Chapter 3 Digital Transmission Fundamentals

Size: px
Start display at page:

Download "Chapter 3 Digital Transmission Fundamentals"

Transcription

1 Chapter 3 Digital Transmissin Fundamentals Errr Detectin and Crrectin CSE 3213, Winter 2010 Instructr: Frhar Frzan

2 Mdul-2 Arithmetic Mdul 2 arithmetic is perfrmed digit y digit n inary numers. Each digit is cnsidered independently frm its neighurs. Numers are nt carried r rrwed. 2

3 Data Link layer 3

4 Chapter 3 Digital Transmissin Fundamentals Errr Detectin and Crrectin

5 Errr Cntrl Why Errr Cntrl? data sent frm ne cmputer t anther shuld e transferred relialy unfrtunately, the physical link cannt guarantee that all its, in each frame, will e transferred withut errrs errr cntrl techniques are aimed at imprving the errr-rate perfrmance ffered t upper layer(s), i.e. end-applicatin Praility f Single-Bit Errr Appraches t Errr Cntrl aka it errr rate (BER) : wireless medium: p =10-3 cpper-wire: p =10-6 fire ptics: p =10-9 (1) Errr Detectin + Autmatic Retransmiss. Request (ARQ) fewer verhead its return channel required lnger errr-crrectin prcess and waste f andwidth when errrs are detected (2) Frward Errr Crrectin (FEC) errr detectin + errr crrectin

6 Errr Cntrl Types f Errrs (1) Single Bit Errrs nly ne it in a given data unit (yte, packet, etc.) gets crrupted (2) Burst Errrs tw r mre its in the data unit have een crrupted errrs d nt have t ccur in cnsecutive its urst errrs are typically caused y eternal nise (envirnmental nise) urst errrs are mre difficult t detect / crrect

7 Key Idea redundancy!!! add enugh etra infrmatin (its) fr detectin / crrectin f errrs at the destinatin redundant its = cmpressed versin f riginal data its errr crrectin requires mre redundant its than errr detectin mre redundancy its etter errr cntrl mre verhead Infrmatin its Received infrmatin its Calculate check its k its Sent check its n k its Channel Received check its Recalculate check its Cmpare Infrmatin accepted if check its match f(s) f(s ) 1 0 cmp 0 0

8 Hamming Distance Hamming Distance etween 2 Cdes numer f differences etween crrespnding its can e fund y applying XOR n tw cdewrds and cunting numer f 1s in the result Minimum Hamming Distance (d min ) in a Cde minimum Hamming distance etween all pssile pairs in a set f cdewrds d min it errrs will make ne cdewrd lk like anther larger d min etter rustness t errrs Eample [ k=2, n=5 cde ] Cde that adds 3 redundant its t every 2 infrmatin its, thus resulting in 5-it lng cdewrds.

9 Hamming Distance Minimum Hamming Distance fr Errr Detectin t guarantee detectin f up t s errrs in all cases, the minimum Hamming distance must e d min =s+1 Eample [ cde with d min =2 is ale t detect s=1 it-errrs ] 9

10 Hamming Distance Minimum Hamming Distance fr Errr Crrectin t guarantee crrectin f up t t errrs in all cases, the minimum Hamming distance must e d min =2t+1 Eample [ Hamming distance ] A cde scheme has a Hamming distance d min =4. What is the errr detectin and errr crrectin capaility f this scheme? The cde guarantees the detectin f up t three errrs (s=3), ut it can crrect nly 1-it errrs! 10

11 What is a gd cde? Many channels have preference fr errr patterns that have fewer # f errrs These errr patterns map transmitted cdewrd t neary n-tuple If cdewrds clse t each ther then detectin failures will ccur Gd cdes shuld maimize separatin etween cdewrds = cdewrds = nncdewrds Pr distance prperties Gd distance prperties

12 Errr Detectin: Single Parity Check Errr Detectin Techniques Single Parity Check (Even Parity) Append an verall parity check t k infrmatin its Inf Bits: 1, 2, 3,, k Check Bit: k+1 = k mdul 2 Cdewrd: ( 1, 2, 3,, k,, k+! ) receiver checks if numer f 1s is even receiver CAN DETECT all single-it errrs and urst errrs with dd numer f crrupted its single-it errrs CANNOT e CORRECTED psitin f crrupted it remains unknwn all even-numer urst errrs are undetectale!!!

13 Eample f Single Parity Cde Infrmatin (7 its): (0, 1, 0, 1, 1, 0, 0) Parity Bit: 8 = = 1 Cdewrd (8 its): (0, 1, 0, 1, 1, 0, 0, 1) If single errr in it 3 : (0, 1, 1, 1, 1, 0, 0, 1) # f 1 s =5, dd Errr detected If errrs in its 3 and 5: (0, 1, 1, 1, 0, 0, 0, 1) # f 1 s =4, even Errr nt detected

14 Errr Detectin: Single Parity Check Eample [ single parity check cde C(5,4) ] Single Parity Check Cdes fr ALL parity check cdes, d min = 2 and Minimum Hamming Distance (d min ) 14

15 Errr Detectin: Single Parity Check Effectiveness f Single Parity Check riginal cdewrd: received cdewrd: = [ ' ' = [ ' 2 ' 3... n ]... errr vectr: e = [e e e ] ' n... n e ] e k 1, = 0, if if k k ' k = ' k (1) Randm Errr Vectr Channel Mdel there are 2 n pssile errr vectrs all errr are equally likely e.g. e=[ ] and e=[ ]are equally likely 50% f errr vectrs have an even # f 1s, 50% f errr vectrs have an dd # f 1s praility f errr detectin failure = 0.5 nt very realistic channel mdel!!!

16 Errr Detectin: Single Parity Check (2) Randm Bit Errr Channel Mdel it errrs ccur independently f each ther p = praility f errr in a single-it transmissin (2.1) praility f single it errr (w(e)=1) where w(e) represents the numer f 1s in e it-errr ccurs at an aritrary (ut particular) psitin e 1 =0 e 2 =0 e 3 =1 e n-2 =0 e n-1 =0 e n =0 P( w(e) = 1) = (1 p ) (1 p ) p... (1 p ) (1 p ) (1 p ) praility f crrectly transmitted it n-1 P( w(e) = 1) = (1 p ) p

17 Errr Detectin: Single Parity Check (2.2) praility f tw it errrs: w(e)=2 P( w(e) = 2) = (1 p ) n-2 (p ) 2 = (1 p ) n-1 p p 1 p <1, since p <0.5 p P( w(e) = 2) = P( w(e) = 1) < P( w(e) = 1) 1 p (2.3) praility f w(e)=k it errrs: w(e)=k n-k k n-1 p P( w(e) = k) = (1 p ) (p ) = (1 p ) p = P( ) 1 p w(e) = 1 k 1 ( ) k a 1 P( w(e) = k) <... < P( w(e) = 2) < P( w(e) = 1) 1-it errrs are mre likely 2-it errrs, and s frth! 17

18 Errr Detectin: Single Parity Check (2.4) praility that single parity check fails?! P( errr detectin failure) = P( errr = P( any patterns with even numer f 1s) = 2 it errr ) + P( any 4 it errr ) + P( any = (#f 2 it errrs)*p( w(e) = 2) + + (#f 4 it errrs)* P( w(e) = 4) + + (#f 6 it errrs)*p( w(e) = 6) it errr ) +... = numer f cminatins n chse k : n (#f k it errrs) = = k n! k!(n k)! P( errr detectin failure) n 2 n 2 n 4 n 4 n 6 = p (1 p ) + p (1 p ) + p (1 p ) n 6 prgressively smaller cmpnents

19 Errr Detectin: Single Parity Check Eample [ praility f errr detectin failure ] Assume there are n=32 its in a cdewrd (packet). Praility f errr in a single it transmissin p =10-3. Find the praility f errr-detectin failure. P( errr detectin failure) = p (1 p ) + p (1 p ) + p(1 p) * p(1 p ) (10 ) = 496 * * 31* 30 * p (1 p ) (10 ) = * * 3 * 4 P( errr detectin failure) = 496 * = 4.96 * Apprimately, 1 in every 2000 transmitted 32-it lng cdewrds is crrupted with an errr pattern that cannt e detected with single-it parity check. 19

20 Errr Detectin: 2-D Parity Check Tw Dimensinal Parity Check a lck f its is rganized in a tale (rws + clumns) a parity it is calculated fr each rw and clumn 2-D parity check increases the likelihd f detecting urst errrs all 1-it errrs CAN BE DETECTED and CORRECTED all 2-, 3- it errrs can e DETECTED 4- and mre it errrs can e detected in sme cases drawack: t many check its!!! 20

21 Tw-Dimensinal Parity Check Eample [ effectiveness f 2-D parity check ]

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmissin Fundamentals Errr Detectin and Crrectin Errr Cntrl Digital transmissin systems intrduce errrs, BER ranges frm 10-3 fr wireless t 10-9 fr ptical fiber Applicatins require certain

More information

From Signals to Packets. Outline : Introduction to Telecommunication Networks Lectures 5: Datalink layer. Error Control.

From Signals to Packets. Outline : Introduction to Telecommunication Networks Lectures 5: Datalink layer. Error Control. 8-45: Intrductin t Telecmmunicatin Netwrks Lectures 5: Datalink layer Peter Steenkiste Frm Signals t Packets Analg Signal Digital Signal Bit Stream 0 0 0 0 0 0 Spring 05 www.cs.cmu.edu/~prs/nets-ece Packets

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

ENG2410 Digital Design Arithmetic Circuits

ENG2410 Digital Design Arithmetic Circuits ENG24 Digital Design Arithmetic Circuits Fall 27 S. Areibi Schl f Engineering University f Guelph Recall: Arithmetic -- additin Binary additin is similar t decimal arithmetic N carries + + Remember: +

More information

Multiple Source Multiple. using Network Coding

Multiple Source Multiple. using Network Coding Multiple Surce Multiple Destinatin Tplgy Inference using Netwrk Cding Pegah Sattari EECS, UC Irvine Jint wrk with Athina Markpulu, at UCI, Christina Fraguli, at EPFL, Lausanne Outline Netwrk Tmgraphy Gal,

More information

Purpose: Use this reference guide to effectively communicate the new process customers will use for creating a TWC ID. Mobile Manager Call History

Purpose: Use this reference guide to effectively communicate the new process customers will use for creating a TWC ID. Mobile Manager Call History Purpse: Use this reference guide t effectively cmmunicate the new prcess custmers will use fr creating a TWC ID. Overview Beginning n January 28, 2014 (Refer t yur Knwledge Management System fr specific

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan Detectin f fatigue crack initiatin frm a ntch under a randm lad C. Makabe," S. Nishida^C. Urashima,' H. Kaneshir* "Department f Mechanical Systems Engineering, University f the Ryukyus, Nishihara, kinawa,

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES

SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES Philips J. Res. 39, 293-304,1984 R 1097 SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES by W. J. VAN OILS Philips Research Labratries, 5600 JA Eindhven, The Netherlands Abstract

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

RECHERCHES Womcodes constructed with projective geometries «Womcodes» construits à partir de géométries projectives Frans MERKX (') École Nationale Su

RECHERCHES Womcodes constructed with projective geometries «Womcodes» construits à partir de géométries projectives Frans MERKX (') École Nationale Su Wmcdes cnstructed with prjective gemetries «Wmcdes» cnstruits à partir de gémétries prjectives Frans MERKX (') Écle Natinale Supérieure de Télécmmunicatins (ENST), 46, rue Barrault, 75013 PARIS Étudiant

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Hiding in plain sight

Hiding in plain sight Hiding in plain sight Principles f stegangraphy CS349 Cryptgraphy Department f Cmputer Science Wellesley Cllege The prisners prblem Stegangraphy 1-2 1 Secret writing Lemn juice is very nearly clear s it

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Formal Uncertainty Assessment in Aquarius Salinity Retrieval Algorithm

Formal Uncertainty Assessment in Aquarius Salinity Retrieval Algorithm Frmal Uncertainty Assessment in Aquarius Salinity Retrieval Algrithm T. Meissner Aquarius Cal/Val Meeting Santa Rsa March 31/April 1, 2015 Outline 1. Backgrund/Philsphy 2. Develping an Algrithm fr Assessing

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Biochemistry Summer Packet

Biochemistry Summer Packet Bichemistry Summer Packet Science Basics Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne value and anther.

More information

3.6 Condition number and RGA

3.6 Condition number and RGA g r qp q q q qp! the weight " #%$ s that mre emphasis is placed n utput &. We d this y increasing the andwidth requirement in utput channel & y a factr f (!( : *,+.-0/!1 &3254769:4;$=< >@?BAC D 6 E(F

More information

ENG2410 Digital Design Sequential Circuits: Part A

ENG2410 Digital Design Sequential Circuits: Part A ENG2410 Digital Design Sequential Circuits: Part A Fall 2017 S. Areibi Schl f Engineering University f Guelph Week #6 Tpics Sequential Circuit Definitins Latches Flip-Flps Delays in Sequential Circuits

More information

CONSTRUCTING STATECHART DIAGRAMS

CONSTRUCTING STATECHART DIAGRAMS CONSTRUCTING STATECHART DIAGRAMS The fllwing checklist shws the necessary steps fr cnstructing the statechart diagrams f a class. Subsequently, we will explain the individual steps further. Checklist 4.6

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

Department of Electrical Engineering, University of Waterloo. Introduction

Department of Electrical Engineering, University of Waterloo. Introduction Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

TP1 - Introduction to ArcGIS

TP1 - Introduction to ArcGIS TP1 - Intrductin t ArcGIS During this practical, we will use ArcGIS (ArcMap and ArcCatalg) t create maps f predictrs that culd explain the bserved bird richness in Switzerland. ArcMap is principally used

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD 3 J. Appl. Cryst. (1988). 21,3-8 Particle Size Distributins frm SANS Data Using the Maximum Entrpy Methd By J. A. PTTN, G. J. DANIELL AND B. D. RAINFRD Physics Department, The University, Suthamptn S9

More information

a(k) received through m channels of length N and coefficients v(k) is an additive independent white Gaussian noise with

a(k) received through m channels of length N and coefficients v(k) is an additive independent white Gaussian noise with urst Mde Nn-Causal Decisin-Feedback Equalizer based n Sft Decisins Elisabeth de Carvalh and Dirk T.M. Slck Institut EURECOM, 2229 rute des Crêtes,.P. 93, 694 Sphia ntiplis Cedex, FRNCE Tel: +33 493263

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

Do big losses in judgmental adjustments affect experts behaviour? Fotios Petropoulos, Robert Fildes and Paul Goodwin

Do big losses in judgmental adjustments affect experts behaviour? Fotios Petropoulos, Robert Fildes and Paul Goodwin D big lsses in judgmental adjustments affect experts behaviur? Ftis Petrpuls, Rbert Fildes and Paul Gdwin This material has been created and cpyrighted by Lancaster Centre fr Frecasting, Lancaster University

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

Revised 2/07. Projectile Motion

Revised 2/07. Projectile Motion LPC Phsics Reised /07 Prjectile Mtin Prjectile Mtin Purpse: T measure the dependence f the range f a prjectile n initial elcit height and firing angle. Als, t erif predictins made the b equatins gerning

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Comparison of hybrid ensemble-4dvar with EnKF and 4DVar for regional-scale data assimilation

Comparison of hybrid ensemble-4dvar with EnKF and 4DVar for regional-scale data assimilation Cmparisn f hybrid ensemble-4dvar with EnKF and 4DVar fr reginal-scale data assimilatin Jn Pterjy and Fuqing Zhang Department f Meterlgy The Pennsylvania State University Wednesday 18 th December, 2013

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

Learning to Control an Unstable System with Forward Modeling

Learning to Control an Unstable System with Forward Modeling 324 Jrdan and Jacbs Learning t Cntrl an Unstable System with Frward Mdeling Michael I. Jrdan Brain and Cgnitive Sciences MIT Cambridge, MA 02139 Rbert A. Jacbs Cmputer and Infrmatin Sciences University

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Time, Synchronization, and Wireless Sensor Networks

Time, Synchronization, and Wireless Sensor Networks Time, Synchrnizatin, and Wireless Sensr Netwrks Part II Ted Herman University f Iwa Ted Herman/March 2005 1 Presentatin: Part II metrics and techniques single-hp beacns reginal time znes ruting-structure

More information

Guide to Using the Rubric to Score the Myc/Max ON-SITE Build Model for Science Olympiad 2011 NATIONAL Tournament

Guide to Using the Rubric to Score the Myc/Max ON-SITE Build Model for Science Olympiad 2011 NATIONAL Tournament Guide t Using the Rubric t Scre the Myc/Max ON-SITE Build Mdel fr Science Olympiad 2011 NATIONAL Turnament These instructins are t help the event supervisr and scring judges t use the rubric develped by

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Heat Management Methodology for Successful UV Processing on Heat Sensitive Substrates

Heat Management Methodology for Successful UV Processing on Heat Sensitive Substrates Heat Management Methdlgy fr Successful UV Prcessing n Heat Sensitive Substrates Juliet Midlik Prime UV Systems Abstract: Nw in 2005, UV systems pssess heat management cntrls that fine tune the exthermic

More information

User Guide: Operation of ActiveAhead Mobile Application

User Guide: Operation of ActiveAhead Mobile Application 1 (11) User Guide: Operatin f ActiveAhead Mbile Applicatin The ActiveAhead mbile applicatin allws yu t adjust the luminaire parameters f an ActiveAhead slutin. T use this applicatin yu must have an apprved

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT POLARISATION View vide n plarisatin f light While all the experimental evidence s far that supprts the wave nature f light, nne f it tells us whether light

More information

QUANTUM SECURE DIRECT COMMUNICATION USING ENTANGLEMENT AND SUPER DENSE CODING

QUANTUM SECURE DIRECT COMMUNICATION USING ENTANGLEMENT AND SUPER DENSE CODING QANTM SECRE DIRECT COMMNICATION SING ENTANGLEMENT AND SPER DENSE CODING Ola M. Hegazy, Ayman M. Bahaa Eldin and Yasser H. Dakrury Cmputer and Systems Eng. Department, Ain Shams niversity, Cair, Egypt la_hegazy@yah.cm,

More information

ENG2410 Digital Design Sequencing and Control

ENG2410 Digital Design Sequencing and Control ENG24 igital esign equencing and ntrl atapath cnsists f: Parts f PU Registers, Multiplers, dders, ubtractrs and lgic t perfrm peratins n data (mb Lgic) ntrl unit Generates signals t cntrl data-path ccepts

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modeling and Simulation NETW 707 Lecture 6 ARQ Modeling: Modeling Error/Flow Control Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Data Link Layer Data Link Layer provides

More information

Misc. ArcMap Stuff Andrew Phay

Misc. ArcMap Stuff Andrew Phay Misc. ArcMap Stuff Andrew Phay aphay@whatcmcd.rg Prjectins Used t shw a spherical surface n a flat surface Distrtin Shape Distance True Directin Area Different Classes Thse that minimize distrtin in shape

More information

DEFENSE OCCUPATIONAL AND ENVIRONMENTAL HEALTH READINESS SYSTEM (DOEHRS) ENVIRONMENTAL HEALTH SAMPLING ELECTRONIC DATA DELIVERABLE (EDD) GUIDE

DEFENSE OCCUPATIONAL AND ENVIRONMENTAL HEALTH READINESS SYSTEM (DOEHRS) ENVIRONMENTAL HEALTH SAMPLING ELECTRONIC DATA DELIVERABLE (EDD) GUIDE DEFENSE OCCUPATIOL AND ENVIRONMENTAL HEALTH READINESS SYSTEM (DOEHRS) ENVIRONMENTAL HEALTH SAMPLING ELECTRONIC DATA DELIVERABLE (EDD) GUIDE 20 JUNE 2017 V1.0 i TABLE OF CONTENTS 1 INTRODUCTION... 1 2 CONCEPT

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Performance Bounds for Detect and Avoid Signal Sensing

Performance Bounds for Detect and Avoid Signal Sensing Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Real-ime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA 16802 Sandy Balkin is a graduate student

More information

Churn Prediction using Dynamic RFM-Augmented node2vec

Churn Prediction using Dynamic RFM-Augmented node2vec Churn Predictin using Dynamic RFM-Augmented nde2vec Sandra Mitrvić, Jchen de Weerdt, Bart Baesens & Wilfried Lemahieu Department f Decisin Sciences and Infrmatin Management, KU Leuven 18 September 2017,

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

BIOLOGY 101. CHAPTER 17: Gene Expression: From Gene to Protein. The Flow of Genetic Information

BIOLOGY 101. CHAPTER 17: Gene Expression: From Gene to Protein. The Flow of Genetic Information BIOLOGY 101 CHAPTER 17: Gene Expressin: Frm Gene t Prtein Gene Expressin: Frm Gene t Prtein: CONCEPTS: 17.1 Genes specify prteins via transcriptin and translatin 17.2 Transcriptin is the DNA-directed synthesis

More information

INTRODUCTION TO MACHINE LEARNING FOR MEDICINE

INTRODUCTION TO MACHINE LEARNING FOR MEDICINE Fall 2017 INTRODUCTION TO MACHINE LEARNING FOR MEDICINE Carla E. Brdley Prfessr & Dean Cllege f Cmputer and Infrmatin Science Nrtheastern University WHAT IS MACHINE LEARNING/DATA MINING? Figure is frm

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern 0.478/msr-04-004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy

More information

/ / Chemistry. Chapter 1 Chemical Foundations

/ / Chemistry. Chapter 1 Chemical Foundations Name Chapter 1 Chemical Fundatins Advanced Chemistry / / Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne

More information

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions

Guide to Using the Rubric to Score the Klf4 PREBUILD Model for Science Olympiad National Competitions Guide t Using the Rubric t Scre the Klf4 PREBUILD Mdel fr Science Olympiad 2010-2011 Natinal Cmpetitins These instructins are t help the event supervisr and scring judges use the rubric develped by the

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information