem [Vn den Nest, 2004]: G LC G iff there exists sequene of lol omplementtions whih trnsforms G into G. Lol Complementtion ording to : G = G K N() Grph Sttes p.14
16 Properties Conjeture: G LU G G LC G Theorem [Vn den Nest, 2004]: G LC G iff there exists sequene of lol omplementtions whih trnsforms G into G. Lol Complementtion ording to : G = G K N() Grph Sttes p.15
17 Clss of equivlene d d d d Grph Sttes p.16
18 Miniml degree under lo. ompl. Definition [Miniml Degree]: For given grph G = (V,E), δ(g) = min v V δ(v) Definition [Miniml Degree under Lol Complementtion]:. δ lo (G) = min G LC G δ(g ) Grph Sttes p.17
19 Grph Sttes Introdution Complexity of grph stte preprtion Grph Sttes p.18
20 Grph Stte Preprtion An lgorithm of preprtion inputs grph G, nd outputs quntum iruit C G suh tht C G LC G. Complexity of Grph Stte Preprtion: T : depth of C G S: width of C G Remrk: The lssil prt of the preprtion must e relized in polynomil time. Grph Sttes p.19
21 Algorithm of Preprtion d d Grph Sttes p.20
22 Algorithm of Preprtion d d d d Grph Sttes p.21
23 Algorithm of Preprtion d d d d Grph Sttes p.22
24 Algorithm of Preprtion d d T = χ Limittion: Two opertions n e relized in prllel only if they t on different quntum systems. Edgehromti numer χ : miniml numer of olors needed to edgeolor grph suh tht two djent edges hve different olors. Complexity: T = O(χ ) = O( ), ( χ 1) S = n. Grph Sttes p.23
25 Expnsion  Contrtion v Expnsion L R L v R Contrtion Property: Any grph G n e expnded into G, suh tht (G ) 3 u w Grph Sttes p.24
26 Grph Stte Contrtion L v u w Contrtion v R L R If u nd w re X mesured Grph Sttes p.25
27 Grph Stte Contrtion L v u w Contrtion v R L R If u nd w re X mesured Algorithm to prepre grph stte G : (Clssil prt) G is expnded into G suh tht (G ) 3, G is prepred with the previous lgorithm: T 1 = O( (G )) = O(1), All the nillry quits re Xmesured in prllel: T 2 = 1. Grph Sttes p.26
28 Grph Stte Contrtion L v u w Contrtion v R L R If u nd w re X mesured Algorithm to prepre grph stte G : (Clssil prt) G is expnded into G suh tht (G ) 3, G is prepred with the previous lgorithm: T 1 = O( (G )) = O(1), All the nillry quits re Xmesured in prllel: T 2 = 1. Complexity: T = T 1 T 2 = O(1) S = O(m), where m is the numer of edges of the grph to prepre. Grph Sttes p.27
29 Trdeoff For given 2 k m/n, Algorithm to prepre grph stte G : (Clssil prt) G is expnded into G suh tht (G ) < k, G is prepred with the previous lgorithm: T 1 = k O(1), All the nillry quits re Xmesured in prllel: T 2 = 1. Complexity: T = k O(1) S = O(m/k n) = O(m/k) TS = O(m) Grph Sttes p.28
30 Mesurementsed preprtion Grph stte preprtion without unitry trnsformtion without nillry quit (S = n) Size of the projetive mesurements required to relize this preprtion. Lemm [Mhll, Perdrix]: Any grph stte G n e prepred without nillry quit, y mens of projetive mesurements on t most δ lo (G) 1 quits. Grph Sttes p.29
31 Lower Bound Theorem [Mhll, Perdrix]: For ny G, mesurementsed preprtion of G, without nillry quit, requires mesurements on t lest δ lo (G) 1 quits. Proof: Chrteriztion of the miniml degree under lol omplementtion, Contrdition: ssuming tht the lst mesurement of the preprtion is on δ lo (G) quits (insted of δ lo (G) 1) Grph Sttes p.30
32 σgme Given G = (V,E), nd D V, the verties in D re leled with 0 or 1. A onfigurtion is desription of the lels: (000), (101), (011). Plying on vertex outside D flips the inside djent verties. Grph Sttes p.31
33 σgme Given G = (V,E), nd D V, the verties in D re leled with 0 or 1. A onfigurtion is desription of the lels: (000), (101), (011). Plying on vertex outside D flips the inside djent verties. Grph Sttes p.32
34 σgme Given G = (V,E), nd D V, the verties in D re leled with 0 or 1. A onfigurtion is desription of the lels: (000), (101), (011). Plying on vertex outside D flips the inside djent verties. Grph Sttes p.33
35 Chrteriztion of δ lo (G) Lemm [Mhll, Perdrix]: Given G = (V,E), for ny D V, if D δ lo (G), ll the 2 D onfigurtions n e rehed. Grph Sttes p.34
36 Lst Mesurement Given G = (V,E), Assume the lst mesurement O of the preprtion is on δ lo (G) quits. Grph Sttes p.35
37 Let s ply with Grph stte Simultion of σgme: Propriétés: D V the set of the lst mesured quits. D = δ lo (G). The onfigurtion is 0 = (0... 0) (onfigure = signture of the stilizer of G ). some Puli opertions X re pplied outside D, these pplitions modify the onfigurtion s in σgme. onfigurtion. the quits outside D re mesured ording to Z. quntum stte φ on D quits.,, if, φ φ = 0., O φ = φ. Grph Sttes p.36
38 Let s ply with Grph stte Simultion of σgme: Propriétés: D V the set of the lst mesured quits. D = δ lo (G). The onfigurtion is 0 = (0... 0) (onfigure = signture of the stilizer of G ). some Puli opertions X re pplied outside D, these pplitions modify the onfigurtion s in σgme. onfigurtion. the quits outside D re mesured ording to Z. quntum stte φ on D quits.,, if, φ φ = 0., O φ = φ. Sine ll the 2 D onfigurtions n e rehed, { φ } is sis. O = Id Grph Sttes p.37
arxiv: v1 [quantph] 2 Apr 2007
Towrds Miniml Resoures of Mesurementsed Quntum Computtion riv:0704.00v1 [quntph] Apr 007 1. Introdution Simon Perdrix PPS, CNRS  niversité Pris 7 Emil: simon.perdrix@pps.jussieu.fr Astrt. We improve
More informationwhere the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b
CS 2942 9/11/04 Quntum Ciruit Model, SolovyKitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits  Universl Gte Sets A lssil iruit implements multioutput oolen funtion f : {0,1}
More informationSection 1.3 Triangles
Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior
More informationLinear choosability of graphs
Liner hoosility of grphs Louis Esperet, Mikel Montssier, André Rspud To ite this version: Louis Esperet, Mikel Montssier, André Rspud. Liner hoosility of grphs. Stefn Felsner. 2005 Europen Conferene on
More informationComparing the Preimage and Image of a Dilation
hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) nglengle Similrity Theorem (.2) SideSideSide Similrity
More informationTechnische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution
Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:
More informationExercise sheet 6: Solutions
Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd
More informationCounting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs
Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n onetoone n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if
More informationCIT 596 Theory of Computation 1. Graphs and Digraphs
CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege
More informationNONDETERMINISTIC FSA
Tw o types of nondeterminism: NONDETERMINISTIC FS () Multiple strtsttes; strtsttes S Q. The lnguge L(M) ={x:x tkes M from some strtstte to some finlstte nd ll of x is proessed}. The string x = is
More informationMidTerm Examination  Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours
MiTerm Exmintion  Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into
More informationSolutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!
Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:
More informationCS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6
CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized
More informationConvert the NFA into DFA
Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:
More informationQubit and Quantum Gates
Quit nd Quntum Gtes Shool on Quntum omputing @Ygmi Dy, Lesson 9::, Mrh, 5 Eisuke Ae Deprtment of Applied Physis nd PhysioInformtis, nd RESTJST, Keio University From lssil to quntum Informtion is physil
More informationTrigonometry and Constructive Geometry
Trigonometry nd Construtive Geometry Trining prolems for M2 2018 term 1 Ted Szylowie tedszy@gmil.om 1 Leling geometril figures 1. Prtie writing Greek letters. αβγδɛθλµπψ 2. Lel the sides, ngles nd verties
More informationRegular languages refresher
Regulr lnguges refresher 1 Regulr lnguges refresher Forml lnguges Alphet = finite set of letters Word = sequene of letter Lnguge = set of words Regulr lnguges defined equivlently y Regulr expressions Finitestte
More information1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.
York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech
More informationSECTION A STUDENT MATERIAL. Part 1. What and Why.?
SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are
More informationGraph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}
Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or MultiGrph We llow loops n multiple eges. G = (V, E.ψ)
More informationPrefixFree RegularExpression Matching
PrefixFree RegulrExpression Mthing YoSu Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST PrefixFree RegulrExpression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings
More informationCompression of Palindromes and Regularity.
Compression of Plinromes n Regulrity. Kyoko ShikishimTsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht
More informationOn Determinisation of HistoryDeterministic Automata.
On Deterministion of HistoryDeterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YRICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil
More informationIntroduction to Olympiad Inequalities
Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd AmGm inequlity 2. Elementry inequlities......................
More informationFirst Midterm Examination
2425 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet
More informationPreLie algebras, rooted trees and related algebraic structures
PreLie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A prelie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers
More informationSpeech Recognition Lecture 2: Finite Automata and FiniteState Transducers. Mehryar Mohri Courant Institute and Google Research
Speech Recognition Lecture 2: Finite Automt nd FiniteStte Trnsducers Mehryr Mohri Cournt Institute nd Google Reserch mohri@cims.nyu.com Preliminries Finite lphet Σ, empty string. Set of ll strings over
More informationRandom subgroups of a free group
Rndom sugroups of free group Frédérique Bssino LIPN  Lortoire d Informtique de Pris Nord, Université Pris 13  CNRS Joint work with Armndo Mrtino, Cyril Nicud, Enric Ventur et Pscl Weil LIX My, 2015 Introduction
More informationpadic Egyptian Fractions
padic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Setup 3 4 pgreedy Algorithm 5 5 pegyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction
More informationCS 275 Automata and Formal Language Theory
CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)
More informationAlpha Algorithm: Limitations
Proess Mining: Dt Siene in Ation Alph Algorithm: Limittions prof.dr.ir. Wil vn der Alst www.proessmining.org Let L e n event log over T. α(l) is defined s follows. 1. T L = { t T σ L t σ}, 2. T I = { t
More informationBisimulation, Games & Hennessy Milner logic
Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory
More informationFinite State Automata and Determinisation
Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Nondeterministi Finite Stte Automt (nf) 4 Regulr Expressions
More informationGoodforGames Automata versus Deterministic Automata.
GoodforGmes Automt versus Deterministic Automt. Denis Kuperberg 1,2 Mich l Skrzypczk 1 1 University of Wrsw 2 IRIT/ONERA (Toulouse) Séminire MoVe 12/02/2015 LIF, Luminy Introduction Deterministic utomt
More informationFirst Midterm Examination
Çnky University Deprtment of Computer Engineering 203204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does
More informationLogic, Set Theory and Computability [M. Coppenbarger]
14 Orer (Hnout) Definition 711: A reltion is qusiorering (or preorer) if it is reflexive n trnsitive. A quisiorering tht is symmetri is n equivlene reltion. A qusiorering tht is ntisymmetri is n orer
More informationExtended nonlocal games from quantumclassical games
Extended nonlocl gmes from quntumclssicl gmes Theory Seminr incent Russo niversity of Wterloo October 17, 2016 Outline Extended nonlocl gmes nd quntumclssicl gmes Entngled vlues nd the dimension of entnglement
More informationRevision Sheet. (a) Give a regular expression for each of the following languages:
Theoreticl Computer Science (Bridging Course) Dr. G. D. Tipldi F. Bonirdi Winter Semester 2014/2015 Revision Sheet University of Freiurg Deprtment of Computer Science Question 1 (Finite Automt, 8 + 6 points)
More information22: Union Find. CS 473u  Algorithms  Spring April 14, We want to maintain a collection of sets, under the operations of:
22: Union Fin CS 473u  Algorithms  Spring 2005 April 14, 2005 1 UnionFin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x)  rete set tht ontins the single element x. 2. Fin(x)
More informationRegular expressions, Finite Automata, transition graphs are all the same!!
CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104W11 1
More informationarxiv: v2 [math.co] 31 Oct 2016
On exlue minors of onnetivity 2 for the lss of frme mtrois rxiv:1502.06896v2 [mth.co] 31 Ot 2016 Mtt DeVos Dryl Funk Irene Pivotto Astrt We investigte the set of exlue minors of onnetivity 2 for the lss
More informationad = cb (1) cf = ed (2) adf = cbf (3) cf b = edb (4)
10 Most proofs re left s reding exercises. Definition 10.1. Z = Z {0}. Definition 10.2. Let be the binry reltion defined on Z Z by, b c, d iff d = cb. Theorem 10.3. is n equivlence reltion on Z Z. Proof.
More informationGraph widthparameters and algorithms
Grph widthprmeters nd lgorithms Jisu Jeong (KAIST) joint work with Sigve Hortemo Sæther nd Jn Arne Telle (University of Bergen) 2015 KMS Annul Meeting 2015.10.24. YONSEI UNIVERSITY Grph widthprmeters
More information( ) { } [ ] { } [ ) { } ( ] { }
Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or
More informationClosure Properties of Regular Languages
Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L
More informationDiscrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α
Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw
More informationNondeterministic Automata vs Deterministic Automata
Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n
More informationNondeterminism and Nodeterministic Automata
Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely
More information1 Nondeterministic Finite Automata
1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you
More informationSpeech Recognition Lecture 2: Finite Automata and FiniteState Transducers
Speech Recognition Lecture 2: Finite Automt nd FiniteStte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.
More informationCS 573 Automata Theory and Formal Languages
Nondeterminism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Nondeterministi Finite Automton with moves (NFA) An NFA is tuple
More informationThe University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS
The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their
More informationSurface maps into free groups
Surfce mps into free groups lden Wlker Novemer 10, 2014 Free groups wedge X of two circles: Set F = π 1 (X ) =,. We write cpitl letters for inverse, so = 1. e.g. () 1 = Commuttors Let x nd y e loops. The
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationFinite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018
Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More
More informationCS 491G Combinatorial Optimization Lecture Notes
CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,
More informationFinite Automatacont d
Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automtcont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww
More informationDorf, R.C., Wan, Z. T Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000
orf, R.C., Wn,. T Equivlent Networks The Eletril Engineering Hndook Ed. Rihrd C. orf Bo Rton: CRC Press LLC, 000 9 T P Equivlent Networks hen Wn University of Cliforni, vis Rihrd C. orf University of
More informationDiscrete Structures Lecture 11
Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.
More informationLecture 08: Feb. 08, 2019
4CS46:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny
More information8 THREE PHASE A.C. CIRCUITS
8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the solled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),
More informationMatrix System of rows and columns each position in a matrix has a purpose. 5 Ex: 5. Ex:
Mtries Prelulus Mtri Sstem of rows n olumns eh position in mtri hs purpose. Element Eh vlue in the mtri mens the element in the n row, r olumn Dimensions How mn rows b number of olumns Ientif the element:
More informationApril 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.
pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm
More informationA Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version
A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 113659415, Tehrn, Irn Deprtment
More informationLexical Analysis Finite Automate
Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition
More informationREPRESENTATION THEORY OF PSL 2 (q)
REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory
More informationTopological Quantum Compiling
Topologicl Quntum Compiling Work in collbortion with: Lyl Hormozi Georgios Zikos Steven H. Simon Michel Freedmn Nd Petrovic Florid Stte University Lucent Technologies Microsoft Project Q UCSB NEB, L. Hormozi,
More information1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the
More informationSinglePlayer and TwoPlayer Buttons & Scissors Games (Extended Abstract)
SinglePlyer nd TwoPlyer Buttons & Sissors Gmes (Extended Astrt) Kyle Burke 1, Erik D. Demine 2, Hrrison Gregg 3, Roert A. Hern 4, Adm Hestererg 2, Mihel Hoffmnn 5, Hiro Ito 6, Irin Kostitsyn 7, Jody
More informationData Structures LECTURE 10. Huffman coding. Example. Coding: problem definition
Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt
More informationCIRCULAR COLOURING THE PLANE
CIRCULAR COLOURING THE PLANE MATT DEVOS, JAVAD EBRAHIMI, MOHAMMAD GHEBLEH, LUIS GODDYN, BOJAN MOHAR, AND REZA NASERASR Astrct. The unit distnce grph R is the grph with vertex set R 2 in which two vertices
More informationLearning Partially Observable Markov Models from First Passage Times
Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).
More informationAlpha Algorithm: A Process Discovery Algorithm
Proess Mining: Dt Siene in Ation Alph Algorithm: A Proess Disovery Algorithm prof.dr.ir. Wil vn der Alst www.proessmining.org Proess disovery = PlyIn PlyIn event log proess model PlyOut Reply proess
More informationMath 4310 Solutions to homework 1 Due 9/1/16
Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1
More informationConnectedcomponents. Summary of lecture 9. Algorithms and Data Structures Disjoint sets. Example: connected components in graphs
Prm University, Mth. Deprtment Summry of lecture 9 Algorithms nd Dt Structures Disjoint sets Summry of this lecture: (CLR.13) Dt Structures for Disjoint sets: Union opertion Find opertion Mrco Pellegrini
More informationIn rightangled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle.
Mth 3329Uniform Geometries Leture 06 1. Review of trigonometry While we re looking t Eulid s Elements, I d like to look t some si trigonometry. Figure 1. The Pythgoren theorem sttes tht if = 90, then
More informationSufficient condition on noise correlations for scalable quantum computing
Sufficient condition on noise correltions for sclble quntum computing John Presill, 2 Februry 202 Is quntum computing sclble? The ccurcy threshold theorem for quntum computtion estblishes tht sclbility
More informationExercise 3 Logic Control
Exerise 3 Logi Control OBJECTIVE The ojetive of this exerise is giving n introdution to pplition of Logi Control System (LCS). Tody, LCS is implemented through Progrmmle Logi Controller (PLC) whih is lled
More informationT b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.
Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene
More informationMinimal DFA. minimal DFA for L starting from any other
Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA
More informationMyhillNerode Theorem
Overview MyhillNerode Theorem Correspondence etween DA s nd MN reltions Cnonicl DA for L Computing cnonicl DFA MyhillNerode Theorem Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute
More informationModel Reduction of Finite State Machines by Contraction
Model Reduction of Finite Stte Mchines y Contrction Alessndro Giu Dip. di Ingegneri Elettric ed Elettronic, Università di Cgliri, Pizz d Armi, 09123 Cgliri, Itly Phone: +390706755892 Fx: +390706755900
More informationCHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Nondeterministic Finite Automata (NFA)
Finite Automt (FA or DFA) CHAPTER Regulr Lnguges Contents definitions, exmples, designing, regulr opertions Nondeterministic Finite Automt (NFA) definitions, equivlence of NFAs DFAs, closure under regulr
More informationFormal languages, automata, and theory of computation
Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:1018:30 Techer: Dniel Hedin, phone 021107052 The exm
More informationAlgorithm Design and Analysis
Algorithm Design nd Anlysis LECTURE 5 Supplement Greedy Algorithms Cont d Minimizing lteness Ching (NOT overed in leture) Adm Smith 9/8/10 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov,
More informationAlgorithm Design and Analysis
Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing
More informationChapter 4. Lebesgue Integration
4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.
More informationTopologie en Meetkunde 2011 Lecturers: Marius Crainic and Ivan Struchiner
Topologie en Meetkunde 21 Leturers: Mrius Crini nd Ivn Struhiner CHAPTER 1 The Clssifition Prolem for Compt Surfes 1. Introdution In this Chpter we will introdue nd strt deling with the lssifition prolem
More informationCHAPTER 1 Regular Languages. Contents
Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Nondeterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr
More informationAssignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages
Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd
More informationPart 4. Integration (with Proofs)
Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1
More informationLearning Objectives of Module 2 (Algebra and Calculus) Notes:
67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under
More informationa) Read over steps (1) (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.
Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You
More informationILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS
ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu
More informationWorksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of
Worsheet # th Nme:. Sole the folloing sstems of liner equtions. he proe tht the solutions forms suspe of ) ). Find the neessr nd suffiient onditions of ll onstnts for the eistene of solution to the sstem:.
More informationPythagoras Theorem. The area of the square on the hypotenuse is equal to the sum of the squares on the other two sides
Pythgors theorem nd trigonometry Pythgors Theorem The hypotenuse of rightngled tringle is the longest side The hypotenuse is lwys opposite the rightngle 2 = 2 + 2 or 2 = 22 or 2 = 22 The re of the
More informationTHE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLECOLUMN MODEL
THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLECOLUMN MODEL P3.1 Kot Iwmur*, Hiroto Kitgw Jpn Meteorologil Ageny 1. INTRODUCTION Jpn Meteorologil Ageny
More informationLecture 14: Quadrature
Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be relvlues nd smooth The pproximtion of n integrl by numericl
More informationA CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA
A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA PHILIP DANIEL AND CHARLES SEMPLE Astrt. Amlgmting smller evolutionry trees into single prent tree is n importnt tsk in evolutionry iology. Trditionlly,
More informationCS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University
CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted
More information