What is Statistical Learning?

Size: px
Start display at page:

Download "What is Statistical Learning?"

Transcription

1 What is Statistical Learning? Sales Sales Sales TV Radi Newspaper Shwn are Sales vs TV, Radi and Newspaper, with a blue linear-regressin line fit separately t each. Can we predict Sales using these three? Perhaps we can d better using a mdel Sales f(tv, Radi, Newspaper) 1/30

2 Ntatin Here Sales is a respnse r target that we wish t predict. We generically refer t the respnse as Y. TV is a feature, r input, r predictr; we name it X 1. Likewise name Radi as X 2, and s n. We can refer t the input vectr cllectively as 0 1 Nw we write ur mdel as B X X 1 X 2 X 3 C A Y = f(x)+ where captures measurement errrs and ther discrepancies. 2/30

3 What is f(x) gdfr? With a gd f we can make predictins f Y at new pints X = x. We can understand which cmpnents f X =(X 1,X 2,...,X p ) are imprtant in explaining Y, and which are irrelevant. e.g. Senirity and Years f Educatin have a big impact n Incme, but Marital Status typically des nt. Depending n the cmplexity f f, we may be able t understand hw each cmpnent X j f X a ects Y. 3/30

4 x y Is there an ideal f(x)? In particular, what is a gd value fr f(x) at any selected value f X, sayx = 4? There can be many Y values at X = 4. A gd value is f(4) = E(Y X = 4) E(Y X = 4) means expected value (average) f Y given X = 4. This ideal f(x) =E(Y X = x) is called the regressin functin. 4/30

5 The regressin functin f(x) Is als defined fr vectr X; e.g. f(x) =f(x 1,x 2,x 3 )=E(Y X 1 = x 1,X 2 = x 2,X 3 = x 3 ) 5/30

6 The regressin functin f(x) Is als defined fr vectr X; e.g. f(x) =f(x 1,x 2,x 3 )=E(Y X 1 = x 1,X 2 = x 2,X 3 = x 3 ) Is the ideal r ptimal predictr f Y with regard t mean-squared predictin errr: f(x) = E(Y X = x) isthe functin that minimizes E[(Y g(x)) 2 X = x] ver all functins g at all pints X = x. 5/30

7 The regressin functin f(x) Is als defined fr vectr X; e.g. f(x) =f(x 1,x 2,x 3 )=E(Y X 1 = x 1,X 2 = x 2,X 3 = x 3 ) Is the ideal r ptimal predictr f Y with regard t mean-squared predictin errr: f(x) = E(Y X = x) isthe functin that minimizes E[(Y g(x)) 2 X = x] ver all functins g at all pints X = x. = Y f(x) istheirreducible errr i.e. even if we knew f(x), we wuld still make errrs in predictin, since at each X = x there is typically a distributin f pssible Y values. 5/30

8 The regressin functin f(x) Is als defined fr vectr X; e.g. f(x) =f(x 1,x 2,x 3 )=E(Y X 1 = x 1,X 2 = x 2,X 3 = x 3 ) Is the ideal r ptimal predictr f Y with regard t mean-squared predictin errr: f(x) = E(Y X = x) isthe functin that minimizes E[(Y g(x)) 2 X = x] ver all functins g at all pints X = x. = Y f(x) istheirreducible errr i.e. even if we knew f(x), we wuld still make errrs in predictin, since at each X = x there is typically a distributin f pssible Y values. Fr any estimate ˆf(x) f f(x), we have E[(Y ˆf(X)) 2 2 X = x] =[f(x) ˆf(x)] {z } Reducible + Var( ) {z } Irreducible 5/30

9 Hw t estimate f Typically we have few if any data pints with X =4 exactly. S we cannt cmpute E(Y X = x)! Relax the definitin and let ˆf(x) = Ave(Y X 2N(x)) where N (x) is sme neighbrhd f x x y 6/30

10 Nearest neighbr averaging can be pretty gd fr small p i.e.p apple 4 and large-ish N. We will discuss smther versins, such as kernel and spline smthing later in the curse. 7/30

11 Nearest neighbr averaging can be pretty gd fr small p i.e.p apple 4 and large-ish N. We will discuss smther versins, such as kernel and spline smthing later in the curse. Nearest neighbr methds can be lusy when p is large. Reasn: the curse f dimensinality. Nearest neighbrs tend t be far away in high dimensins. We need t get a reasnable fractin f the N values f y i t average t bring the variance dwn e.g. 10%. A 10% neighbrhd in high dimensins need n lnger be lcal, s we lse the spirit f estimating E(Y X = x) by lcal averaging. 7/30

12 The curse f dimensinality x1 x2 10% Neighbrhd Fractin f Vlume Radius p= 1 p= 2 p= 3 p= 5 p= 10 8/30

13 Parametric and structured mdels The linear mdel is an imprtant example f a parametric mdel: f L (X) = X X px p. A linear mdel is specified in terms f p + 1 parameters 0, 1,..., p. We estimate the parameters by fitting the mdel t training data. Althugh it is almst never crrect, a linear mdel ften serves as a gd and interpretable apprximatin t the unknwn true functin f(x). 9/30

14 A linear mdel ˆf L (X) = ˆ0 + ˆ1X gives a reasnable fit here x y A quadratic mdel ˆf Q (X) = ˆ0 + ˆ1X + ˆ2X 2 fits slightly better x y 10 / 30

15 Incme Years f Educatin Senirity Simulated example. Red pints are simulated values fr incme frm the mdel f is the blue surface. incme = f(educatin, senirity)+ 11 / 30

16 Incme Years f Educatin Senirity Linear regressin mdel fit t the simulated data. ˆf L (educatin, senirity) = ˆ0+ ˆ1 educatin+ ˆ2 senirity 12 / 30

17 Incme Years f Educatin Senirity Mre flexible regressin mdel ˆf S (educatin, senirity) fitt the simulated data. Here we use a technique called a thin-plate spline t fit a flexible surface. We cntrl the rughness f the fit (chapter 7). 13 / 30

18 Incme Years f Educatin Senirity Even mre flexible spline regressin mdel ˆf S (educatin, senirity) fit t the simulated data. Here the fitted mdel makes n errrs n the training data! Als knwn as verfitting. 14 / 30

19 Sme trade- s Predictin accuracy versus interpretability. Linear mdels are easy t interpret; thin-plate splines are nt. 15 / 30

20 Sme trade- s Predictin accuracy versus interpretability. Linear mdels are easy t interpret; thin-plate splines are nt. Gd fit versus ver-fit r under-fit. Hw d we knw when the fit is just right? 15 / 30

21 Sme trade- s Predictin accuracy versus interpretability. Linear mdels are easy t interpret; thin-plate splines are nt. Gd fit versus ver-fit r under-fit. Hw d we knw when the fit is just right? Parsimny versus black-bx. We ften prefer a simpler mdel invlving fewer variables ver a black-bx predictr invlving them all. 15 / 30

22 Interpretability Lw High Subset Selectin Lass Least Squares Generalized Additive Mdels Trees Bagging, Bsting Supprt Vectr Machines Lw High Flexibility 16 / 30

23 Assessing Mdel Accuracy Suppse we fit a mdel ˆf(x) t sme training data Tr = {x i,y i } N 1, and we wish t see hw well it perfrms. We culd cmpute the average squared predictin errr ver Tr: MSE Tr = Ave i2tr [y i ˆf(xi )] 2 This may be biased tward mre verfit mdels. Instead we shuld, if pssible, cmpute it using fresh test data Te = {x i,y i } M 1 : MSE Te = Ave i2te [y i ˆf(xi )] 2 17 / 30

24 Y Mean Squared Errr X Flexibility Black curve is truth. Red curve n right is MSE Te, grey curve is MSE Tr. Orange, blue and green curves/squares crrespnd t fits f di erent flexibility. 18 / 30

25 Y Mean Squared Errr X Flexibility Here the truth is smther, s the smther fit and linear mdel d really well. 19 / 30

26 Y Mean Squared Errr X Flexibility Here the truth is wiggly and the nise is lw, s the mre flexible fits d the best. 20 / 30

27 Bias-Variance Trade- Suppse we have fit a mdel ˆf(x) t sme training data Tr, and let (x 0,y 0 ) be a test bservatin drawn frm the ppulatin. If the true mdel is Y = f(x)+ (with f(x) =E(Y X = x)), then 2 E y 0 ˆf(x0 ) = Var( ˆf(x0 )) + [Bias( ˆf(x 0 ))] 2 + Var( ). The expectatin averages ver the variability f y 0 as well as the variability in Tr. Nte that Bias( ˆf(x 0 ))] = E[ ˆf(x 0 )] f(x 0 ). Typically as the flexibility f ˆf increases, its variance increases, and its bias decreases. S chsing the flexibility based n average test errr amunts t a bias-variance trade-. 21 / 30

28 Bias-variance trade- fr the three examples MSE Bias Var Flexibility Flexibility Flexibility 22 / 30

29 Classificatin Prblems Here the respnse variable Y is qualitative e.g. is ne f C =(spam, ham) (ham=gd ), digit class is ne f C = {0, 1,...,9}. Our gals are t: Build a classifier C(X) that assigns a class label frm C t a future unlabeled bservatin X. Assess the uncertainty in each classificatin Understand the rles f the di erent predictrs amng X =(X 1,X 2,...,X p ). 23 / 30

30 y x Is there an ideal C(X)? Suppse the K elements in C are numbered 1, 2,...,K. Let p k (x) =Pr(Y = kx = x), k=1, 2,...,K. These are the cnditinal class prbabilities at x; e.g. see little barplt at x = 5. Then the Bayes ptimal classifier at x is C(x) =j if p j (x) = max{p 1 (x),p 2 (x),...,p K (x)} 24 / 30

31 y x Nearest-neighbr averaging can be used as befre. Als breaks dwn as dimensin grws. Hwever, the impact n Ĉ(x) is less than n ˆp k (x), k=1,...,k. 25 / 30

32 Classificatin: sme details Typically we measure the perfrmance f Ĉ(x) usingthe misclassificatin errr rate: Err Te = Ave i2te I[y i 6= Ĉ(x i)] The Bayes classifier (using the true p k (x)) has smallest errr (in the ppulatin). 26 / 30

33 Classificatin: sme details Typically we measure the perfrmance f Ĉ(x) usingthe misclassificatin errr rate: Err Te = Ave i2te I[y i 6= Ĉ(x i)] The Bayes classifier (using the true p k (x)) has smallest errr (in the ppulatin). Supprt-vectr machines build structured mdels fr C(x). We will als build structured mdels fr representing the p k (x). e.g. Lgistic regressin, generalized additive mdels. 26 / 30

34 Example: K-nearest neighbrs in tw dimensins X 1 X2 27 / 30

35 KNN: K=10 X 1 X2 FIGURE The black curve indicates the KNN decisin bundary n the 28 / 30

36 FIGURE The black curve indicates the KNN decisin bundary n the data frm Figure 2.13, using K =10.TheBayesdecisinbundaryisshwnas a purple dashed line.the KNN and Bayes decisin bundaries are very similar. KNN: K=1 KNN: K=100 FIGURE A cmparisn f the KNN decisin bundaries (slid black curves) btained using K =1and K =100n the data frm Figure With K =1,thedecisinbundaryisverlyflexible,whilewithK =100it is nt su ciently flexible. The Bayes decisin bundary is shwn as a purple dashed 29 / 30

37 Errr Rate Training Errrs Test Errrs /K 30 / 30

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

Statistical Learning. 2.1 What Is Statistical Learning?

Statistical Learning. 2.1 What Is Statistical Learning? 2 Statistical Learning 2.1 What Is Statistical Learning? In rder t mtivate ur study f statistical learning, we begin with a simple example. Suppse that we are statistical cnsultants hired by a client t

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants 12 Supprt Vectr Machines and Flexible Discriminants This is page 417 Printer: Opaque this 12.1 Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb Lgistic Regressin and Maximum Likelihd Marek Petrik Feb 09 2017 S Far in ML Regressin vs Classificatin Linear regressin Bias-variance decmpsitin Practical methds fr linear regressin Simple Linear Regressin

More information

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th,

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th, Phys. 344 Ch 7 Lecture 8 Fri., April. 0 th, 009 Fri. 4/0 8. Ising Mdel f Ferrmagnets HW30 66, 74 Mn. 4/3 Review Sat. 4/8 3pm Exam 3 HW Mnday: Review fr est 3. See n-line practice test lecture-prep is t

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Chapter 15 & 16: Random Forests & Ensemble Learning

Chapter 15 & 16: Random Forests & Ensemble Learning Chapter 15 & 16: Randm Frests & Ensemble Learning DD3364 Nvember 27, 2012 Ty Prblem fr Bsted Tree Bsted Tree Example Estimate this functin with a sum f trees with 9-terminal ndes by minimizing the sum

More information

Overview of Supervised Learning

Overview of Supervised Learning 2 Overview f Supervised Learning 2.1 Intrductin The first three examples described in Chapter 1 have several cmpnents in cmmn. Fr each there is a set f variables that might be dented as inputs, which are

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

Contents. This is page i Printer: Opaque this

Contents. This is page i Printer: Opaque this Cntents This is page i Printer: Opaque this Supprt Vectr Machines and Flexible Discriminants. Intrductin............. The Supprt Vectr Classifier.... Cmputing the Supprt Vectr Classifier........ Mixture

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

Localized Model Selection for Regression

Localized Model Selection for Regression Lcalized Mdel Selectin fr Regressin Yuhng Yang Schl f Statistics University f Minnesta Church Street S.E. Minneaplis, MN 5555 May 7, 007 Abstract Research n mdel/prcedure selectin has fcused n selecting

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Application of ILIUM to the estimation of the T eff [Fe/H] pair from BP/RP

Application of ILIUM to the estimation of the T eff [Fe/H] pair from BP/RP Applicatin f ILIUM t the estimatin f the T eff [Fe/H] pair frm BP/RP prepared by: apprved by: reference: issue: 1 revisin: 1 date: 2009-02-10 status: Issued Cryn A.L. Bailer-Jnes Max Planck Institute fr

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter 5 1 Chapter Summary Mathematical Inductin Strng Inductin Recursive Definitins Structural Inductin Recursive Algrithms Sectin 5.1 3 Sectin Summary Mathematical Inductin Examples f Prf by Mathematical

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

Lecture 3: Principal Components Analysis (PCA)

Lecture 3: Principal Components Analysis (PCA) Lecture 3: Principal Cmpnents Analysis (PCA) Reading: Sectins 6.3.1, 10.1, 10.2, 10.4 STATS 202: Data mining and analysis Jnathan Taylr, 9/28 Slide credits: Sergi Bacallad 1 / 24 The bias variance decmpsitin

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

Linear programming III

Linear programming III Linear prgramming III Review 1/33 What have cvered in previus tw classes LP prblem setup: linear bjective functin, linear cnstraints. exist extreme pint ptimal slutin. Simplex methd: g thrugh extreme pint

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD 3 J. Appl. Cryst. (1988). 21,3-8 Particle Size Distributins frm SANS Data Using the Maximum Entrpy Methd By J. A. PTTN, G. J. DANIELL AND B. D. RAINFRD Physics Department, The University, Suthamptn S9

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants Supprt Vectr Machines and Flexible Discriminants This is page Printer: Opaque this. Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal separating

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line Chapter 13: The Crrelatin Cefficient and the Regressin Line We begin with a sme useful facts abut straight lines. Recall the x, y crdinate system, as pictured belw. 3 2 1 y = 2.5 y = 0.5x 3 2 1 1 2 3 1

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES 1 SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES Wlfgang HÄRDLE Ruslan MORO Center fr Applied Statistics and Ecnmics (CASE), Humbldt-Universität zu Berlin Mtivatin 2 Applicatins in Medicine estimatin f

More information

Math 105: Review for Exam I - Solutions

Math 105: Review for Exam I - Solutions 1. Let f(x) = 3 + x + 5. Math 105: Review fr Exam I - Slutins (a) What is the natural dmain f f? [ 5, ), which means all reals greater than r equal t 5 (b) What is the range f f? [3, ), which means all

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

Springer Texts in Statistics

Springer Texts in Statistics Springer Texts in Statistics Series Editrs: G. Casella S. Fienberg I. Olkin Fr further vlumes: http://www.springer.cm/series/417 Gareth James Daniela Witten Trevr Hastie Rbert Tibshirani An Intrductin

More information

Computational Statistics

Computational Statistics Cmputatinal Statistics Spring 2008 Peter Bühlmann and Martin Mächler Seminar für Statistik ETH Zürich February 2008 (February 23, 2011) ii Cntents 1 Multiple Linear Regressin 1 1.1 Intrductin....................................

More information

READING STATECHART DIAGRAMS

READING STATECHART DIAGRAMS READING STATECHART DIAGRAMS Figure 4.48 A Statechart diagram with events The diagram in Figure 4.48 shws all states that the bject plane can be in during the curse f its life. Furthermre, it shws the pssible

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explrer Supprting User-Defined Functins n Uncertain Data Citatin fr published versin: Tran, TTL, Dia, Y, Suttn, CA & Liu, A 23, 'Supprting User-Defined Functins n Uncertain Data' Prceedings

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Sectin 8.1: The Binmial Distributins Chapter 8: The Binmial and Gemetric Distributins A randm variable X is called a BINOMIAL RANDOM VARIABLE if it meets ALL the fllwing cnditins: 1) 2) 3) 4) The MOST

More information

Excessive Social Imbalances and the Performance of Welfare States in the EU. Frank Vandenbroucke, Ron Diris and Gerlinde Verbist

Excessive Social Imbalances and the Performance of Welfare States in the EU. Frank Vandenbroucke, Ron Diris and Gerlinde Verbist Excessive Scial Imbalances and the Perfrmance f Welfare States in the EU Frank Vandenbrucke, Rn Diris and Gerlinde Verbist Child pverty in the Eurzne, SILC 2008 35.00 30.00 25.00 20.00 15.00 10.00 5.00.00

More information

24 Multiple Eigenvectors; Latent Factor Analysis; Nearest Neighbors

24 Multiple Eigenvectors; Latent Factor Analysis; Nearest Neighbors Multiple Eigenvectrs; Latent Factr Analysis; Nearest Neighbrs 47 24 Multiple Eigenvectrs; Latent Factr Analysis; Nearest Neighbrs Clustering w/multiple Eigenvectrs [When we use the Fiedler vectr fr spectral

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Trigonometric Ratios Unit 5 Tentative TEST date

Trigonometric Ratios Unit 5 Tentative TEST date 1 U n i t 5 11U Date: Name: Trignmetric Ratis Unit 5 Tentative TEST date Big idea/learning Gals In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin

More information

In God we trust, all others bring data.

In God we trust, all others bring data. ى ىل ل كمس مو مكفنم ذ In Gd we trust, all thers bring data. William Edwards Deming (1900-1993) 1 We have been gratified by the ppularity f the first editin f The Elements f Statistical Learning. This,

More information

Data mining/machine learning large data sets. STA 302 or 442 (Applied Statistics) :, 1

Data mining/machine learning large data sets. STA 302 or 442 (Applied Statistics) :, 1 Data mining/machine learning large data sets STA 302 r 442 (Applied Statistics) :, 1 Data mining/machine learning large data sets high dimensinal spaces STA 302 r 442 (Applied Statistics) :, 2 Data mining/machine

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

Time, Synchronization, and Wireless Sensor Networks

Time, Synchronization, and Wireless Sensor Networks Time, Synchrnizatin, and Wireless Sensr Netwrks Part II Ted Herman University f Iwa Ted Herman/March 2005 1 Presentatin: Part II metrics and techniques single-hp beacns reginal time znes ruting-structure

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion .54 Neutrn Interactins and Applicatins (Spring 004) Chapter (3//04) Neutrn Diffusin References -- J. R. Lamarsh, Intrductin t Nuclear Reactr Thery (Addisn-Wesley, Reading, 966) T study neutrn diffusin

More information