Boolean Algebra. Boolean Algebra


 Daniela Welch
 1 years ago
 Views:
Transcription
1 Boolen Alger Boolen Alger A Boolen lger is set B of vlues together with:  two inry opertions, commonly denoted y + nd,  unry opertion, usully denoted y ˉ or ~ or,  two elements usully clled zero nd one, such tht for every element of B: nd In ddition, certin ioms must e stisfied:  closure properties for oth inry opertions nd the unry opertion  ssocitivity of ech inry opertion over the other,  commuttivity of ech ech inry opertion,  distriutivity of ech inry opertion over the other,  sorption rules,  eistence of complements with respect to ech inry opertion We will ssume tht hs higher precedence thn +; however, this is not generl rule for ll Boolen lgers. Computer Orgniztion McQuin
2 Boolen Alger Computer Orgniztion McQuin Aioms of Boolen Alger Associtive Lws: for ll, nd c in B, ( ( c c ( ( c c ( ( ( c c ( ( ( c c ( ( Commuttive Lws: for ll nd in B, Distriutive Lws: for ll, nd c in B, Asorption Lws: for ll, nd c in B, Eistence of Complements: for ll in B, there eists n element ā in B such tht
3 Emples of Boolen Algers Boolen Alger 3 The clssic emple is B = {true, flse} with the opertions AND, OR nd NOT. An isomorphic emple is B = {, } with the opertions +, nd ~ defined y: + * ~ Given set S, the power set of S, P(S is Boolen lger under the opertions union, intersection nd reltive complement. Other, interesting emples eist Computer Orgniztion McQuin
4 More Properties It's lso possile to derive some dditionl fcts, including:  the elements nd re unique  the complement of n element is unique  nd re complements of ech other Boolen Alger 4 Computer Orgniztion McQuin
5 DeMorgn's Lws & More Boolen Alger 5 DeMorgn's Lws re useful theorems tht cn e derived from the fundmentl properties of Boolen lger. For ll nd in B, Of course, there s lso doulenegtion lw: And there re idempotency lws: Boundedness properties: Computer Orgniztion McQuin
6 Logic Epressions nd Equtions Boolen Alger 6 A logic epression is defined in terms of the three sic Boolen opertors nd vriles which my tke on the vlues nd. For emple: z : y y y : ( 2 ( 2 3 ( 2 3 A logic eqution is n ssertion tht two logic equtions re equl, where equl mens tht the vlues of the two epressions re the sme for ll possile ssignments of vlues to their vriles. For emple: y y y y Of course, equtions my e true or flse. Wht out the one ove? Computer Orgniztion McQuin
7 Boolen Alger Computer Orgniztion McQuin Why do they cll it "lger"? A Boolen epression cn often e usefully trnsformed y using the theorems nd properties stted erlier: y y y y y y y y Tht is reltively simple emple of reduction. Try showing the following epressions re equl: z y z y
8 Why do they cll it "lger"? Here's nother tht hppens to e relted to inry ddition: Boolen Alger 8 Z A B C A B C A B C A B C Given A B C A B C A B C A B C A B C A B C Idempotence A B C A B C A B C A B C A B C A B C Commuttivity, Associtivity A AB C AC B B AB C C Commuttivity, Distriutivity B C AC A B Complements AC B C AB Boundedness Computer Orgniztion McQuin
9 Tutologies, Contrdictions & Stisfiles Boolen Alger 9 A tutology is Boolen epression tht evlutes to true ( for ll possile vlues of its vriles. A contrdiction is Boolen epression tht evlutes to flse ( for ll possile vlues of its vriles. A Boolen epression is stisfile if there is t lest one ssignment of vlues to its vriles for which the epression evlutes to true (. Computer Orgniztion McQuin
10 Truth Tles Boolen Alger A Boolen epression my e nlyzed y creting tle tht shows the vlue of the epression for ll possile ssignments of vlues to its vriles: Computer Orgniztion McQuin
11 Proving Equtions with Truth Tles Boolen Alger Boolen equtions my e proved using truth tles (dull nd mechnicl: c c + c ~(**c ~*~*~c Computer Orgniztion McQuin
12 Proving Equtions Algericlly Boolen Alger 2 Boolen equtions my e proved using truth tles, which is dull nd oring, or using the lgeric properties: B, sorption, with lw of complements B, sorption, with lw of complements Note the dulity Computer Orgniztion McQuin
13 Proving Equtions Algericlly Boolen Alger 3 B, sorption, with ( lw of complements sorption, with = Computer Orgniztion McQuin
14 SumofProducts Form Boolen Alger 4 A Boolen epression is sid to e in sumofproducts form if it is epressed s sum of terms, ech of which is product of vriles nd/or their complements: It's reltively esy to see tht every Boolen epression cn e written in this form. Why? The summnds in the sumofproducts form re clled minterms.  ech minterm contins ech of the vriles, or its complement, ectly once  ech minterm is unique, nd therefore so is the representtion (side from order Computer Orgniztion McQuin
15 Emple Boolen Alger 5 Given truth tle for Boolen function, construction of the sumofproducts representtion is trivil:  for ech row in which the function vlue is, form product term involving ll the vriles, tking the vrile if its vlue is nd the complement if the vrile's vlue is  tke the sum of ll such product terms y z F y z y z y z yz F y z y z y z y z Computer Orgniztion McQuin
16 ProductofSums Form Boolen Alger 6 A Boolen epression is sid to e in productofsums form if it is epressed s product of terms, ech of which is sum of vriles: Every Boolen epression cn lso e written in this form, s product of mterms. Fcts similr to the sumofproducts form cn lso e sserted here. The productofsums form cn e derived y epressing the complement of the epression in sumofproducts form, nd then complementing. Computer Orgniztion McQuin
17 Emple Boolen Alger 7 Given truth tle for Boolen function, construction of the productofsums representtion is trivil:  for ech row in which the function vlue is, form product term involving ll the vriles, tking the vrile if its vlue is nd the complement if the vrile's vlue is  tke the sum of ll such product terms; then complement the result y z F y z y z y z y z F y z y z y z y z F y z y z y z y z ( y z ( y z ( y z ( y z Computer Orgniztion McQuin
18 Boolen Functions Boolen Alger 8 A Boolen function tkes n inputs from the elements of Boolen lger nd produces single vlue lso n element of tht Boolen lger. For emple, here re ll possile 2input Boolen functions on the set {, }: A B zero nd A B or or A B nor eq B' A' nnd one Computer Orgniztion McQuin
19 Universlity Any Boolen function cn e epressed using:  only AND, OR nd NOT  only AND nd NOT  only OR nd NOT  only AND nd XOR  only NAND  only NOR Boolen Alger 9 The first ssertion should e entirely ovious. The remining ones re ovious if you consider how to represent ech of the functions in the first set using only the relevnt functions in the relevnt set. Computer Orgniztion McQuin
INF1383 Bancos de Dados
3//0 INF383 ncos de Ddos Prof. Sérgio Lifschitz DI PUCRio Eng. Computção, Sistems de Informção e Ciênci d Computção LGER RELCIONL lguns slides sedos ou modificdos dos originis em Elmsri nd Nvthe, Fundmentls
More informationThe Fundamental Theorem of Algebra
The Fundmentl Theorem of Alger Jeremy J. Fries In prtil fulfillment of the requirements for the Mster of Arts in Teching with Speciliztion in the Teching of Middle Level Mthemtics in the Deprtment of Mthemtics.
More informationFachgebiet Rechnersysteme1. 1. Boolean Algebra. 1. Boolean Algebra. Verification Technology. Content. 1.1 Boolean algebra basics (recap)
. Boolen Alger Fchgeiet Rechnersysteme. Boolen Alger Veriiction Technology Content. Boolen lger sics (recp).2 Resoning out Boolen expressions . Boolen Alger 2 The prolem o logic veriiction: Show tht two
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose
More informationexpression simply by forming an OR of the ANDs of all input variables for which the output is
2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationContinuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom
Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive
More informationPolynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
More information8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.
8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the
More informationLecture 9: LTL and Büchi Automata
Lecture 9: LTL nd Büchi Automt 1 LTL Property Ptterns Quite often the requirements of system follow some simple ptterns. Sometimes we wnt to specify tht property should only hold in certin context, clled
More informationQUADRATIC EQUATIONS OBJECTIVE PROBLEMS
QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.
More informationUniversitaireWiskundeCompetitie. Problem 2005/4A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that
Problemen/UWC NAW 5/7 nr juni 006 47 Problemen/UWC UniversitireWiskundeCompetitie Edition 005/4 For Session 005/4 we received submissions from Peter Vndendriessche, Vldislv Frnk, Arne Smeets, Jn vn de
More informationThe Bernoulli Numbers John C. Baez, December 23, x k. x e x 1 = n 0. B k n = n 2 (n + 1) 2
The Bernoulli Numbers John C. Bez, December 23, 2003 The numbers re defined by the eqution e 1 n 0 k. They re clled the Bernoulli numbers becuse they were first studied by Johnn Fulhber in book published
More informationa a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.
Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting
More information4.1. Probability Density Functions
STT 1 4.14. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile  vers  discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of
More informationMA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.
MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.
More information63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationFractions arise to express PART of a UNIT 1 What part of an HOUR is thirty minutes? Fifteen minutes? tw elve minutes? (The UNIT here is HOUR.
6 FRACTIONS sics MATH 0 F Frctions rise to express PART of UNIT Wht prt of n HOUR is thirty minutes? Fifteen minutes? tw elve minutes? (The UNIT here is HOUR.) Wht frction of the children re hppy? (The
More information8 factors of x. For our second example, let s raise a power to a power:
CH 5 THE FIVE LAWS OF EXPONENTS EXPONENTS WITH VARIABLES It s no time for chnge in tctics, in order to give us deeper understnding of eponents. For ech of the folloing five emples, e ill stretch nd squish,
More informationParallel Projection Theorem (Midpoint Connector Theorem):
rllel rojection Theorem (Midpoint onnector Theorem): The segment joining the midpoints of two sides of tringle is prllel to the third side nd hs length onehlf the third side. onversely, If line isects
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationGrammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages
5//6 Grmmr Automt nd Lnguges Regulr Grmmr Contextfree Grmmr Contextsensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive
More informationFact: All polynomial functions are continuous and differentiable everywhere.
Dierentibility AP Clculus Denis Shublek ilernmth.net Dierentibility t Point Deinition: ( ) is dierentible t point We write: = i nd only i lim eists. '( ) lim = or '( ) lim h = ( ) ( ) h 0 h Emple: The
More informationComplexity in Modal Team Logic
ThI Theoretische Informtik Complexity in Modl Tem Logic JulinSteffen Müller Theoretische Informtik 18. Jnur 2012 Theorietg 2012 Theoretische Informtik Inhlt 1 Preliminries 2 Closure properties 3 Model
More informationPartial Differential Equations
Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for OneDimensionl Eqution The reen s function provides complete solution to boundry
More informationMatrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More informationNUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
More informationArithmetic & Algebra. NCTM National Conference, 2017
NCTM Ntionl Conference, 2017 Arithmetic & Algebr Hether Dlls, UCLA Mthemtics & The Curtis Center Roger Howe, Yle Mthemtics & Texs A & M School of Eduction Relted Common Core Stndrds First instnce of vrible
More information1 Nondeterministic Finite Automata
1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you
More informationContinuity. Recall the following properties of limits. Theorem. Suppose that lim. f(x) =L and lim. lim. [f(x)g(x)] = LM, lim
Recll the following properties of limits. Theorem. Suppose tht lim f() =L nd lim g() =M. Then lim [f() ± g()] = L + M, lim [f()g()] = LM, if M = 0, lim f() g() = L M. Furthermore, if f() g() for ll, then
More informationa,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1
CS4 45 Determinisitic Finite Automt : Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother
More informationThe problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.
ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion
More informationMACsolutions of the nonexistent solutions of mathematical physics
Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences  Finite Elements  Finite Volumes  Boundry Elements MACsolutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE
More informationANALYTIC SOLUTION OF QUARTIC AND CUBIC POLYNOMIALS. A J Helou, BCE, M.Sc., Ph.D. August 1995
ANALYTIC SOLUTION OF QUARTIC AND CUBIC POLYNOMIALS By A J Helou, BCE, M.Sc., Ph.D. August 995 CONTENTS REAL AND IMAGINARY ROOTS OF CUBIC AND QUARTIC POLYNOMIALS. INTRODUCTION. COMPUTER PROGRAMS. REAL AND
More informationFundamentals of Electrical Circuits  Chapter 3
Fundmentls of Electricl Circuits Chpter 3 1S. For the circuits shown elow, ) identify the resistors connected in prllel ) Simplify the circuit y replcing prllel connect resistors with equivlent resistor.
More information5: The Definite Integral
5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce
More informationMath 113 Exam 2 Practice
Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number
More informationChapter Gauss Quadrature Rule of Integration
Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to
More informationWaveguide Guide: A and V. Ross L. Spencer
Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationSolutions to Problem Set #1
CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors
More informationConvex Sets and Functions
B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line
More informationNONDETERMINISTIC FSA
Tw o types of nondeterminism: NONDETERMINISTIC FS () Multiple strtsttes; strtsttes S Q. The lnguge L(M) ={x:x tkes M from some strtstte to some finlstte nd ll of x is proessed}. The string x = is
More informationMATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous relvlued function on I), nd let L 1 (I) denote the completion
More informationMapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
More information6.5 Plate Problems in Rectangular Coordinates
6.5 lte rolems in Rectngulr Coordintes In this section numer of importnt plte prolems ill e emined ug Crte coordintes. 6.5. Uniform ressure producing Bending in One irection Consider first the cse of plte
More informationAutomata and Languages
Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Contextfree Grmmr Contextsensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive
More informationE1: CALCULUS  lecture notes
E1: CALCULUS  lecture notes Ştefn Blint Ev Kslik, Simon Epure, Simin Mriş, Aureli Tomoiogă Contents I Introduction 9 1 The notions set, element of set, membership of n element in set re bsic notions of
More informationLesson 4 Linear Algebra
Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,
More informationDiscrete Leastsquares Approximations
Discrete Lestsqures Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
More informationExam 2 Solutions ECE 221 Electric Circuits
Nme: PSU Student ID Numer: Exm 2 Solutions ECE 221 Electric Circuits Novemer 12, 2008 Dr. Jmes McNmes Keep your exm flt during the entire exm If you hve to leve the exm temporrily, close the exm nd leve
More informationEQUIVARIANT CHERNSCHWARTZMACPHERSON CLASSES IN PARTIAL FLAG VARIETIES: INTERPOLATION AND FORMULAE
EQUIVARIANT CHERNSCHWARTZMACPHERSON CLASSES IN PARTIAL FLAG VARIETIES: INTERPOLATION AND FORMULAE R. RIMÁNYI AND A. VARCHENKO Dedicted to Piotr Prgcz on the occsion of his 60th irthdy Astrct. Consider
More informationMETHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS
Journl of Young Scientist Volume III 5 ISSN 448; ISSN CDROM 449; ISSN Online 445; ISSNL 44 8 METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS An ALEXANDRU Scientific Coordintor: Assist
More informationOn the degree of regularity of generalized van der Waerden triples
On the degree of regulrity of generlized vn der Werden triples Jcob Fox Msschusetts Institute of Technology, Cmbridge, MA 02139, USA Rdoš Rdoičić Deprtment of Mthemtics, Rutgers, The Stte University of
More information7  Continuous random variables
71 Continuous rndom vribles S. Lll, Stnford 2011.01.25.01 7  Continuous rndom vribles Continuous rndom vribles The cumultive distribution function The uniform rndom vrible Gussin rndom vribles The Gussin
More informationarxiv: v3 [math.rt] 28 Mar 2017
Reltive cluster tilting ojects in tringulted ctegories Wuzhong Yng nd Bin Zhu Astrct rxiv:504.00093v3 [mth.rt] 8 Mr 07 Assume tht is KrullSchmidt, Homfinite tringulted ctegory with Serre functor nd clustertilting
More informationDiscrete Time Process Algebra with Relative Timing
Discrete Time Process Alger with Reltive Timing J.C.M. Beten nd M.A. Reniers Deprtment of Mthemtics nd Computing Science, Eindhoven University of Technology, P.O. Box 513, NL5600 MB Eindhoven, The Netherlnds
More informationUsing integration tables
Using integrtion tbles Integrtion tbles re inclue in most mth tetbooks, n vilble on the Internet. Using them is nother wy to evlute integrls. Sometimes the use is strightforwr; sometimes it tkes severl
More informationNondeterministic Finite Automata
Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)
More informationChapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)
C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,
More informationFrom the Numerical. to the Theoretical in. Calculus
From the Numericl to the Theoreticl in Clculus Teching Contemporry Mthemtics NCSSM Ferury 67, 003 Doug Kuhlmnn Phillips Acdemy Andover, MA 01810 dkuhlmnn@ndover.edu How nd Why Numericl Integrtion Should
More informationExponents and Polynomials
C H A P T E R 5 Eponents nd Polynomils ne sttistic tht cn be used to mesure the generl helth of ntion or group within ntion is life epectncy. This dt is considered more ccurte thn mny other sttistics becuse
More informationUniversity of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10
University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin
More informationPlate Theory. Section 11: PLATE BENDING ELEMENTS
Section : PLATE BENDING ELEMENTS Plte Theor A plte is structurl element hose mid surfce lies in flt plne. The dimension in the direction norml to the plne is referred to s the thickness of the plte. A
More information1.3 The log laws. Inverse functions. We have defined logx as the index needed to write x as a power of 10. For example:
1.3 The log lws Inverse functions. We hve defined log s the inde needed to write s power of. For emple: since 1.8 = 66.07 we hve log66.07 = 1.8 Note tht wht this sys is tht the functions f() = nd g() =
More informationDiophantine Steiner Triples and PythagoreanType Triangles
Forum Geometricorum Volume 10 (2010) 93 97. FORUM GEOM ISSN 15341178 Diophntine Steiner Triples nd PythgorenType Tringles ojn Hvl bstrct. We present connection between Diophntine Steiner triples (integer
More informationπ,π is the angle FROM a! TO b
Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two
More informationOrdinal diagrams. By Gaisi TAKEUTI. (Received April 5, 1957) $(a)\frac{s_{1}s_{2}}{(b)\frac{s_{3}s_{4}}{(c)\frac{s}{s}6\underline{6}}}$ Fig.
cn Journl the Mthemticl Society Jpn Vol 9, No 4, Octor, 1957 Ordinl digrms By Gi TAKEUTI (Received April 5, 1957) In h pper [2] on the constencypro the theory nturl numrs, G Gentzen ssigned to every profigure
More informationPHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule
PHYS 75: Clssicl echnics Sll Oscilltions: Exple A Liner Tritoic olecule A Liner Tritoic olecule x b b x x3 x Experientlly, one ight be interested in the rdition resulted fro the intrinsic oscilltion odes
More informationC1M14. Integrals as Area Accumulators
CM Integrls s Are Accumultors Most tetbooks do good job of developing the integrl nd this is not the plce to provide tht development. We will show how Mple presents Riemnn Sums nd the ccompnying digrms
More informationOrthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationData Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading
Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3dVritionl Method
More informationCHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS
CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS LEARNING OBJECTIVES After stuying this chpter, you will be ble to: Unerstn the bsics
More informationON A CERTAIN PRODUCT OF BANACH ALGEBRAS AND SOME OF ITS PROPERTIES
HE PULISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY Series A OF HE ROMANIAN ACADEMY Volume 5 Number /04 pp. 9 7 ON A CERAIN PRODUC OF ANACH ALGERAS AND SOME OF IS PROPERIES Hossossein JAVANSHIRI Mehdi
More informationPDE Notes. Paul Carnig. January ODE s vs PDE s 1
PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................
More informationEntropy and Ergodic Theory Notes 10: Large Deviations I
Entropy nd Ergodic Theory Notes 10: Lrge Devitions I 1 A chnge of convention This is our first lecture on pplictions of entropy in probbility theory. In probbility theory, the convention is tht ll logrithms
More informationNonLinear & Logistic Regression
NonLiner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find
More information11.1 Exponential Functions
. Eponentil Functions In this chpter we wnt to look t specific type of function tht hs mny very useful pplictions, the eponentil function. Definition: Eponentil Function An eponentil function is function
More informationSimpson s 1/3 rd Rule of Integration
Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?
More informationA little harder example. A block sits at rest on a flat surface. The block is held down by its weight. What is the interaction pair for the weight?
Neton s Ls of Motion (ges 999) 1. An object s velocit vector v remins constnt if nd onl if the net force cting on the object is zero.. hen nonzero net force cts on n object, the object s velocit chnges.
More informationThis enables us to also express rational numbers other than natural numbers, for example:
Overview Study Mteril Business Mthemtis 0506 Alger The Rel Numers The si numers re,,3,4, these numers re nturl numers nd lso lled positive integers. The positive integers, together with the negtive integers
More informationRiemann Stieltjes Integration  Definition and Existence of Integral
 Definition nd Existence of Integrl Dr. Adity Kushik Directorte of Distnce Eduction Kurukshetr University, Kurukshetr Hryn 136119 Indi. Prtition Riemnn Stieltjes Sums Refinement Definition Given closed
More informationFunctions of bounded variation
Division for Mthemtics Mrtin Lind Functions of bounded vrition Mthemtics Clevel thesis Dte: 20060130 Supervisor: Viktor Kold Exminer: Thoms Mrtinsson Krlstds universitet 651 88 Krlstd Tfn 054700 10
More informationComplementing Büchi Automata with a Subsettuple Construction
DEPARTEMENT D INFORMATIQUE DEPARTEMENT FÜR INFORMATIK Bd de Pérolles 90 CH1700 Friourg www.unifr.ch/informtics WORKING PAPER Complementing Büchi Automt with Susettuple Construction J. Allred & U. UltesNitsche
More informationSection 7.1 Area of a Region Between Two Curves
Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region
More informationDepartment of Chemical Engineering ChE101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VII
Tutoril VII: Liner Regression Lst updted 5/8/06 b G.G. Botte Deprtment of Chemicl Engineering ChE0: Approches to Chemicl Engineering Problem Solving MATLAB Tutoril VII Liner Regression Using Lest Squre
More informationNonblocking Supervisory Control of Nondeterministic Systems via Prioritized Synchronization 1
Nonblocking Supervisory Control of Nondeterministic Systems vi Prioritized Synchroniztion 1 Rtnesh Kumr Deprtment of Electricl Engineering University of Kentucky Lexington, KY 405060046 Emil: kumr@engr.uky.edu
More informationOverview HC9. Parsing: TopDown & LL(1) ContextFree Grammars (1) Introduction. CFGs (3) ContextFree Grammars (2) Vertalerbouw HC 9: Ch.
Overview H9 Vertlerouw H 9: Prsing: opdown & LL(1) do 3 mei 2001 56 heo Ruys h. 8  Prsing 8.1 ontextfree Grmmrs 8.2 opdown Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough
More informationChapter 2 Fundamental Concepts
Chpter 2 Fundmentl Concepts This chpter describes the fundmentl concepts in the theory of time series models In prticulr we introduce the concepts of stochstic process, men nd covrince function, sttionry
More informationWe know that if f is a continuous nonnegative function on the interval [a, b], then b
1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going
More informationCHAPTER 3 LOGIC GATES & BOOLEAN ALGEBRA
CHPTER 3 LOGIC GTES & OOLEN LGER C H P T E R O U T C O M E S Upon completion of this chapter, student should be able to: 1. Describe the basic logic gates operation 2. Construct the truth table for basic
More informationDrill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100.
Drill Exercise  1 1 Find the coordintes of the vertices, foci, eccentricit nd the equtions of the directrix of the hperol 4x 5 = 100 Find the eccentricit of the hperol whose ltusrectum is 8 nd conjugte
More informationPoint Groups and Space Groups in Geometric Algebra
Point Groups nd Spce Groups in Geometric Alger Dvid Hestenes Deprtment of Physics nd Astronomy Arizon Stte University, Tempe, Arizon, USA Astrct. Geometric lger provides the essentil foundtion for new
More informationActa Universitatis Carolinae. Mathematica et Physica
Act Universittis Croline. Mthemtic et Physic Thoms N. Vougiouklis Cyclicity in specil clss of hypergroups Act Universittis Croline. Mthemtic et Physic, Vol. 22 (1981), No. 1, 36 Persistent URL: http://dml.cz/dmlcz/142458
More informationAnalogical Dissimilarity: definition, algorithms and first experiments in machine learning
Anlogicl Dissimilrity: definition, lgorithms nd first experiments in mchine lerning Lurent Miclet, Arnud Delhy To cite this version: Lurent Miclet, Arnud Delhy. Anlogicl Dissimilrity: definition, lgorithms
More informationThe Thermodynamics of Aqueous Electrolyte Solutions
18 The Thermodynmics of Aqueous Electrolyte Solutions As discussed in Chpter 10, when slt is dissolved in wter or in other pproprite solvent, the molecules dissocite into ions. In queous solutions, strong
More informationMultiplicative Versions of Infinitesimal Calculus
Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D
More informationWave Equation on a Two Dimensional Rectangle
Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c
More informationMATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.
MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded
More information