CIT 596 Theory of Computation 1. Graphs and Digraphs


 Rosamond Preston
 1 years ago
 Views:
Transcription
1 CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege set of the grph, often enote y just E, whih is possily empty set of elements lle eges, suh tht eh ege e in E is ssigne n unorere pir (u, v) of verties, lle the en verties of e. Sometimes, it is onvenient to enote (u, v) y simply uv, or equivlently, vu.
2 CIT 596 Theory of Computtion 2 Consier the grph G = (V, E) suh tht V = {,,,, e} n E = {e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8 }, where e 1 (, ) e 2 (, ) e 3 (, ) e 4 (, ) e 5 (, ) e 6 (, e) e 7 (, e) e 8 (, e)
3 CIT 596 Theory of Computtion 3 A grph is often represente y igrm in whih verties re rwn s irles n eges s line or urve segments joining the irles representing the en verties of the ege. e 8 e 1 e e 7 e 2 e 5 e 6 e 3 e 4
4 CIT 596 Theory of Computtion 4 Verties re lso lle points, noes, or just ots. If e is n ege with en verties u n v then e is si to join u n v. Note tht the efinition of grph llows the possiility of the ege e hving ietil en verties, i.e., it is possile to hve vertex u joine to itself y n ege suh n ege is lle loop. If two (or more) eges hve the sme en verties then eges re lle prllel. A grph is lle simple is it hs no loops n no prllel eges.
5 CIT 596 Theory of Computtion 5 For n exmple of simple grph, onsier the grph G = (V, E) suh tht V = {,,, } n E = {e 1, e 2, e 3, e 4 }, where e 1 (, ) e 2 (, ) e 3 (, ) e 4 (, ) Some uthors use the term multigrph for grphs with loops n prllel eges, n reserve the term grph for simple grphs only. Sine we will el with grphs with loops very often, it is more onvenient not to mke this istintion.
6 CIT 596 Theory of Computtion 6 A pitoril representtion of the simple grph G in the previous slie: e 1 e 2 e 3 e 4
7 CIT 596 Theory of Computtion 7 The numer of verties in G is lle the orer of G. The numer of eges in G is lle the size of G. Two verties u n v of grph G re si to e jent if uv E(G). If uv E(G) then we sy tht u n v re nonjent verties. An ege e of grph G is si to e inient with or inient to the vertex v if v is n en vertex of e. In this se, we lso sy tht v is inient with or inient to e. Two eges e n f whih re inient with ommon vertex v re si to e jent.
8 CIT 596 Theory of Computtion 8 Let v e vertex of the grph G. The egree (v) of v is the numer of eges of G inient to v, ounting eh loop twie, i.e., it is the numer of times v is n en vertex of n ege. e For exmple, () = 1, () = 3, () = 3, () = 3, n (e) = 4 in the grph ove.
9 CIT 596 Theory of Computtion 9 The First Theorem of Grph Theory. For ny grph G with n e eges n n v verties v 1,..., v nv, we hve tht Chek y yourself: n v i=1 (v i ) = 2 n e. e
10 CIT 596 Theory of Computtion 10 A wlk in grph G is finite sequene W = v 0 e 1 v 1 e 2 v 2... v k 1 e k v k whose terms re lterntely verties n eges suh tht, for 1 i k, the ege e i hs en verties v i 1 n v i. We sy tht the ove wlk is v 0 v k wlk or wlk from v 0 to v k. The integer k, the numer of eges of the wlk, is lle the length of W. A trivil wlk is one ontining no eges.
11 CIT 596 Theory of Computtion 11 The sequene e 2 e 8 f e 6 e 3 e 4 e e 4 is wlk of length 6 in the grph elow. e 1 e 2 e 3 e 8 e 4 e 7 e 6 e 5 f e In simple grph, wlk is etermine y the sequene of verties only: f e.
12 CIT 596 Theory of Computtion 12 Given two verties u n v of grph G, u v wlk is lle lose or open epening on whether u = v or u v. If the eges e 1, e 2,..., e k of the wlk v 0 e 1 v 1 e 2 v 2... v k 1 e k v k re istint then W is lle tril. If the verties v 0, v 1,..., v k of the wlk v 0 e 1 v 1 e 2 v 2... v k 1 e k v k re istint then W is lle pth. For the grph in the previous slie, f e is f tril, ut not pth! The sequene f e is f e pth.
13 CIT 596 Theory of Computtion 13 A vertex u is si to e onnete to vertex v in grph G if there is pth in G from u to v. A grph G is onnete if every two verties of G re onnete; otherwise, G is isonnete. M N Connete Disonnete
14 CIT 596 Theory of Computtion 14 A nontrivil lose tril C = v 1 v 2... v n v 1 in grph G is lle yle if the verties v 2... v n re ll istint. A yle of length k, i.e., yle with k eges, is lle kyle. For exmple, f is 3yle in the grph elow: e 1 e 2 e 3 e 8 e 4 e 7 e 6 e 5 f e
15 CIT 596 Theory of Computtion 15 A grph G is si to e yli if it ontins no yles. A grph G is lle tree if it is onnete n yli. e The verties of egree (t most) 1 in tree re lle the leves of the tree.
16 CIT 596 Theory of Computtion 16 A irete grph (or simply igrph) D = (V (D), A(D)) onsists of two finite sets: V (D), the vertex set of the igrph, often enote y just V, whih is nonempty set of elements lle verties, n A(D), the r set of the igrph, often enote y just A, whih is possily empty set of elements lle rs, suh tht eh r in A is ssigne (orere) pir (u, v) of verties. If is n r in D with ssoite orere pir of verties (u, v), then is si to join u to v, u is lle the initil vertex of, n v is lle the terminl vertex of.
17 CIT 596 Theory of Computtion 17 For exmple, onsier the igrph D = (V (D), A(D)) suh tht V (D) = {,,,, e} n A(D) = {e 1, e 2, e 3, e 4, e 5, e 6 }, suh tht e 1 (, ), e 2 (, ), e 3 (, ), e 3 (, e), e 4 (e, ), n e 6 (e, e). e 6 e e 1 e 5 e 4 e 2 e 3
18 CIT 596 Theory of Computtion 18 Let D e igrph. Then irete wlk in D is finite sequene W = v 0 1 v 1... k v k, whose terms re lterntely verties n rs suh tht for 1 i k, the initil vertex of the r i is v i 1 n its terminl vertex is v i. The numer k of rs is the length of W. The wlk W given in the efinition ove is si to e v 0 v k irete wlk or irete wlk from v 0 to v k. There re similr efinitions for irete trils, irete pths, n irete yles.
19 CIT 596 Theory of Computtion 19 For exmple, onsier the igrph D elow: e 6 e e 1 e 5 e 4 e 2 e 3 The sequene e 1 e 3 e 4 e is e irete wlk, e irete tril, n e irete pth in D.
20 CIT 596 Theory of Computtion 20 A vertex v of the igrph D is si to e rehle from vertex u if there is irete pth from u to v. Given ny igrph D = (V (D), A(D)), we n otin grph G = (V (G), E(G)) from D s follows: Let V (G) = V (D) n E(G) = {e (, ) (, ) A(D)}. The grph G is the unerlying grph of D. A igrph D is si to e wekly onnete (or simply onnete) if its unerlying grph is onnete. A igrph D is si to e strongly onnete (or ionnete) if for ny pir of verties u n v in D there is irete pth from u to v.
21 CIT 596 Theory of Computtion 21 e 6 e 6 e e e 1 e 5 e 4 e 5 e 1 e 4 e 2 e 2 e 3 e 3 A igrph Its unerlying grph Is the ove irete grph onnete? If so, is it strongly onnete?
22 CIT 596 Theory of Computtion 22 Let v e vertex in igrph D. The inegree i(v) of v is the numer of rs of D tht hve v s the terminl vertex, i.e., the numer of rs tht go to to v. Similrly, the outegree o(v) of v is the numer of rs of D tht hve v s the initil vertex, i.e., the numer of rs tht go out of v. The First Theorem of Digrph Theory. Let D e igrph with n verties n q rs. If v 1,..., v n is the set of verties of D, then we hve tht n i=1 i(v i ) = n i=1 Cn you figure out the proof for this one? o(v i ) = q.
Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}
Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or MultiGrph We llow loops n multiple eges. G = (V, E.ψ)
More informationLecture 11 Binary Decision Diagrams (BDDs)
C 474A/57A ComputerAie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, Kmp, iruit, et
More informationConnectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example
Connetiit in Grphs CSH: Disrete Mthemtis Grph Theor II Instrtor: Işıl Dillig Tpil qestion: Is it possile to get from some noe to nother noe? Emple: Trin netork if there is pth from to, possile to tke trin
More informationfor all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx
Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion
More informationSolutions to Problem Set #1
CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors
More informationGeometry of the Circle  Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.
Geometry of the irle  hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion
More informationNONDETERMINISTIC FSA
Tw o types of nondeterminism: NONDETERMINISTIC FS () Multiple strtsttes; strtsttes S Q. The lnguge L(M) ={x:x tkes M from some strtstte to some finlstte nd ll of x is proessed}. The string x = is
More informationSection 4.4. Green s Theorem
The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higherdimensionl nlogues) with the definite integrls
More informationH (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.
Chpter Review 89 IGURE ol hord GH of the prol 4. G u v H (, ) (A) Use the distne formul to show tht u. (B) Show tht G nd H lie on the line m, where m ( )/( ). (C) Solve m for nd sustitute in 4, otining
More information1 Nondeterministic Finite Automata
1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you
More informationCS 360 Exam 2 Fall 2014 Name
CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singlylinke list n stk. Write three ifferent O(n)time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output
More informationf (x)dx = f(b) f(a). a b f (x)dx is the limit of sums
Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx
More informationNumbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point
GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply
More informationm m m m m m m m P m P m ( ) m m P( ) ( ). The oordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r
COORDINTE GEOMETR II I Qudrnt Qudrnt (.+) (++) X X    0  III IV Qudrnt  Qudrnt ()  (+) Region CRTESIN COORDINTE SSTEM : Retngulr Coordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr
More informationThe master ring problem
2005 Interntionl Conferene on Anlysis of Algorithms DMTCS pro. AD, 2005, 287 296 The mster ring problem Hs Shhni 1 n Lis Zhng 2 1 Computer Siene Dept., Tehnion, Hif 32000, Isrel. 2 Bell Lbs, Luent Tehnologies,
More informationEuler and Hamilton Paths
Euler an Hamilton Paths The town of Königserg, Prussia (now know as Kaliningra an part of the Russian repuli), was ivie into four setion y ranhes of the Pregel River. These four setions C A D B Figure:
More informationAnalytically, vectors will be represented by lowercase boldface Latin letters, e.g. a, r, q.
1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationPaths. Connectivity. Euler and Hamilton Paths. Planar graphs.
Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,
More informationChapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)
C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,
More information1 From NFA to regular expression
Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work
More informationMath 211A Homework. Edward Burkard. = tan (2x + z)
Mth A Homework Ewr Burkr Eercises 5C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =
More informationMath 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)
Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte singlevrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion
More informationarxiv: v1 [cs.dm] 24 Jul 2017
Some lsses of grphs tht re not PCGs 1 rxiv:1707.07436v1 [s.dm] 24 Jul 2017 Pierluigi Biohi Angelo Monti Tizin Clmoneri Rossell Petreshi Computer Siene Deprtment, Spienz University of Rome, Itly pierluigi.iohi@gmil.om,
More informationSTRAND J: TRANSFORMATIONS, VECTORS and MATRICES
Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors
More informationThe Ellipse. is larger than the other.
The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)
More information1.3 SCALARS AND VECTORS
Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd
More informationTransition systems (motivation)
Trnsition systems (motivtion) Course Modelling of Conurrent Systems ( Modellierung neenläufiger Systeme ) Winter Semester 2009/0 University of DuisurgEssen Brr König Tehing ssistnt: Christoph Blume In
More informationChapter 2 Finite Automata
Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht
More informationSpeech Recognition Lecture 2: Finite Automata and FiniteState Transducers
Speech Recognition Lecture 2: Finite Automt nd FiniteStte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.
More informationProject 6: Minigoals Towards Simplifying and Rewriting Expressions
MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy
More informationData Structures LECTURE 10. Huffman coding. Example. Coding: problem definition
Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt
More informationGrammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages
5//6 Grmmr Automt nd Lnguges Regulr Grmmr Contextfree Grmmr Contextsensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive
More informationMTH 505: Number Theory Spring 2017
MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c
More informationTriangles The following examples explore aspects of triangles:
Tringles The following exmples explore spects of tringles: xmple 1: ltitude of right ngled tringle + xmple : tringle ltitude of the symmetricl ltitude of n isosceles x x  4 +x xmple 3: ltitude of the
More informationPreLie algebras, rooted trees and related algebraic structures
PreLie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A prelie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers
More informationIdentifying and Classifying 2D Shapes
Ientifying n Clssifying D Shpes Wht is your sign? The shpe n olour of trffi signs let motorists know importnt informtion suh s: when to stop onstrution res. Some si shpes use in trffi signs re illustrte
More informationObstructions to chordal circulararc graphs of small independence number
Ostrutions to horl irulrr grphs of smll inepenene numer Mthew Frnis,1 Pvol Hell,2 Jurj Stho,3 Institute of Mth. Sienes, IV Cross Ro, Trmni, Chenni 600 113, Ini Shool of Comp. Siene, Simon Frser University,
More informationRegular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene*
Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion
More information8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.
8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the
More informationNormal Forms for Contextfree Grammars
Norml Forms for Contextfree Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S
More informationAutomata and Regular Languages
Chpter 9 Automt n Regulr Lnguges 9. Introution This hpter looks t mthemtil moels of omputtion n lnguges tht esrie them. The moellnguge reltionship hs multiple levels. We shll explore the simplest level,
More information12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016
CS125 Lecture 12 Fll 2016 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple
More informationAn undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V
Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon
More informationV={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}
Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous
More informationCS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)
CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts
More informationdx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.
Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd
More informationNondeterministic Finite Automata
Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)
More informationA CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA
A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA PHILIP DANIEL AND CHARLES SEMPLE Astrt. Amlgmting smller evolutionry trees into single prent tree is n importnt tsk in evolutionry iology. Trditionlly,
More informationSeparable discrete functions: recognition and sufficient conditions
Seprle isrete funtions: reognition n suffiient onitions Enre Boros Onřej Čepek Vlimir Gurvih Novemer 21, 217 rxiv:1711.6772v1 [mth.co] 17 Nov 217 Astrt A isrete funtion of n vriles is mpping g : X 1...
More informationCS 310 (sec 20)  Winter Final Exam (solutions) SOLUTIONS
CS 310 (sec 20)  Winter 2003  Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)
More informationLine Integrals. Partitioning the Curve. Estimating the Mass
Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to
More informationLine Integrals and Entire Functions
Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series
More informationLIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon
LIP Lortoire de l Informtique du Prllélisme Eole Normle Supérieure de Lyon Institut IMAG Unité de reherhe ssoiée u CNRS n 1398 Onewy Cellulr Automt on Cyley Grphs Zsuzsnn Rok Mrs 1993 Reserh Report N
More informationQUADRATIC EQUATION. Contents
QUADRATIC EQUATION Contents Topi Pge No. Theory 004 Exerise  0509 Exerise  093 Exerise  3 45 Exerise  4 6 Answer Key 78 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,
More informationCS375: Logic and Theory of Computing
CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tle of Contents: Week 1: Preliminries (set lger, reltions, functions) (red Chpters 14) Weeks
More informationProving the Pythagorean Theorem
Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or
More informationQUADRATIC EQUATION EXERCISE  01 CHECK YOUR GRASP
QUADRATIC EQUATION EXERCISE  0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions
More informationContextFree Grammars and Languages
ContextFree Grmmrs nd Lnguges (Bsed on Hopcroft, Motwni nd Ullmn (2007) & Cohen (1997)) Introduction Consider n exmple sentence: A smll ct ets the fish English grmmr hs rules for constructing sentences;
More informationHomework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)
More information3 Regular expressions
3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll
More informationSolutions to Assignment 1
MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove
More informationResources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations
Introduction: Binding Prt of 4lecture introduction Scheduling Resource inding Are nd performnce estimtion Control unit synthesis This lecture covers Resources nd resource types Resource shring nd inding
More informationLinear Systems with Constant Coefficients
Liner Systems with Constnt Coefficients 4305 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system
More informationFarey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University
U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions
More information4. Statements Reasons
Chpter 9 Answers PrentieHll In. Alterntive Ativity 9. Chek students work.. Opposite sides re prllel. 3. Opposite sides re ongruent. 4. Opposite ngles re ongruent. 5. Digonls iset eh other. 6. Students
More informationLesson Notes: Week 40Vectors
Lesson Notes: Week 40Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples
More informationIntroduction to Graphical Models
Introution to Grhil Moels Kenji Fukumizu The Institute of Sttistil Mthemtis Comuttionl Methoology in Sttistil Inferene II Introution n Review 2 Grhil Moels Rough Sketh Grhil moels Grh: G V E V: the set
More informationINTRODUCTION TO AUTOMATA THEORY
Chpter 3 INTRODUCTION TO AUTOMATA THEORY In this hpter we stuy the most si strt moel of omputtion. This moel els with mhines tht hve finite memory pity. Setion 3. els with mhines tht operte eterministilly
More information4 VECTORS. 4.0 Introduction. Objectives. Activity 1
4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply
More informationTypes of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.
CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt
More informationThermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R
/10/010 Question 1 1 mole of idel gs is rought to finl stte F y one of three proesses tht hve different initil sttes s shown in the figure. Wht is true for the temperture hnge etween initil nd finl sttes?
More information1.2 What is a vector? (Section 2.2) Two properties (attributes) of a vector are and.
Homework 1. Chpters 2. Bsis independent vectors nd their properties Show work except for fillinlnksprolems (print.pdf from www.motiongenesis.com Textooks Resources). 1.1 Solving prolems wht engineers
More informationPrefixFree RegularExpression Matching
PrefixFree RegulrExpression Mthing YoSu Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST PrefixFree RegulrExpression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings
More informationLesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.
27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we
More informationQUADRATIC EQUATIONS OBJECTIVE PROBLEMS
QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.
More informationRecursively Enumerable and Recursive. Languages
Recursively Enumerble nd Recursive nguges 1 Recll Definition (clss 19.pdf) Definition 10.4, inz, 6 th, pge 279 et S be set of strings. An enumertion procedure for Turing Mchine tht genertes ll strings
More informationNon Right Angled Triangles
Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in nonright ngled tringles. This unit
More informationSimilarity and Congruence
Similrity nd ongruence urriculum Redy MMG: 201, 220, 221, 243, 244 www.mthletics.com SIMILRITY N ONGRUN If two shpes re congruent, it mens thy re equl in every wy ll their corresponding sides nd ngles
More information(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.
Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time
More informationnd edges. Eh edge hs either one endpoint: end(e) = fxg in whih se e is termed loop t vertex x, or two endpoints: end(e) = fx; yg in whih se e is terme
Theory of Regions Eri Bdouel nd Philippe Drondeu Iris, Cmpus de Beulieu, F35042 Rennes Cedex, Frne Emil : feri.bdouel,philippe.drondeug@iris.fr Astrt. The synthesis prolem for nets onsists in deiding
More informationHomework Solution  Set 5 Due: Friday 10/03/08
CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution  et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte nonfinl.
More informationCS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation
CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes
More informationComputing allterminal reliability of stochastic networks with Binary Decision Diagrams
Computing llterminl reliility of stohsti networks with Binry Deision Digrms Gry Hry 1, Corinne Luet 1, n Nikolos Limnios 2 1 LRIA, FRE 2733, 5 rue u Moulin Neuf 80000 AMIENS emil:(orinne.luet, gry.hry)@upirie.fr
More informationAutomata and Languages
Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Contextfree Grmmr Contextsensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive
More informationMatrix & Vector Basic Linear Algebra & Calculus
Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row
More informationSection 7.1 Area of a Region Between Two Curves
Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region
More informationa,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1
CS4 45 Determinisitic Finite Automt : Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother
More informationImproper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
More informationILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS
ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu
More informationinput tape head moves current state
CPS 140  Mthemticl Foundtions of CS Dr. Susn Rodger Section: Finite Automt (Ch. 2) (lecture notes) Things to do in clss tody (Jn. 13, 2004): ffl questions on homework 1 ffl finish chpter 1 ffl Red Chpter
More informationu(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.
Lecture 4 Complex Integrtion MATHGA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex
More informationBidecomposition of large Boolean functions using blocking edge graphs
Bieomposition of lrge Boolen funtions using loking ege grphs Mihir Chouhury n Krtik Mohnrm Deprtment of Eletril n Computer Engineering, Rie University, Houston {mihir,kmrm}@rie.eu Astrt Bieomposition
More informationThe Word Problem in Quandles
The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More information2. VECTORS AND MATRICES IN 3 DIMENSIONS
2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2dimensionl Vectors x A point in 3dimensionl spce cn e represented y column vector of the form y z zxis yxis z x y xxis Most of the
More informationAutomatic Synthesis of New Behaviors from a Library of Available Behaviors
Automti Synthesis of New Behviors from Lirry of Aville Behviors Giuseppe De Giomo Università di Rom L Spienz, Rom, Itly degiomo@dis.unirom1.it Sestin Srdin RMIT University, Melourne, Austrli ssrdin@s.rmit.edu.u
More informationLexical Analysis Finite Automate
Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition
More informationData Compression Techniques (Spring 2012) Model Solutions for Exercise 4
58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U
More informationLINEAR ALGEBRA APPLIED
5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nthorder
More information