SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES

Size: px
Start display at page:

Download "SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES"

Transcription

1 1 SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES Wlfgang HÄRDLE Ruslan MORO Center fr Applied Statistics and Ecnmics (CASE), Humbldt-Universität zu Berlin

2 Mtivatin 2 Applicatins in Medicine estimatin f survival chances classificatin f patients with respect t their sensitivity t treatment reprductin f test results withut using invasive methds Other Applicatins cmpany rating based n survival prbability insurance

3 Mtivatin 3 General Apprach estimate the prbability f death in perid t given that the patient has survived up t perid t 1 What statistical methds are suitable?

4 Mtivatin 4 Standard Methdlgy C prprtinal hazard regressin (1972) A semi-parametric mdel based n a generalised linear mdel lnh i (t) = a(t) + b 1 i1 + b 2 i b d id r eplicitly fr the hazard h i (t) h i (t) = h 0 (t) ep(b 1 i1 + b 2 i b d id ) The hazard rati fr any tw bservatins is independent f time t: h i (t) h j (t) = h 0(t)e ηi h 0 (t)e η j = eηi e η j where η i = b 1 i1 + b 2 i b d id

5 Mtivatin 5 Prpsed Methdlgy at time t break all surviving patients int tw grups: 1. thse wh will die in perid t the rest patients wh will survive in perid t + 1 train a classificatin machine n these tw grups repeat the prcedure fr all t {0, 1,..., T 1} Alltgether we will get T differently trained classificatin machines What classificatin methd t apply?

6 Mtivatin 6 Multivariate Discriminant Analysis Fisher (1931) The scre: S i = a 1 i1 + a 2 i a d id = a i i are screening and test results fr the i-th patient survival: death: S i s S i < s

7 Mtivatin 7 Linear Discriminant Analysis X 2 Death Survival X 1

8 Mtivatin 8 Linear Discriminant Analysis Death Survival Distributin density s Scre

9 Mtivatin 9 Other Mdels Lgit E[y i i ] = ep(a 0 + a 1 i a d id ) 1 + ep(a 0 + a 1 i a d id ) y i = {0, 1} dentes the class, e.g. surviving r dead Prbit CART Neural netwrks E[y i i ] = Φ (a 0 + a 1 i1 + a 2 i a d id )

10 Mtivatin 10 Linearly Nn-separable Classificatin Prblem X Death Survival X 1

11 Outline f the Talk 11 Outline f the Talk 1. Mtivatin 2. Supprt Vectr Machines and Their Prperties 3. Epected Risk vs. Empirical Risk Minimisatin 4. Realisatin f a SVM 5. Nn-linear Case 6. Survival Estimatin with SVMs

12 Supprt Vectr Machines and their Prperties 12 Supprt Vectr Machines (SVMs) SVMs are a grup f methds fr classificatin (and regressin) that make use f classifiers prviding high margin. SVMs pssess a fleible structure which is nt chsen a priri The prperties f SVMs can be derived frm statistical learning thery SVMs d nt rely n asympttic prperties; they are especially useful when d/n is high, i.e. in mst practically significant cases SVMs give a unique slutin

13 Supprt Vectr Machines and their Prperties 13 Classificatin Prblem Training set: {( i, y i )} n i=1 with the distributin P(, y). Find the class y f a new bject using the classifier f : X {+1; 1}, such that the epected risk R(f) is minimal. i is the vectr f the i-th bject characteristics; y i { 1, +1} r {0, 1} is the class f the i-th bject. Regressin Prblem Setup as fr the classificatin prblem but: y R

14 Epected Risk vs. Empirical Risk Minimisatin 14 Epected Risk Minimisatin Epected risk R(f) = 1 2 f() y dp(, y) = E P(,y)[L] can be minimised directly with respect t f f pt = arg min f F R(f) The lss L = 1 2 f() y = 0 if classificatin is crrect = 1 if classificatin is wrng F is a set f (nn)linear classifier functins

15 Epected Risk vs. Empirical Risk Minimisatin 15 Empirical Risk Minimisatin In practice P(, y) is usually unknwn: use Empirical Risk ˆR(f) = 1 n n i=1 1 2 f( i) y i Minimisatin (ERM) ver the training set {( i, y i )} n i=1 ˆf n = arg min f F ˆR(f)

16 Epected Risk vs. Empirical Risk Minimisatin 16 Empirical Risk vs. Epected Risk Risk R R ˆ R ˆ (f) R (f) f f pt f ˆ n Functin class

17 Epected Risk vs. Empirical Risk Minimisatin 17 Cnvergence Frm the law f large numbers lim n ˆR(f) = R(f) In additin ERM satisfies lim n min f F ˆR(f) = min f F R(f) if F is nt t big.

18 Epected Risk vs. Empirical Risk Minimisatin 18 Vapnik-Chervnenkis (VC) Bund A basic result f Statistical Learning Thery (fr linear classifier functins): ( R(f) ˆR(f) h + φ n, ln(η) ) n when the bund hlds with prbability 1 η and φ ( h n, ln(η) ) n = h(ln 2n h + 1) ln( η 4 ) n Structural Risk Minimisatin search fr the ptimal mdel structure described by S h F such that the VC bund is minimised; f S h (h is VC dimensin)

19 Epected Risk vs. Empirical Risk Minimisatin 19 Vapnik-Chervnenkis (VC) Dimensin Definitin. h is VC dimensin f a set f functins if there eists a set f pints { i } h i=1 such that these pints can be separated in all 2h pssible cnfiguratins, and n set { i } q i=1 eists where q > h satisfies this prperty. Eample 1. The functins A sinθ has an infinite VC dimensin. Eample 2. Three pints n a plane can be shattered by a set f linear indicatr functins in 2 h = 2 3 = 8 ways (whereas 4 pints cannt be shattered in 2 q = 2 4 = 16 ways). The VC dimensin equals h = 3.

20 Epected Risk vs. Empirical Risk Minimisatin 20 VC Dimensin. Eample

21 Epected Risk vs. Empirical Risk Minimisatin 21 Regularised LS Estimatin and VC Bund Prblem slved: min f F n {f( i ) y i } 2 + λω(f) i=1 The regularised functinal: a specific type f the VC bund with a quadratic empirical lss functin The Classifier Functin Class f an SVM F Λ = {f : R n R f() = w + b, w Λ}

22 Realisatin f an SVM 22 Linearly Separable Case The training set: {( i, y i )} n i=1, y i = {±1}, i R d. Find the classifier with the highest margin the gap between the parallel hyperplanes separating tw classes where the vectrs f neither class can lie. Maimisatin f the margin minimises the VC dimensin.

23 Realisatin f an SVM 23 Let w + b = 0 be a separating hyperplane. Then d + (d ) will be the shrtest distance t the clsest bjects f the classes +1 ( 1). i w + b +1 fr y i = +1 i w + b 1 fr y i = 1 cmbine them int ne cnstraint y i ( i w + b) 1 0 i = 1, 2,..., n (1) The cannical hyperplanes i w + b = ±1 are parallel and the distance between each f them and the separating hyperplane is d ± = 1/ w.

24 Realisatin f an SVM 24 Linear SVMs. Separable Case The margin is d + + d = 2/ w. T maimise it minimise the Euclidean nrm w subject t the cnstraint (1).

25 Realisatin f an SVM 25 The Lagrangian Frmulatin The Lagrangian fr the primal prblem L P = 1 2 w 2 n α i {y i ( i w + b) 1} i=1 The Karush-Kuhn-Tucker (KKT) Cnditins L P w k = 0 n i=1 α iy i ik = w k k = 1,..., d L P b = 0 n i=1 α iy i = 0 y i ( i w + b) 1 0 α i 0 i = 1,..., n α i {y i ( i w + b) 1} = 0

26 Realisatin f an SVM 26 Substitute the KKT cnditins int L P and btain the Lagrangian fr the dual prblem L D = n α i 1 2 i=1 n i=1 n α i α j y i y j i j j=1 The primal and dual prblems are min ma L P w k,b α i s.t. α i 0 ma α i L D n α i y i = 0 i=1 Since the ptimisatin prblem is cnve the dual and primal frmulatins give the same slutin.

27 Realisatin f an SVM 27 The Classificatin Stage The classificatin rule is: where w = n i=1 α iy i i b = 1 2 ( + + ) w g() = sign( w + b) + and are any supprt vectrs frm each class α i = arg ma α i L D subject t the cnstraint y i ( i w + b) 1 0 i = 1, 2,..., n.

28 Realisatin f an SVM 28 Adaptin f an SVM t Hazard Estimatin The scre values f = w + b estimated by an SVM crrespnd t hazard: Suggestin: select an area f ± f f hazard cunt the number f deaths and survivals in the area if the data is representative f the whle ppulatin ˆ hazard = #deaths/#survivals estimate the mapping f ˆ hazard fr several f ± f

29 Realisatin f an SVM 29 Linear SVMs. Nn-separable Case In the nn-separable case it is impssible t separate the data pints with hyperplanes withut an errr.

30 Realisatin f an SVM 30 The prblem can be slved by intrducing the psitive variables {ξ i } n i=1 in the cnstraints i w + b 1 ξ i fr y i = 1 i w + b 1 + ξ i fr y i = 1 ξ i 0 i If ξ i > 1, an errr ccurs. The bjective functin in this case is 1 2 w 2 + C( n ξ i ) ν where ν is a psitive integer cntrlling sensitivity t utliers; C ( capacity ) cntrls the tlerance t errrs n the training set. Under such a frmulatin the prblem is cnve i=1

31 Realisatin f an SVM 31 The Lagrangian Frmulatin The Lagrangian fr the primal prblem fr ν = 1: L P = 1 2 w 2 + C n ξ i n α i {y i ( i w + b) 1 + ξ i } n ξ i µ i i=1 i=1 i=1 The primal prblem: min w k,b,ξ i ma α i,µ i L P

32 Realisatin f an SVM 32 The KKT Cnditins L P w k = 0 w k = n i=1 α iy i ik k = 1,..., d L P b = 0 n i=1 α iy i = 0 L P ξ i = 0 C α i µ i = 0 y i ( i w + b) 1 + ξ i 0 ξ i 0 α i 0 µ i 0 α i {y i ( i w + b) 1 + ξ i} = 0 µ i ξ i = 0

33 Realisatin f an SVM 33 Fr ν = 1 the dual Lagrangian will nt cntain ξ i r their Lagrange multipliers L D = n α i 1 2 n n α i α j y i y j i j (2) i=1 i=1 j=1 The dual prblem is subject t ma α i L D 0 α i C n α i y i = 0 i=1

34 Realisatin f an SVM 34 Linear SVM. Nn-separable Case

35 Nn-linear Case 35 Nn-linear SVMs Map the data t the Hilbert space H and perfrm classificatin there Ψ : R d H Nte, that in the Lagrangian frmulatin (2) the training data appear nly in the frm f dt prducts i j, which can be mapped t Ψ( i ) Ψ( j ). If a kernel functin K eists such that K( i, j ) = Ψ( i ) Ψ( j ), then we can use K withut knwing Ψ eplicitly

36 Nn-linear Case 36 Mapping int the Feature Space. Eample R 2 R 3, Ψ( 1, 2 ) = ( 2 1, 2 1 2, 2 2), K( i, j ) = ( i j) 2 Data Space Feature Space

37 Nn-linear Case 37 Mercer s Cnditin (1909) A necessary and sufficient cnditin fr a symmetric functin K( i, j ) t be a kernel is that it must be psitive definite, i.e. fr any data set 1,..., n and any real numbers λ 1,..., λ n the functin K must satisfy n i=1 n λ i λ j K( i, j ) 0 j=1 Sme eamples f kernel functins: K( i, j ) = e ( i j ) Σ 1 ( i j )/2 K( i, j ) = ( i j + 1) p K( i, j ) = tanh(k i j δ) Gaussian kernel plynmial kernel hyperblic tangent kernel

38 Nn-linear Case 38 Classes f Kernels A statinary kernel is the kernel which is translatin invariant K( i, j ) = K S ( i j ) An istrpic (hmgeneus) kernel is ne which depends nly n the nrm f the lag vectr (distance) between tw data pints K( i, j ) = K I ( i j ) A lcal statinary kernel is the kernel f the frm K( i, j ) = K 1 ( i + j 2 )K 2 ( i j ) where K 1 is a nn-negative functin, K 2 is a statinary kernel.

39 Nn-linear Case 39 Matérn kernel K I ( i j ) K I (0) = 1 2 ν 1 Γ(ν) (2 ν i j θ ) ν H ν ( 2 ν i j ) θ where Γ is the gamma functin and H ν is the mdified Bessel functin f the secnd kind f rder ν. The parameter ν allws t cntrl the smthness. The Matérn kernel reduces t the Gaussian kernel fr ν.

40 Survival Estimatin with SVMs 40 Estimatin f Survival Chances fr Breast Cancer Patients Data surce: the Breast cancer survival.sav file supplied with SPSS and the database used in Lee et al. (2001) 325 cases selected and merged in ne database (112 deaths, 223 censred cases) Predictrs: 2 variables that are cntained in bth databases the pathlgy size and the number f methastased lymph ndes an SVM with an anistrpic Gaussian kernel with the radial basis 3Σ 1/2 and capacity C = 1 was applied (here Σ = cv. matri)

41 Survival Estimatin with SVMs 41 Methdlgy the cases were srted in ascending rder by survival time r time t censring 5 grups (t = 1,...,5) were selected; all 112 death cases are in grups t = 1,...,4; all 213 censred cases are in grup t = 5 an SVM was trained at time t (t = 0,...,3); the patients wh wuld die in perid t + 1 were given the label y i = 1, thse wh wuld survive: y i = 1

42 Survival Estimatin with SVMs 42 The Timeline 0 mnths 23.7 mnths 36.9 mnths 52.7 mnths 82.1 mnths t=0 t=1 t=2 t=3 t=4 t=5 t btaining test results 28 deaths 1.18 deaths a mnth 28 deaths 2.12 deaths a mnth 28 deaths 1.75 deaths a mnth 28 deaths 0.96 deaths a mnth 223 deaths

43 Survival Estimatin with SVMs 43 Survival Estimatin

44 Survival Estimatin with SVMs 44 Survival Chances (t=0) Number f metastased lymph ndes Tumur size, cm

45 Survival Estimatin with SVMs 45 Survival Chances (t=1) Number f metastased lymph ndes Tumur size, cm

46 Survival Estimatin with SVMs 46 Survival Chances (t=2) Number f metastased lymph ndes Tumur size, cm

47 Survival Estimatin with SVMs 47 Survival Chances (t=3) Number f metastased lymph ndes Tumur size, cm

48 Survival Estimatin with SVMs 48 References C, D. R. (1972). Regressin Mdels and Life Tables, Jurnal f the Ryal Statistical Sciety B34: Lee, Y.-J., Mangasarian, O. L., Wlberg, W. H. (2001). Survival Time Classificatin f Breast Cancer Patients (technical reprt): ftp://ftp.cs.wisc.edu/pub/dmi/tech-reprts/01-03.ps. Vapnik, V. N. (1995). The Nature f Statistical Learning Thery, Springer, New Yrk, NY.

SUPPORT VECTOR MACHINES FOR BANKRUPTCY ANALYSIS

SUPPORT VECTOR MACHINES FOR BANKRUPTCY ANALYSIS 1 SUPPORT VECTOR MACHINES FOR BANKRUPTCY ANALYSIS Wlfgang HÄRDLE 2 Ruslan MORO 1,2 Drthea SCHÄFER 1 1 Deutsches Institut für Wirtschaftsfrschung (DIW) 2 Center fr Applied Statistics and Ecnmics (CASE),

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Linear programming III

Linear programming III Linear prgramming III Review 1/33 What have cvered in previus tw classes LP prblem setup: linear bjective functin, linear cnstraints. exist extreme pint ptimal slutin. Simplex methd: g thrugh extreme pint

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants 12 Supprt Vectr Machines and Flexible Discriminants This is page 417 Printer: Opaque this 12.1 Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Lyapunov Stability Stability of Equilibrium Points

Lyapunov Stability Stability of Equilibrium Points Lyapunv Stability Stability f Equilibrium Pints 1. Stability f Equilibrium Pints - Definitins In this sectin we cnsider n-th rder nnlinear time varying cntinuus time (C) systems f the frm x = f ( t, x),

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem A Generalized apprach fr cmputing the trajectries assciated with the Newtnian N Bdy Prblem AbuBar Mehmd, Syed Umer Abbas Shah and Ghulam Shabbir Faculty f Engineering Sciences, GIK Institute f Engineering

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Pre-Calculus Individual Test 2017 February Regional

Pre-Calculus Individual Test 2017 February Regional The abbreviatin NOTA means Nne f the Abve answers and shuld be chsen if chices A, B, C and D are nt crrect. N calculatr is allwed n this test. Arcfunctins (such as y = Arcsin( ) ) have traditinal restricted

More information

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A. SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

The Solution Path of the Slab Support Vector Machine

The Solution Path of the Slab Support Vector Machine CCCG 2008, Mntréal, Québec, August 3 5, 2008 The Slutin Path f the Slab Supprt Vectr Machine Michael Eigensatz Jachim Giesen Madhusudan Manjunath Abstract Given a set f pints in a Hilbert space that can

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs Admissibility Cnditins and Asympttic Behavir f Strngly Regular Graphs VASCO MOÇO MANO Department f Mathematics University f Prt Oprt PORTUGAL vascmcman@gmailcm LUÍS ANTÓNIO DE ALMEIDA VIEIRA Department

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

NOTE ON A CASE-STUDY IN BOX-JENKINS SEASONAL FORECASTING OF TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPORT NO. 16 APRIL 1974

NOTE ON A CASE-STUDY IN BOX-JENKINS SEASONAL FORECASTING OF TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPORT NO. 16 APRIL 1974 NTE N A CASE-STUDY IN B-JENKINS SEASNAL FRECASTING F TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPRT N. 16 APRIL 1974 PREPARED UNDER CNTRACT N00014-67-A-0112-0030 (NR-042-034) FR THE FFICE F NAVAL

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Evaluating enterprise supprt: state f the art and future challenges Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Intrductin During the last decade, mircecnmetric ecnmetric cunterfactual

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons Slide04 supplemental) Haykin Chapter 4 bth 2nd and 3rd ed): Multi-Layer Perceptrns CPSC 636-600 Instructr: Ynsuck Che Heuristic fr Making Backprp Perfrm Better 1. Sequential vs. batch update: fr large

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

IN a recent article, Geary [1972] discussed the merit of taking first differences

IN a recent article, Geary [1972] discussed the merit of taking first differences The Efficiency f Taking First Differences in Regressin Analysis: A Nte J. A. TILLMAN IN a recent article, Geary [1972] discussed the merit f taking first differences t deal with the prblems that trends

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

Lecture 8: Multiclass Classification (I)

Lecture 8: Multiclass Classification (I) Bayes Rule fr Multiclass Prblems Traditinal Methds fr Multiclass Prblems Linear Regressin Mdels Lecture 8: Multiclass Classificatin (I) Ha Helen Zhang Fall 07 Ha Helen Zhang Lecture 8: Multiclass Classificatin

More information

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322 ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA by J. C. SPROTT December 4, 1969 PLP N. 3 These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated. They are fr private

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Shivani Agarwal Support Vector Machines (SVMs) Algorithm for learning linear classifiers Motivated by idea of maximizing margin Efficient extension to non-linear

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Infrmatik Arbeitsbereich SAV/BV (KOGS) Image Prcessing 1 (IP1) Bildverarbeitung 1 Lecture 15 Pa;ern Recgni=n Winter Semester 2014/15 Dr. Benjamin Seppke Prf. Siegfried S=ehl What

More information

Optimization Programming Problems For Control And Management Of Bacterial Disease With Two Stage Growth/Spread Among Plants

Optimization Programming Problems For Control And Management Of Bacterial Disease With Two Stage Growth/Spread Among Plants Internatinal Jurnal f Engineering Science Inventin ISSN (Online): 9 67, ISSN (Print): 9 676 www.ijesi.rg Vlume 5 Issue 8 ugust 06 PP.0-07 Optimizatin Prgramming Prblems Fr Cntrl nd Management Of Bacterial

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

Floating Point Method for Solving Transportation. Problems with Additional Constraints

Floating Point Method for Solving Transportation. Problems with Additional Constraints Internatinal Mathematical Frum, Vl. 6, 20, n. 40, 983-992 Flating Pint Methd fr Slving Transprtatin Prblems with Additinal Cnstraints P. Pandian and D. Anuradha Department f Mathematics, Schl f Advanced

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Multiple Source Multiple. using Network Coding

Multiple Source Multiple. using Network Coding Multiple Surce Multiple Destinatin Tplgy Inference using Netwrk Cding Pegah Sattari EECS, UC Irvine Jint wrk with Athina Markpulu, at UCI, Christina Fraguli, at EPFL, Lausanne Outline Netwrk Tmgraphy Gal,

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD 3 J. Appl. Cryst. (1988). 21,3-8 Particle Size Distributins frm SANS Data Using the Maximum Entrpy Methd By J. A. PTTN, G. J. DANIELL AND B. D. RAINFRD Physics Department, The University, Suthamptn S9

More information

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights Linear Discriminant Functions and Support Vector Machines Linear, threshold units CSE19, Winter 11 Biometrics CSE 19 Lecture 11 1 X i : inputs W i : weights θ : threshold 3 4 5 1 6 7 Courtesy of University

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

A NOTE ON THE EQUIVAImCE OF SOME TEST CRITERIA. v. P. Bhapkar. University of Horth Carolina. and

A NOTE ON THE EQUIVAImCE OF SOME TEST CRITERIA. v. P. Bhapkar. University of Horth Carolina. and ~ A NOTE ON THE EQUVAmCE OF SOME TEST CRTERA by v. P. Bhapkar University f Hrth Carlina University f Pna nstitute f Statistics Mime Series N. 421 February 1965 This research was supprted by the Mathematics

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

Bayesian nonparametric modeling approaches for quantile regression

Bayesian nonparametric modeling approaches for quantile regression Bayesian nnparametric mdeling appraches fr quantile regressin Athanasis Kttas Department f Applied Mathematics and Statistics University f Califrnia, Santa Cruz Department f Statistics Athens University

More information

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling? CS4445 ata Mining and Kwledge iscery in atabases. B Term 2014 Exam 1 Nember 24, 2014 Prf. Carlina Ruiz epartment f Cmputer Science Wrcester Plytechnic Institute NAME: Prf. Ruiz Prblem I: Prblem II: Prblem

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Contents. This is page i Printer: Opaque this

Contents. This is page i Printer: Opaque this Cntents This is page i Printer: Opaque this Supprt Vectr Machines and Flexible Discriminants. Intrductin............. The Supprt Vectr Classifier.... Cmputing the Supprt Vectr Classifier........ Mixture

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants Supprt Vectr Machines and Flexible Discriminants This is page Printer: Opaque this. Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal separating

More information

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 50 DECEMBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES

ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES CONSISTING OF LONG PARALLEL CONDUCTORS B. de Halleux, O. Lesage, C. Mertes and A. Ptchelintsev Mechanical Engineering Department Cathlic University

More information