AVL Trees. D Oisín Kidney. August 2, 2018

Size: px
Start display at page:

Download "AVL Trees. D Oisín Kidney. August 2, 2018"

Transcription

1 AVL Trees D Oisín Kidne August 2, 2018 Astrt This is verified implementtion of AVL trees in Agd, tking ides primril from Conor MBride s pper How to Keep Your Neighours in Order [2] nd the Agd stndrd lirr [1]. Contents 1 Introdution 2 2 Bounded 2 3 Blne 3 4 The Tree Tpe 3 5 Rottions Right Rottion Left Rottion Insertion 6 7 Lookup 7 8 Deletion Unons Widening nd Trnsitivit Joining Full Deletion Altertion Pkging Dependent Mp Non-Dependent (Simple) Mp Set

2 1 Introdution First, some imports. {-# OPTIONS --without-k #-} open import Reltion.Binr open import Reltion.Binr.PropositionlEqulit open import Level using (Lift; lift; _ _; lower) open import Dt.Nt s N using (N; su; zero; pred) open import Dt.Produt open import Dt.Unit open import Dt.Me open import Funtion open import Dt.Bool open import Dt.Empt Net, we delre module: the entiret of the following ode is prmeterized over the ke tpe, nd strit totl order on tht ke. module AVL {k r} (Ke : Set k) {_<_ : Rel Ke r} (isstrittotlorder : IsStritTotlOrder _ <_) where open IsStritTotlOrder isstrittotlorder 2 Bounded The si ide of the verified implementtion is to store in eh lef proof tht the upper nd lower ounds of the trees to its left nd right re ordered ppropritel. Aordingl, the tree tpe itself will hve to hve the upper nd lower ounds in its indies. But wht re the upper nd lower ounds of tree with no neighours? To desrie this se, we dd lower nd upper ounds to our ke tpe. module Bounded where infi 5 [_] dt [ ] : Set k where : [ ] [_] : (k : Ke) [ ] This tpe itself dmits n ordering reltion. infi 4 _[<] [<]_ : [ ] [ ] Set r 2

3 [<] = Lift r [<] = Lift r [<] [ _ ] = Lift r [<] _ = Lift r [ _ ] [<] = Lift r [ _ ] [<] = Lift r [ ] [<] [ ] = < Finll, we n desrie vlue s eing in ounds like so. infi 4 _<_< <_<_ : [ ] Ke [ ] Set r l < < u = l [<] [ ] [ ] [<] u 3 Blne To desrie the lne of the tree, we use the following tpe: dt _ _ _ : N N N Set where : {n} su n n su n : {n} n n n : {n} n su n su n The tree n e either left- or right-hev ( one), or even. The indies of the tpe re phrsed s proof: m(, ) = z (1) The height of tree is the mimum height of its two sutrees, plus one. Storing proof of the mimum in this w will prove useful lter. We will lso need some omintors for lne: : { z} z z z = = = : { z} z z z = = = 4 The Tree Tpe The tpe itself is indeed the lower nd upper ounds, some vlue to store with the kes, nd height. In using the lne tpe defined erlier, we ensure tht the hildren of node nnot differ in height 3

4 more thn 1. The ounds proofs lso ensure tht the tree must e ordered orretl. dt Tree {v} (V : Ke Set v) (l u : [ ]) : N Set (k v r) where lef : (l<u : l [<] u) Tree V l u 0 node : {h lh rh} (k : Ke) (v : V k) (l : lh rh h) (lk : Tree V l [ k ] lh) (ku : Tree V [ k ] u rh) Tree V l u (su h) 5 Rottions AVL trees re relned rottions: if, fter n insert or deletion, the lne invrint hs een violted, one of these rottions is performed s orretion. Before we implement the rottions, we need w to desrie tree whih m hve inresed in height. We n do this with desriptive tpe: _1?+ _ : {l} (T : N Set l) N Set l T 1?+ n = [ in? ] T (if in? then su n else n) pttern 0+_ tr = flse, tr pttern 1+_ tr = true, tr Lter, we will lso need to desrie tree whih m hve deresed in height. For this, we will use presriptive tpe (in other words, where the previous tpe ws prmeterized, this one will e indeed). dt _ _? 1 {l} (T : N Set l) : N Set l where _ 0 : {n} T n T n? 1 _ 1 : {n} T n T su n? 1 Wheres the previous onstrution would tell ou the height of tree fter pttern mthing on it, this definition will refine n informtion ou lred hve out the height of the tree. In ertin irumstnes, ou n onvert etween the two: 1?+ _? 1 : {n l} {T : N Set l} T 1?+ n T su n? 1 1?+ 0+? 1 = 1 1?+ 1+? 1 = 0 4

5 5.1 Right Rottion When the left sutree eomes too hev, we rotte the tree to the right. rot r : {l u rh v} {V : Ke Set v} (k : Ke) V k Tree V l [ k ] (su (su rh)) Tree V [ k ] u rh Tree V l u 1?+ su (su rh) This rottion omes in two vrieties: single nd doule. Single rottion n e seen in figure 1. Figure 1: Single right-rottion rot r v (node v ) = 0+ (node v (node v rot r v (node v ) = 1+ (node v (node v )) )) And doule rottion in figure 2. d z z d Figure 2: Doule right-rottion rot r v (node v (node z zv l )) d = 0+ (node z zv (node v ( l) ) (node v ( l) d)) 5.2 Left Rottion Left-rottion is essentill the inverse of right. 5

6 rot l : {l u lh v} {V : Ke Set v} (k : Ke) V k Tree V l [ k ] lh Tree V [ k ] u (su (su lh)) Tree V l u 1?+ su (su lh) Single (seen in figure 3). Figure 3: Single left-rottion rot l v (node v ) = 0+ (node v (node v ) ) rot l v (node v ) = 1+ (node v (node v nd doule (figure 4): ) ) d z z d Figure 4: Doule left-rottion rot l v d (node v (node z zv l ) ) = 0+ (node z zv (node v ( l) d ) (node v ( l) )) 6 Insertion After the rottions, insertion is reltivel es. suppl omining funtion. We llow the ller to insert : {l u h v} {V : Ke Set v} (k : Ke) V k 6

7 (V k V k V k) Tree V l u h l < k < u Tree V l u 1?+ h insert v v f (lef l<u) (l, u) = 1+ (node v v (lef l) (lef u)) insert v v f (node k k l tl tr) prf with ompre v k insert v v f (node k k l tl tr) (l, _) tri< with insert v v f tl (l, ) tl = 0+ (node k k l tl tr) tl with l... = rot r k k tl tr... = 1+ (node k k tl tr)... = 0+ (node k k tl tr) insert v v f (node k k l tl tr) _ tri _ refl _ = 0+ (node k (f v k) l tl tr) insert v v f (node k k l tl tr) (_, u) tri> with insert v v f tr (, u) tr = 0+ (node k k l tl tr ) tr with l... = 0+ (node k k tl tr )... = 1+ (node k k tl tr )... = rot l k k tl tr 7 Lookup Lookup is lso ver simple. No invrints re needed here. lookup : (k : Ke) {l u s v} {V : Ke Set v} Tree V l u s Me (V k) lookup k (lef l<u) = nothing lookup k (node v v _ tl tr) with ompre k v... tri< _ = lookup k tl... tri _ refl _ = just v... tri> _ = lookup k tr 8 Deletion Deletion is fr the most omple opertion out of the three provided here. For deletion from norml BST, ou go to the node where the desired vlue is, perform n unons opertion on the right sutree, use tht s our root node, nd merge the two remining hildren. 7

8 8.1 Unons First then, we need to define unons. We ll use ustom tpe s the return tpe from our unons funtion, whih stores the minimum element from the tree, nd the rest of the tree: reord Cons {v} (V : Ke Set v) (l u : [ ]) (h : N) : Set (k v r) where onstrutor ons field hed : Ke vl : V hed l<u : l [<] [ hed ] til : Tree V [ hed ] u 1?+ h You ll notie it lso stores proof tht the etrted element preserves the lower ound. unons : {l u h lh rh v} {V : Ke Set v} (k : Ke) V k lh rh h Tree V l [ k ] lh Tree V [ k ] u rh Cons V l u h unons k v (lef l<u) tr = ons k v l<u (se of ń { 0+ tr ; 0+ tr }) unons k v (node k l v l l tl l tr l ) tr with unons k l v l l tl l tr l... ons k v l<u til = ons k v l<u (se til of ń { (1+ tl ) 1+ (node k v tl tr) ; (0+ tl ) se of ń { 0+ node k v tl tr ; 1+ node k v tl tr ; rot l k v tl tr }}) 8.2 Widening nd Trnsitivit To join the two sutrees together fter deletion opertion, we need to weken (or et) the ounds of the left tree. This is n O(log n) opertion. For the eting, we ll need some properties on orderings: : {} [<] Lift r { } = lift lower { } = lift lower {[ _ ]} = lift lower [<]-trns : { z} [<] [<] z [<] z 8

9 [<]-trns {} { } _ <z = { = } <z [<]-trns {_} { } = _ [<]-trns {_} {[ _ ]} = _ [<]-trns {_} {_} (lift ()) _ [<]-trns [ _ ] {} { } _ <z = { = } <z [<]-trns [ _ ] {_} { } = _ [<]-trns [ _ ] { } {[ _ ]} (lift ()) _ [<]-trns [ _ ] { } {[ _ ]} _ (lift ()) [<]-trns [ ] {[ ]} {[ z ]} < <z = IsStritTotlOrder.trns isstrittotlorder < <z Finll, the et funtion itself simpl wlks down the right rnh of the tree until it hits lef. et : {l u u h v} {V : Ke Set v} u [<] u Tree V l u h Tree V l u h et {l} u<u (lef l<u) = lef ([<]-trns l l<u u<u ) et u<u (node k v l tl tr) = node k v l tl (et u<u tr) 8.3 Joining One we hve the two sutrees tht will form the hildren of our repled node, we need to join them together, djusting the tpes ordingl. join : {l u lh rh h v k} {V : Ke Set v} Tree V [ k ] u rh lh rh h Tree V l [ k ] lh Tree V l u 1?+ h join (lef k<u) tl = 0+ et k<u tl join {l} (lef k<u) (lef l<k) = 0+ lef ([<]-trns l l<k k<u) join (node k r v r r tl r tr r ) tl with unons k r v r r tl r tr r... ons k v l<u (1+ tr ) = 1+ node k v (et l<u tl) tr... ons k v l<u (0+ tr ) with... = rot r k v (et l<u tl) tr... = 1+ node k v (et l<u tl) tr... = 0+ node k v (et l<u tl) tr 8.4 Full Deletion The deletion funtion is no mens simple, ut it does mintin the orret ompleit ounds. delete : {l u h v} {V : Ke Set v} (k : Ke) 9

10 Tree V l u h Tree V l u h? 1 delete (lef l<u) = lef l<u 0 delete (node v l r) with ompre delete (node. v l r) tri _ refl _ = 1?+ join r l? 1 delete (node v l r) tri< with delete l... l 0 = node v l r 0... l 1 with... = node v l r 1... = node v l r 0... = 1?+ rot l v l r? 1 delete (node v l r) tri> with delete r... r 0 = node v l r 0... r 1 with... = 1?+ rot r v l r? 1... = node v l r 0... = node v l r 1 9 Altertion This is omintion of insertion nd deletion: it lets the user suppl funtion to modif, insert, or remove n element, depending on the element lred in the tree. As it n oth inrese nd derese the size of the tree, we need wrpper to represent tht: dt _ _ ±1 {l} (T : N Set l) : N Set l where 1+ _ : {n} T (su n) T n ±1 _ : {n} T n T n ±1 _ 1 : {n} T n T su n ±1 1?+ _ 1 : {n l} {T : N Set l} T 1?+ n T su n ±1 1? = 1 1? = 1?+ _ +1 : {n l} {T : N Set l} T 1?+ n T n ±1 1? = 1? = 1+ And then the funtion itself. It s long, ut ou should e le to see the deletion nd insertion omponents. lter : {l u h v} {V : Ke Set v} (k : Ke) 10

11 (Me (V k) Me (V k)) Tree V l u h l < k < u Tree V l u h ±1 lter f (lef l<u) (l, u) with f nothing... just v = 1+ node v (lef l) (lef u)... nothing = lef l<u lter f (node v tl tr) (l, u) with ompre lter f (node. v tl tr) (l, u) tri _ refl _ with f (just v)... just v = node v tl tr... nothing = 1?+ join tr tl 1 lter f (node v tl tr) (l, u) tri< with lter f tl (l, )... tl _ = node v tl tr tl = 1?+ rot r v tl tr tl = 1+ node v tl tr tl = node v tl tr... tl 1 = node v tl tr 1... tl 1 = node v tl tr... tl 1 = 1?+ rot l v tl tr 1 lter f (node v tl tr) (l, u) tri> with lter f tr (, u)... tr _ = node v tl tr tr = node v tl tr tr = 1+ node v tl tr tr... tr 1... tr 1... tr 1 = 1?+ rot l v tl tr +1 = 1?+ rot r v tl tr 1 = node v tl tr = node v tl tr 1 We n lso write lterf, in the lens stle. open import Ctegor.Funtor using (RwFuntor) MeVl : {v} (V : Set v) Set (k r v) MeVl V = Lift (k r) (Me V) lterf : {l u h v} {V : Ke Set v} ( : Ke) {F : Set (k r v) Set (k r v)} {{funtor : RwFuntor F}} (Me (V ) F (MeVl (V ))) Tree V l u h l < < u F (Tree V l u h ±1) lterf {l} {u} {h} {_} {V} {F} {{funtor}} f root nds = go root nds id 11

12 where _<&>_ : {A B} F A (A B) F B s <&> f = RwFuntor._<$>_ funtor f s go : {l u h } Tree V l u h l < < u (Tree V l u h ±1 Tree V l u h ±1) F (Tree V l u h ±1) go (lef l<u) (l, u) k = f nothing <&> ń { (lift nothing) root ; (lift (just v)) k 1+ node v (lef l) (lef u) } go (node v tl tr) (l, u) k with ompre go (node. v tl tr) (l, u) k tri _ refl _ = f (just v) <&> ń { (lift nothing) k 1?+ join tr tl 1 ; (lift (just v)) k node v tl tr } go (node v tl tr) (l, u) k tri< = go tl (l, ) (k ń { tl node v tl tr ; 1+ tl se of ń { 1?+ rot r v tl tr +1 ; 1+ node v tl tr node v tl tr } ; tl 1 se of ń { node v tl tr 1 ; node v tl tr ; ; 1?+ rot l v tl tr 1 }}) go (node v tl tr) (l, u) k tri> = go tr (, u) (k ń { tr node v tl tr ; 1+ tr se of ń { node v tl tr ; 1+ node v tl tr 1?+ rot l v tl tr +1 } ; tr 1 se of ń { 1?+ rot r v tl tr 1 ; node v tl tr node v tl tr 1 }}) ; ; 10 Pkging Users don t need to e eposed to the indies on the full tree tpe: here, we pkge it in thee forms Dependent Mp module DependntMp where dt Mp {v} (V : Ke Set v) : Set (k v r) where 12

13 tree : {h} Bounded.Tree V Bounded. Bounded. h Mp V insertwith : {v} {V : Ke Set v} (k : Ke) V k (V k V k V k) Mp V Mp V insertwith k v f (tree tr) = tree (proj 2 (Bounded.insert k v f tr (lift tt, lift tt))) insert : {v} {V : Ke Set v} (k : Ke) V k Mp V Mp V insert k v = insertwith k v onst lookup : (k : Ke) {v} {V : Ke Set v} Mp V Me (V k) lookup k (tree tr) = Bounded.lookup k tr delete : (k : Ke) {v} {V : Ke Set v} Mp V Mp V delete k (tree tr) with Bounded.delete k tr... tr Bounded. 0 = tree tr... tr Bounded. 1 = tree tr lter : (k : Ke) {v} {V : Ke Set v} (Me (V k) Me (V k)) Mp V Mp V lter k f (tree tr) with Bounded.lter k f tr (lift tt, lift tt)... Bounded.1+ tr = tree tr... Bounded. tr = tree tr... Bounded. tr 1 = tree tr 10.2 Non-Dependent (Simple) Mp module Mp where dt Mp {v} (V : Set v) : Set (k v r) where 13

14 tree : {h} Bounded.Tree (onst V) Bounded. Bounded. h Mp V insertwith : {v} {V : Set v} (k : Ke) V (V V V) Mp V Mp V insertwith k v f (tree tr) = tree (proj 2 (Bounded.insert k v f tr (lift tt, lift tt))) empt : {v} {V : Set v} Mp V empt = tree (Bounded.lef (lift tt)) insert : {v} {V : Set v} (k : Ke) V Mp V Mp V insert k v = insertwith k v onst lookup : (k : Ke) {v} {V : Set v} Mp V Me V lookup k (tree tr) = Bounded.lookup k tr delete : (k : Ke) {v} {V : Set v} Mp V Mp V delete k (tree tr) with Bounded.delete k tr... tr Bounded. 0 = tree tr... tr Bounded. 1 = tree tr lter : (k : Ke) {v} {V : Set v} (Me V Me V) Mp V Mp V lter k f (tree tr) with Bounded.lter k f tr (lift tt, lift tt)... Bounded.1+ tr = tree tr... Bounded. tr = tree tr... Bounded. tr 1 = tree tr 10.3 Set Note tht we n t ll the tpe itself Set, s tht s reserved word in Agd. module Sets where dt Set : Set (k r) where tree : {h} Bounded.Tree (onst ) Bounded. Bounded. h Set insert : Ke Set Set insert k (tree tr) = 14

15 tree (proj 2 (Bounded.insert k tt onst tr (lift tt, lift tt))) memer : Ke Set Bool memer k (tree tr) = is-just (Bounded.lookup k tr) delete : (k : Ke) Set Set delete k (tree tr) with Bounded.delete k tr... tr Bounded. 0 = tree tr... tr Bounded. 1 = tree tr Referenes [1] N. A. Dnielsson, The Agd stndrd lirr. [Online]. Aville: [2] C. T. MBride, How to Keep Your Neighours in Order, in Proeedings of the 19th ACM SIG- PLAN Interntionl Conferene on Funtionl Progrmming, ser. ICFP 14. ACM, pp [Online]. Aville: 15

CISC 320 Introduction to Algorithms Spring 2014

CISC 320 Introduction to Algorithms Spring 2014 CISC 20 Introdution to Algorithms Spring 2014 Leture 9 Red-Blk Trees Courtes of Prof. Lio Li 1 Binr Serh Trees (BST) ke[x]: ke stored t x. left[x]: pointer to left hild of x. right[x]: pointer to right

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

Welcome. Balanced search trees. Balanced Search Trees. Inge Li Gørtz

Welcome. Balanced search trees. Balanced Search Trees. Inge Li Gørtz Welome nge Li Gørt. everse tehing n isussion of exerises: 02110 nge Li Gørt 3 tehing ssistnts 8.00-9.15 Group work 9.15-9.45 isussions of your solutions in lss 10.00-11.15 Leture 11.15-11.45 Work on exerises

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information

50 AMC Lectures Problem Book 2 (36) Substitution Method

50 AMC Lectures Problem Book 2 (36) Substitution Method 0 AMC Letures Prolem Book Sustitution Metho PROBLEMS Prolem : Solve for rel : 9 + 99 + 9 = Prolem : Solve for rel : 0 9 8 8 Prolem : Show tht if 8 Prolem : Show tht + + if rel numers,, n stisf + + = Prolem

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms Core Logrithms nd eponentils Setion : Introdution to logrithms Notes nd Emples These notes ontin subsetions on Indies nd logrithms The lws of logrithms Eponentil funtions This is n emple resoure from MEI

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 5 Supplement Greedy Algorithms Cont d Minimizing lteness Ching (NOT overed in leture) Adm Smith 9/8/10 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov,

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

EXPECTED ANSWERS/VALUE POINTS SECTION - A

EXPECTED ANSWERS/VALUE POINTS SECTION - A 6 QUESTION PPE ODE 65// EXPETED NSWES/VLUE POINTS SETION - -.... 6. / 5. 5 6. 5 7. 5. ( ) { } ( ) kˆ ĵ î kˆ ĵ î r 9. or ( ) kˆ ĵ î r. kˆ ĵ î m SETION - B.,, m,,, m O Mrks m 9 5 os θ 9, θ eing ngle etween

More information

Connected-components. Summary of lecture 9. Algorithms and Data Structures Disjoint sets. Example: connected components in graphs

Connected-components. Summary of lecture 9. Algorithms and Data Structures Disjoint sets. Example: connected components in graphs Prm University, Mth. Deprtment Summry of lecture 9 Algorithms nd Dt Structures Disjoint sets Summry of this lecture: (CLR.1-3) Dt Structures for Disjoint sets: Union opertion Find opertion Mrco Pellegrini

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q5 of Paper 2 Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

The Shortest Path Problem Graph Algorithms - 3

The Shortest Path Problem Graph Algorithms - 3 Algorithm Deign nd Anli Vitor Admhik C - pring Leture Feb, Crnegie Mellon Univerit The hortet Pth Problem Grph Algorithm - The hortet Pth Problem Given poitivel weighted grph G with oure verte, find the

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

are coplanar. ˆ ˆ ˆ and iˆ

are coplanar. ˆ ˆ ˆ and iˆ SML QUSTION Clss XII Mthemtis Time llowed: hrs Mimum Mrks: Generl Instrutions: i ll questions re ompulsor ii The question pper onsists of 6 questions divided into three Setions, B nd C iii Question No

More information

Exercise sheet 6: Solutions

Exercise sheet 6: Solutions Eerise sheet 6: Solutions Cvet emptor: These re merel etended hints, rther thn omplete solutions. 1. If grph G hs hromti numer k > 1, prove tht its verte set n e prtitioned into two nonempt sets V 1 nd

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames

GRAND PLAN. Visualizing Quaternions. I: Fundamentals of Quaternions. Andrew J. Hanson. II: Visualizing Quaternion Geometry. III: Quaternion Frames Visuliing Quternions Andrew J. Hnson Computer Siene Deprtment Indin Universit Siggrph Tutoril GRAND PLAN I: Fundmentls of Quternions II: Visuliing Quternion Geometr III: Quternion Frmes IV: Clifford Algers

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4 Semnti nlysis SI 16 Priniples of Progrmming Lnguges Fulty of omputer Siene Dlhousie University Winter 2012 Reding: hpter 4 Motivtion Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree

More information

Math Lesson 4-5 The Law of Cosines

Math Lesson 4-5 The Law of Cosines Mth-1060 Lesson 4-5 The Lw of osines Solve using Lw of Sines. 1 17 11 5 15 13 SS SSS Every pir of loops will hve unknowns. Every pir of loops will hve unknowns. We need nother eqution. h Drop nd ltitude

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF DOWNLOAD FREE FROM www.tekoclsses.com, PH.: 0 903 903 7779, 98930 5888 Some questions (Assertion Reson tpe) re given elow. Ech question contins Sttement (Assertion) nd Sttement (Reson). Ech question hs

More information

Table of Content. c 1 / 5

Table of Content. c 1 / 5 Tehnil Informtion - t nd t Temperture for Controlger 03-2018 en Tble of Content Introdution....................................................................... 2 Definitions for t nd t..............................................................

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Graph width-parameters and algorithms

Graph width-parameters and algorithms Grph width-prmeters nd lgorithms Jisu Jeong (KAIST) joint work with Sigve Hortemo Sæther nd Jn Arne Telle (University of Bergen) 2015 KMS Annul Meeting 2015.10.24. YONSEI UNIVERSITY Grph width-prmeters

More information

Exploring parametric representation with the TI-84 Plus CE graphing calculator

Exploring parametric representation with the TI-84 Plus CE graphing calculator Exploring prmetric representtion with the TI-84 Plus CE grphing clcultor Richrd Prr Executive Director Rice University School Mthemtics Project rprr@rice.edu Alice Fisher Director of Director of Technology

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

SEMANTIC ANALYSIS PRINCIPLES OF PROGRAMMING LANGUAGES. Norbert Zeh Winter Dalhousie University 1/28

SEMANTIC ANALYSIS PRINCIPLES OF PROGRAMMING LANGUAGES. Norbert Zeh Winter Dalhousie University 1/28 SEMNTI NLYSIS PRINIPLES OF PROGRMMING LNGUGES Norbert Zeh Winter 2018 Dlhousie University 1/28 PROGRM TRNSLTION FLOW HRT Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree Prser (syntti

More information

CS241 Week 6 Tutorial Solutions

CS241 Week 6 Tutorial Solutions 241 Week 6 Tutoril olutions Lnguges: nning & ontext-free Grmmrs Winter 2018 1 nning Exerises 1. 0x0x0xd HEXINT 0x0 I x0xd 2. 0xend--- HEXINT 0xe I nd ER -- MINU - 3. 1234-120x INT 1234 INT -120 I x 4.

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

] dx (3) = [15x] 2 0

] dx (3) = [15x] 2 0 Leture 6. Double Integrls nd Volume on etngle Welome to Cl IV!!!! These notes re designed to be redble nd desribe the w I will eplin the mteril in lss. Hopefull the re thorough, but it s good ide to hve

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Solids of Revolution

Solids of Revolution Solis of Revolution Solis of revolution re rete tking n re n revolving it roun n is of rottion. There re two methos to etermine the volume of the soli of revolution: the isk metho n the shell metho. Disk

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272. Geometry of the irle - hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion

More information

Logarithms LOGARITHMS.

Logarithms LOGARITHMS. Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the

More information

DATABASE DESIGN I - 1DL300

DATABASE DESIGN I - 1DL300 DATABASE DESIGN I - DL300 Fll 00 An introductory course on dtse systems http://www.it.uu.se/edu/course/homepge/dstekn/ht0/ Mnivskn Sesn Uppsl Dtse Lortory Deprtment of Informtion Technology, Uppsl University,

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

The practical version

The practical version Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

DATABASTEKNIK - 1DL116

DATABASTEKNIK - 1DL116 DATABASTEKNIK - DL6 Spring 004 An introductury course on dtse systems http://user.it.uu.se/~udl/dt-vt004/ Kjell Orsorn Uppsl Dtse Lortory Deprtment of Informtion Technology, Uppsl University, Uppsl, Sweden

More information

DA 3: The Mean Value Theorem

DA 3: The Mean Value Theorem Differentition pplictions 3: The Men Vlue Theorem 169 D 3: The Men Vlue Theorem Model 1: Pennslvni Turnpike You re trveling est on the Pennslvni Turnpike You note the time s ou pss the Lenon/Lncster Eit

More information

m A 1 1 A ! and AC 6

m A 1 1 A ! and AC 6 REVIEW SET A Using sle of m represents units, sketh vetor to represent: NON-CALCULATOR n eroplne tking off t n ngle of 8 ± to runw with speed of 6 ms displement of m in north-esterl diretion. Simplif:

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Prllel nd Distriuted Dt Proessing Spring 06 Network Prtitions Susets of nodes m e isolted or nodes m e slow in responding Notes 8: Network Prtitions CS 347 Notes 8 Network Prtitions Cuses ired network

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences Lecture 6 epresenttions epresenttions TE52 - Electronics Fundmentls ugust 24 ern University of pplied ciences ev. c2d5c88 6. Integers () sign-nd-mgnitude representtion The set of integers contins the Nturl

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

Data Structures (INE2011)

Data Structures (INE2011) Dt Strutures (INE2011) Eletronis nd Communition Engineering Hnyng University Hewoon Nm Leture 7 INE2011 Dt Strutures 1 Binry Tree Trversl Mny inry tree opertions re done y perorming trversl o the inry

More information

21.1 Using Formulae Construct and Use Simple Formulae Revision of Negative Numbers Substitution into Formulae

21.1 Using Formulae Construct and Use Simple Formulae Revision of Negative Numbers Substitution into Formulae MEP Jmi: STRAND G UNIT 1 Formule: Student Tet Contents STRAND G: Alger Unit 1 Formule Student Tet Contents Setion 1.1 Using Formule 1. Construt nd Use Simple Formule 1.3 Revision of Negtive Numers 1.4

More information

Mathematics SKE: STRAND F. F1.1 Using Formulae. F1.2 Construct and Use Simple Formulae. F1.3 Revision of Negative Numbers

Mathematics SKE: STRAND F. F1.1 Using Formulae. F1.2 Construct and Use Simple Formulae. F1.3 Revision of Negative Numbers Mthemtis SKE: STRAND F UNIT F1 Formule: Tet STRAND F: Alger F1 Formule Tet Contents Setion F1.1 Using Formule F1. Construt nd Use Simple Formule F1.3 Revision of Negtive Numers F1.4 Sustitution into Formule

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

MATHEMATICS PAPER & SOLUTION

MATHEMATICS PAPER & SOLUTION MATHEMATICS PAPER & SOLUTION Code: SS--Mtemtis Time : Hours M.M. 8 GENERAL INSTRUCTIONS TO THE EXAMINEES:. Cndidte must write first is / er Roll No. on te question pper ompulsorily.. All te questions re

More information

Special Numbers, Factors and Multiples

Special Numbers, Factors and Multiples Specil s, nd Student Book - Series H- + 3 + 5 = 9 = 3 Mthletics Instnt Workooks Copyright Student Book - Series H Contents Topics Topic - Odd, even, prime nd composite numers Topic - Divisiility tests

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

QUESTION PAPER CODE 65/1/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A. 1 x = 8. x = π 6 SECTION - B

QUESTION PAPER CODE 65/1/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A. 1 x = 8. x = π 6 SECTION - B QUESTION PPER CODE 65// EXPECTED NSWERS/VLUE POINTS SECTION - -.. 5. { r ( î ĵ kˆ ) } ( î ĵ kˆ ) or Mrks ( î ĵ kˆ ) r. /. 5. 6. 6 7. 9.. 8. 5 5 6 m SECTION - B. f () ( ) ( ) f () >, (, ) U (, ) m f ()

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information