MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

Size: px
Start display at page:

Download "MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank"

Transcription

1 MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use matching? What if the assignment t the treatment is dne nt randmly, but n the basis f bservables? This is when matching methds cme in! Matching methds allw yu t cnstruct cmparisn grups when the assignment t the treatment is dne n the basis f bservable variables. 1

2 When can we use matching? Intuitin: the cmparisn grup needs t be as similar as pssible t the treatment grup, in terms f the bservables befre the start f the treatment. The methd assumes there are n remaining unbservable differences between treatment and cmparisn grups. Key Questin What is the effect f treatment n the treated when the assignment t the treatment is based n bservable variables? 2

3 Uncnfundedness & Selectin n bservables Let X dente a matrix in which each rw is a vectr f pre-treatment bservable variables fr individual i. Uncnfundedness: Assignment t treatment is uncnfunded given pre-treatment variables X if Y 1, Y 0 D X Uncnfundedness is equivalent t saying that: (1) within each cell defined by X: treatment is randm (2) the selectin int treatment depends nly n the bservables X. Average effects f treatment n the treated Assuming uncnfundedness given X Intuitin Estimate the treatment effect within each cell defined by X Take the average ver the different cells Math In yur handuts: Annex 1 3

4 Strategy fr estimating average effect f treatment n the treated Selectin n bservables Uncnfundedness suggests the fllwing strategy fr the estimatin f the average treatment effect δ Stratify the data int cells defined by each particular value f X Within each cell (i.e. cnditining n X) cmpute the difference between the average utcmes f the treated and the cntrls Average these differences with respect t the distributin f X in the ppulatin f treated units. Is this strategy feasible? Is ur strategy feasible? The Dimensinality Prblem This may nt be feasible when The sample is small The set f cvariates is large Many f the cvariates have many values r are cntinuus This is what we call The dimensinality prblem 4

5 The Dimensinality Prblem Examples Hw many cells d we have with 2 binary X variables? And with 3 binary X variables? And with K binary X variables? Hw abut if we have 2 variables that take n 7 values each? As the number f cells grws, we ll get lack f cmmn supprt cells cntaining nly treated bservatins cells cntaining nly cntrls An Alternative t slve the Dimensinality Prblem The prpensity scre allws t cnvert the multidimensinal setup f matching int a nedimensinal setup. In that way, it allws t reduce the dimensinality prblem. Rsenbaum and Rubin Rsenbaum and Rubin (1983) prpse an equivalent and feasible estimatin strategy based n the cncept f Prpensity Scre. 5

6 Matching based n the Prpensity Scre Definitin The prpensity scre is the cnditinal prbability f receiving the treatment given the pre-treatment variables: Lemma 1 Lemma 2 p(x) =Pr{D = 1 X} = EX{D X} If p(x) is the prpensity scre, then D X p(x) Given the prpensity scre, the pre-treatment variables are balanced between beneficiaries and nn- beneficiaries Y1, Y0 D X => Y 1, Y0 D p(x) Suppse that assignment t treatment is uncnfunded given the pre-treatment variables X. Then assignment t treatment is uncnfunded given the prpensity scre p(x). Des the prpensity scre apprach slve the dimensinality prblem? The balancing prperty f the prpensity scre (Lemma 1) ensures that: YES! Observatins with the same prpensity scre have the same distributin f bservable cvariates independently f treatment status; and fr a given prpensity scre, assignment t treatment is randm and therefre treatment and cntrl units are bservatinally identical n average. 6

7 Implementatin f the estimatin strategy This suggests the fllwing strategy fr the estimatin f the average treatment effect δ Step 1 Estimate a lgit (r prbit) mdel f prgram participatin. Predicted values are the prpensity scres. E.g. With a lgit functin, see Annex 3. This step is necessary because the true prpensity scre is unknwn and therefre the prpensity scre has t be estimated. When is prpensity scre matching apprpriate? Idea behind prpensity scre matching: estimatin f treatment effects requires a careful matching f treated and cntrls. If treated and cntrls are very different in terms f bservables this matching is nt sufficiently clse and reliable r it may even be impssible. The cmparisn f the estimated prpensity scres acrss treated and cntrls prvides a useful diagnstic tl t evaluate hw similar are treated and cntrls, and therefre hw reliable is the estimatin strategy. 7

8 S yu want prpensity scre t be the same fr treatments and cntrls The range f variatin f prpensity scres shuld be the same fr treated and cntrls. Cunt hw many cntrls have a prpensity scre lwer than the minimum r higher than the maximum f the prpensity scres f the treated and vice versa. Frequency f prpensity scres is the same fr treated and cntrl. Draw histgrams f the estimated prpensity scres fr the treated and cntrls. The bins crrespnd t the blcks cnstructed fr the estimatin f prpensity scres. The issue f cmmn supprt Density Density f scres fr nn-participants Density f scres fr participants 0 Regin f cmmn supprt 1 Prpensity scre 8

9 Density Example: Cmmn supprt issues Linear predictin Graphs by treated Figure A1: Prpensity Scres Fr EiC Phase 1 and nn-eic schls. Surce: Machin, McNally, Meghir, Excellence in Cities: Evaluatin f an educatin plicy in disadvantaged areas. Implementatin f the estimatin strategy Remember we re discussing a strategy fr the estimatin f the average treatment effect n the treated, called δ Step 1 Estimate the prpensity scre (see Annex 3) Step 2 Restrict the analysis t the regin f cmmn supprt (key surce f bias in bservatinal studies) 9

10 Step 3: Estimate the average treatment effect given the prpensity scre Fr each participant find a sample f nn-participants that have similar prpensity scres. Cmpare the utcme indicatr fr each participant and its cmparisn grup. Calculate the mean f these individual gains t btain the average verall gain. ATT P j1 ( Y NP j1 -WijYij0) / i1 P Step 3: Estimate the average treatment effect given the prpensity scre Similar can be defined in many ways. These different weights crrespnd t different ways f ding matching: Stratificatin n the Scre Nearest neighbr matching n the Scre Radius matching n the Scre Kernel matching n the Scre Weighting n the basis f the Scre 10

11 T summarize: Matching is the bservatinal analgue f an experiment in which placement is independent f utcmes The key difference is that a pure experiment des nt require the untestable assumptin f independence cnditinal n bservables. PSM requires gd data Often cmbined with difference-in-difference methds (cntrl fr selectin based n timeinvariant unbserved characteristics) References Dehejia, R.H. and S. Wahba (1999), Causal Effects in Nn-experimental Studies: Reevaluating the Evaluatin f Training Prgrams, Jurnal f the American Statistical Assciatin, 94, 448, Dehejia, R.H. and S. Wahba (1996), Causal Effects in Nn-experimental Studies: Reevaluating the Evaluatin f Training Prgrams, Harvard University, Mime. Hahn, Jinyng (1998), On the rle f the prpensity scre in efficient semiparamentric estimatin f average treatment effects, Ecnmetrica, 66,2, Heckman, James J. H. Ichimura, and P. Tdd (1998), Matching as an ecnmetric evaluatin estimatr, Review f Ecnmic Studies, 65, Hiran, K., G.W. Imbens and G. Ridder (2000), Efficient Estimatin f Average Treatment Effects using the Estimated Prpensity Scre, mime. Rsenbaum, P.R. and D.B. Rubin (1983), The Central Rle f the Prpensity Scre in Observatinal Studies fr Causal Effects, Bimetrika 70, 1, Vinha, K. (2006) A primer n Prpensity Scre Matching Estimatrs Dcument CEDE , Universidad de ls Andes 11

12 Thank Yu? Q & A 12

13 Annex 1: Average effects f treatment n the treated assuming uncnfundedness given X If we are willing t assume uncnfundedness: E Y u D =0, X = E Y u D 1, X E Y u X i i i i i i i i E Y u D =0, X E Y u D 1, X E Y u X i i i i i i i i Using these expressins, we can define fr each cell defined by X =average treatment effect n the treated in cell defined by X X E { D 1, X} i i i Ei Y1 ui Y0ui Di 1, X Ei Y1 ui Di 1, X 0 i E i can measure sample analg E Y u D 1, X 1 Di i 0u can NOT measure sample analg Y u 1, X E Y D 0, X i i i can measure sample analg i Annex 1: Average effects f treatment n the treated assuming uncnfundedness given X Nw what is the relatin between "average treatment effect n the treated"... and... "average treatment effect n the treated within cell defined by X "? X average treatment effect n the treated E D 1 i i i by the law f iterated expectatins E E D =1, X E E i X i i E E D =1, X X i i i X X X {average treatment effect n the treated within cell defined by X} 13

14 Annex 2: Average effects f treatment and the prpensity scre S let's match treatments and cntrls n the basis f the prpensity scre p(x) instead f X. 0 =0, = 0 1, 0 1 =0, 1 1, 1 E Y u D p X E Y u D p X E Y u p X i i i i i i i i i i i E Y u D p X E Y u D p X E Y u p X i i i i i i i i i i i Using these expressins, we can define f cell defined by p X =average treatment effect n the treated in cell defined by p X Ei{ i Di 1, p X } Ei Y1 ui Y0ui Di 1, p X Ei Y1 ui Di 1, p X EY0 ui Di 1, p X p X can measure sample analg can NOT measure sample analg 1 Di 1, 0 Di 0, E Y u p X E Y u p X i i i i can measure sample analg Annex 2: Average effects f treatment and the prpensity scre Nw what is the relatin between p X p X "average treatment effect n the treated"... and... average treatment effect n the treated E D 1 i i i by the law f iterated expectatins Ei Ep X i Di p X E =1, i i i =1, p X p X p X E E D p X p X "average treatment effect n the treated within cell defined by "? E {treatment effect n the treated within cell defined by p X } 14

15 Annex 3: Estimatin f the prpensity scre Any standard prbability mdel can be used t estimate the prpensity scre, e.g. a lgit mdel: Pr h e X i} 1 e ( X i ) { Di h( X ) i (16) where h(xi) is a functin f cvariates with linear and higher rder terms. Estimatin f the prpensity scre Which higher rder terms d yu include in h(xi)? This is determined slely by the need t btain an estimate f the prpensity scre that satisfies the balancing prperty. The specificatin f h(xi) is (1) mre parsimnius than the full set f interactins between bservables X (2) thugh nt t parsimnius: it still needs t satisfy the balancing prperty. Nte: the estimatin f the prpensity scres des nt need a behaviral interpretatin. 15

16 An algrithm fr estimating the prpensity scre 1. Start with a parsimnius lgit r prbit functin t estimate the scre. 2. Srt the data accrding t the estimated prpensity scre (frm lwest t highest). 3. Stratify all bservatins in blcks such that in each blck the estimated prpensity scres fr the treated and the cntrls are nt statistically different: a) start with five blcks f equal scre range {0-0.2,..., 0.8-1} b) test whether the means f the scres fr the treated and the cntrls are statistically different in each blck c) if yes, increase the number f blcks and test again d) if n, g t next step. An algrithm fr estimating the prpensity scre (cntinued) 4. Test that the balancing prperty hlds in all blcks fr all cvariates: a) fr each cvariate, test whether the means (and pssibly higher rder mments) fr the treated and fr the cntrls are statistically different in all blcks; b) if ne cvariate is nt balanced in ne blck, split the blck and test again within each finer blck; c) if ne cvariate is nt balanced in all blcks, mdify the lgit estimatin f the prpensity scre adding mre interactin and higher rder terms and then test again. Nte: In all this prcedure the utcme has n rle. Use the STATA prgram pscre.ad, psmatch2.ad, match.ad (frm STATA type findit name ad ) 16

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

Matching Techniques. Technical Session VI. Manila, December Jed Friedman. Spanish Impact Evaluation. Fund. Region

Matching Techniques. Technical Session VI. Manila, December Jed Friedman. Spanish Impact Evaluation. Fund. Region Impact Evaluation Technical Session VI Matching Techniques Jed Friedman Manila, December 2008 Human Development Network East Asia and the Pacific Region Spanish Impact Evaluation Fund The case of random

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

REGRESSION DISCONTINUITY (RD) Technical Track Session V. Dhushyanth Raju Julieta Trias The World Bank

REGRESSION DISCONTINUITY (RD) Technical Track Session V. Dhushyanth Raju Julieta Trias The World Bank REGRESSION DISCONTINUITY (RD) Technical Track Sessin V Dhushyanth Raju Julieta Trias The Wrld Bank These slides cnstitute supprting material t the Impact Evaluatin in Practice Handbk : Gertler, P. J.;

More information

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Evaluating enterprise supprt: state f the art and future challenges Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Intrductin During the last decade, mircecnmetric ecnmetric cunterfactual

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

How T o Start A n Objective Evaluation O f Your Training Program

How T o Start A n Objective Evaluation O f Your Training Program J O U R N A L Hw T Start A n Objective Evaluatin O f Yur Training Prgram DONALD L. KIRKPATRICK, Ph.D. Assistant Prfessr, Industrial Management Institute University f Wiscnsin Mst training m e n agree that

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

A Quick Overview of the. Framework for K 12 Science Education

A Quick Overview of the. Framework for K 12 Science Education A Quick Overview f the NGSS EQuIP MODULE 1 Framewrk fr K 12 Science Educatin Mdule 1: A Quick Overview f the Framewrk fr K 12 Science Educatin This mdule prvides a brief backgrund n the Framewrk fr K-12

More information

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES 1 SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES Wlfgang HÄRDLE Ruslan MORO Center fr Applied Statistics and Ecnmics (CASE), Humbldt-Universität zu Berlin Mtivatin 2 Applicatins in Medicine estimatin f

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment Science 10: The Great Geyser Experiment A cntrlled experiment Yu will prduce a GEYSER by drpping Ments int a bttle f diet pp Sme questins t think abut are: What are yu ging t test? What are yu ging t measure?

More information

On Huntsberger Type Shrinkage Estimator for the Mean of Normal Distribution ABSTRACT INTRODUCTION

On Huntsberger Type Shrinkage Estimator for the Mean of Normal Distribution ABSTRACT INTRODUCTION Malaysian Jurnal f Mathematical Sciences 4(): 7-4 () On Huntsberger Type Shrinkage Estimatr fr the Mean f Nrmal Distributin Department f Mathematical and Physical Sciences, University f Nizwa, Sultanate

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling? CS4445 ata Mining and Kwledge iscery in atabases. B Term 2014 Exam 1 Nember 24, 2014 Prf. Carlina Ruiz epartment f Cmputer Science Wrcester Plytechnic Institute NAME: Prf. Ruiz Prblem I: Prblem II: Prblem

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Functional Form and Nonlinearities

Functional Form and Nonlinearities Sectin 6 Functinal Frm and Nnlinearities This is a gd place t remind urselves f Assumptin #0: That all bservatins fllw the same mdel. Levels f measurement and kinds f variables There are (at least) three

More information

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method. Lessn Plan Reach: Ask the students if they ever ppped a bag f micrwave ppcrn and nticed hw many kernels were unppped at the bttm f the bag which made yu wnder if ther brands pp better than the ne yu are

More information

Mathematics and Computer Sciences Department. o Work Experience, General. o Open Entry/Exit. Distance (Hybrid Online) for online supported courses

Mathematics and Computer Sciences Department. o Work Experience, General. o Open Entry/Exit. Distance (Hybrid Online) for online supported courses SECTION A - Curse Infrmatin 1. Curse ID: 2. Curse Title: 3. Divisin: 4. Department: 5. Subject: 6. Shrt Curse Title: 7. Effective Term:: MATH 70S Integrated Intermediate Algebra Natural Sciences Divisin

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

Emphases in Common Core Standards for Mathematical Content Kindergarten High School

Emphases in Common Core Standards for Mathematical Content Kindergarten High School Emphases in Cmmn Cre Standards fr Mathematical Cntent Kindergarten High Schl Cntent Emphases by Cluster March 12, 2012 Describes cntent emphases in the standards at the cluster level fr each grade. These

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 11 (3/11/04) Neutron Diffusion .54 Neutrn Interactins and Applicatins (Spring 004) Chapter (3//04) Neutrn Diffusin References -- J. R. Lamarsh, Intrductin t Nuclear Reactr Thery (Addisn-Wesley, Reading, 966) T study neutrn diffusin

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

Last Updated: Oct 14, 2017

Last Updated: Oct 14, 2017 RSA Last Updated: Oct 14, 2017 Recap Number thery What is a prime number? What is prime factrizatin? What is a GCD? What des relatively prime mean? What des c-prime mean? What des cngruence mean? What

More information

Assessment Primer: Writing Instructional Objectives

Assessment Primer: Writing Instructional Objectives Assessment Primer: Writing Instructinal Objectives (Based n Preparing Instructinal Objectives by Mager 1962 and Preparing Instructinal Objectives: A critical tl in the develpment f effective instructin

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

5 th grade Common Core Standards

5 th grade Common Core Standards 5 th grade Cmmn Cre Standards In Grade 5, instructinal time shuld fcus n three critical areas: (1) develping fluency with additin and subtractin f fractins, and develping understanding f the multiplicatin

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

Eric Klein and Ning Sa

Eric Klein and Ning Sa Week 12. Statistical Appraches t Netwrks: p1 and p* Wasserman and Faust Chapter 15: Statistical Analysis f Single Relatinal Netwrks There are fur tasks in psitinal analysis: 1) Define Equivalence 2) Measure

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Unit 1: Introduction to Biology

Unit 1: Introduction to Biology Name: Unit 1: Intrductin t Bilgy Theme: Frm mlecules t rganisms Students will be able t: 1.1 Plan and cnduct an investigatin: Define the questin, develp a hypthesis, design an experiment and cllect infrmatin,

More information

IN a recent article, Geary [1972] discussed the merit of taking first differences

IN a recent article, Geary [1972] discussed the merit of taking first differences The Efficiency f Taking First Differences in Regressin Analysis: A Nte J. A. TILLMAN IN a recent article, Geary [1972] discussed the merit f taking first differences t deal with the prblems that trends

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Review Problems 3. Four FIR Filter Types

Review Problems 3. Four FIR Filter Types Review Prblems 3 Fur FIR Filter Types Fur types f FIR linear phase digital filters have cefficients h(n fr 0 n M. They are defined as fllws: Type I: h(n = h(m-n and M even. Type II: h(n = h(m-n and M dd.

More information

UG Course Outline EC2203: Quantitative Methods II 2017/18

UG Course Outline EC2203: Quantitative Methods II 2017/18 UG Curse Outline EC2203: Quantitative Methds II 2017/18 Autumn: Instructr: Pierre0-Olivier Frtin Office: Hrtn H214 Phne: +44 (0) 1784 276474 E-mail: pierre-livier.frtin@rhul.ac.uk Office hurs: Tuesdays

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science Weathering Title: Chemical and Mechanical Weathering Grade Level: 9-12 Subject/Cntent: Earth and Space Science Summary f Lessn: Students will test hw chemical and mechanical weathering can affect a rck

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

Document for ENES5 meeting

Document for ENES5 meeting HARMONISATION OF EXPOSURE SCENARIO SHORT TITLES Dcument fr ENES5 meeting Paper jintly prepared by ECHA Cefic DUCC ESCOM ES Shrt Titles Grup 13 Nvember 2013 OBJECTIVES FOR ENES5 The bjective f this dcument

More information

EASTERN ARIZONA COLLEGE Introduction to Statistics

EASTERN ARIZONA COLLEGE Introduction to Statistics EASTERN ARIZONA COLLEGE Intrductin t Statistics Curse Design 2014-2015 Curse Infrmatin Divisin Scial Sciences Curse Number PSY 220 Title Intrductin t Statistics Credits 3 Develped by Adam Stinchcmbe Lecture/Lab

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Writing Guidelines. (Updated: November 25, 2009) Forwards

Writing Guidelines. (Updated: November 25, 2009) Forwards Writing Guidelines (Updated: Nvember 25, 2009) Frwards I have fund in my review f the manuscripts frm ur students and research assciates, as well as thse submitted t varius jurnals by thers that the majr

More information

Collocation Map for Overcoming Data Sparseness

Collocation Map for Overcoming Data Sparseness Cllcatin Map fr Overcming Data Sparseness Mnj Kim, Yung S. Han, and Key-Sun Chi Department f Cmputer Science Krea Advanced Institute f Science and Technlgy Taejn, 305-701, Krea mj0712~eve.kaist.ac.kr,

More information

arxiv:hep-ph/ v1 2 Jun 1995

arxiv:hep-ph/ v1 2 Jun 1995 WIS-95//May-PH The rati F n /F p frm the analysis f data using a new scaling variable S. A. Gurvitz arxiv:hep-ph/95063v1 Jun 1995 Department f Particle Physics, Weizmann Institute f Science, Rehvt 76100,

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

8 th Grade Math: Pre-Algebra

8 th Grade Math: Pre-Algebra Hardin Cunty Middle Schl (2013-2014) 1 8 th Grade Math: Pre-Algebra Curse Descriptin The purpse f this curse is t enhance student understanding, participatin, and real-life applicatin f middle-schl mathematics

More information

Instructional Plan. Representational/Drawing Level

Instructional Plan. Representational/Drawing Level Instructinal Plan Representatinal/Drawing Level Name f Math Skill/Cncept: Divisin Prcess and Divisin with Remainders Prerequisite Skills Needed: 1.) Mastery f dividing cncrete bjects int equal grups. 2.)

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB.

Intelligent Pharma- Chemical and Oil & Gas Division Page 1 of 7. Global Business Centre Ave SE, Calgary, AB T2G 0K6, AB. Intelligent Pharma- Chemical and Oil & Gas Divisin Page 1 f 7 Intelligent Pharma Chemical and Oil & Gas Divisin Glbal Business Centre. 120 8 Ave SE, Calgary, AB T2G 0K6, AB. Canada Dr. Edelsys Cdrniu-Business

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

TP1 - Introduction to ArcGIS

TP1 - Introduction to ArcGIS TP1 - Intrductin t ArcGIS During this practical, we will use ArcGIS (ArcMap and ArcCatalg) t create maps f predictrs that culd explain the bserved bird richness in Switzerland. ArcMap is principally used

More information