Simple Linear Regression (single variable)

Size: px
Start display at page:

Download "Simple Linear Regression (single variable)"

Transcription

1 Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with permissin frm the authrs: G. James, D. Witten, T. Hastie and R. Tibshirani

2 Last Class 1. Basic machine learning framewrk Y = f(x) 2. Predictin vs inference: predict Y vs understand f 3. Parametric vs nn-parametric: linear regressin vs k-nn 4. Classificatin vs regressins: k-nn vs linear regressin 5. Why we need t have a test set: verfitting

3 What is Machine Learning Discver unknwn functin f: X = set f features, r inputs Y = target, r respnse Y = f(x) Sales Sales Sales TV Radi Newspaper Sales = f(tv, Radi, Newspaper)

4 Errrs in Machine Learning: Wrld is Nisy Wrld is t cmplex t mdel precisely Many features are nt captured in data sets Need t allw fr errrs ɛ in f: Y = f(x) + ɛ

5 Hw Gd are Predictins? Learned functin ˆf Test data: (x 1, y 1 ), (x 2, y 2 ),... Mean Squared Errr (MSE): MSE = 1 n n (y i ˆf(x i )) 2 i=1 This is the estimate f: MSE = E[(Y ˆf(X)) 2 ] = 1 Ω Imprtant: Samples x i are i.i.d. (Y (ω) ˆf(X(ω))) 2 ω Ω

6 D We Need Test Data? Why nt just test n the training data? Y Mean Squared Errr X Flexibility Flexibility is the degree f plynmial being fit Gray line: training errr, red line: testing errr

7 Types f Functin f Regressin: cntinuus target f : X R Years f Educatin Senirity Incme Classificatin: discrete target f : X {1, 2, 3,..., k} X1 X2

8 Bias-Variance Decmpsitin Y = f(x) + ɛ Mean Squared Errr can be decmpsed as: MSE = E(Y ˆf(X)) 2 = Var( }{{ ˆf(X)) + (E( } ˆf(X))) 2 + Var(ɛ) }{{} Variance Bias Bias: Hw well wuld methd wrk with infinite data Variance: Hw much des utput change with different data sets

9 Tday Basics f linear regressin Why linear regressin Hw t cmpute it Why cmpute it

10 Simple Linear Regressin We have nly ne feature Y β 0 + β 1 X Y = β 0 + β 1 X + ɛ Example: TV Sales Sales β 0 + β 1 TV

11 Hw T Estimate Cefficients N line that will have n errrs n data x i Predictin: ŷ i = ˆβ 0 + ˆβ 1 x i Errrs (y i are true values): e i = y i ŷ i Sales TV

12 Residual Sum f Squares Residual Sum f Squares RSS = e e e e 2 n = n i=1 e 2 i Equivalently: RSS = n (y i ˆβ 0 ˆβ 1 x i ) 2 i=1

13 Minimizing Residual Sum f Squares min β 0,β 1 RSS = min β 0,β 1 n i=1 e 2 i = min β 0,β 1 n (y i β 0 β 1 x i ) 2 i=1 RSS β 1 β 0

14 Minimizing Residual Sum f Squares min β 0,β 1 RSS = min β 0,β 1 n i=1 e 2 i = min β 0,β 1 n (y i β 0 β 1 x i ) 2 i= β β 0

15 Slving fr Minimal RSS min β 0,β 1 n (y i β 0 β 1 x i ) 2 i=1 RSS is a cnvex functin f β 0, β 1 Minimum achieved when (recall the chain rule): RSS β 0 RSS β 1 = 2 = 2 n (y i β 0 β 1 x i ) = 0 i=1 n x i (y i β 0 β 1 x i ) = 0 i=1

16 Linear Regressin Cefficients Slutin: min β 0,β 1 n (y i β 0 β 1 x i ) 2 i=1 β 0 = ȳ β 1 x β 1 = n i=1 (x i x)(y i ȳ) n i=1 (x i x) 2 = n i=1 x i(y i ȳ) n i=1 x i(x i x) where n n x = 1 n i=1 x i ȳ = 1 n i=1 y i

17 Why Minimize RSS

18 Why Minimize RSS 1. Maximize likelihd when Y = β 0 + β 1 X + ɛ when ɛ N (0, σ 2 )

19 Why Minimize RSS 1. Maximize likelihd when Y = β 0 + β 1 X + ɛ when ɛ N (0, σ 2 ) 2. Best Linear Unbiased Estimatr (BLUE): Gauss-Markv Therem (ESL 3.2.2)

20 Why Minimize RSS 1. Maximize likelihd when Y = β 0 + β 1 X + ɛ when ɛ N (0, σ 2 ) 2. Best Linear Unbiased Estimatr (BLUE): Gauss-Markv Therem (ESL 3.2.2) 3. It is cnvenient: can be slved in clsed frm

21 Bias in Estimatin Assume a true value µ Estimate µ is unbiased when E[µ] = µ Standard mean estimate is unbiased (e.g. X N (0, 1)): E [ 1 n ] n X i = 0 i=1 Standard variance estimate is biased (e.g. X N (0, 1)): E [ 1 n ] n (X i X) 2 1 i=1

22 Linear Regressin is Unbiased Y Y X X Gauss-Markv Therem (ESL 3.2.2)

23 Slutin f Linear Regressin TV Sales

24 Hw Gd is the Fit Hw well is linear regressin predicting the training data? Can we be sure that TV advertising really influences the sales? What is the prbability that we just gt lucky?

25 R 2 Statistic R 2 = 1 RSS n TSS = 1 i=1 (y i ŷ i ) 2 n i=1 (y i ȳ) 2 RSS - residual sum f squares, TSS - ttal sum f squares R 2 measures the gdness f the fit as a prprtin Prprtin f data variance explained by the mdel Extreme values: 0: Mdel des nt explain data 1: Mdel explains data perfectly

26 Example: TV Impact n Sales TV Sales

27 Example: TV Impact n Sales TV Sales R 2 = 0.61

28 Example: Radi Impact n Sales Radi Sales

29 Example: Radi Impact n Sales Radi Sales R 2 = 0.33

30 Example: Newspaper Impact n Sales Newspaper Sales

31 Example: Newspaper Impact n Sales Newspaper Sales R 2 = 0.05

32 Crrelatin Cefficient Measures dependence between tw randm variables X and Y r = Cv(X, Y ) Var(X) Var(Y ) Crrelatin cefficient r is between [ 1, 1] 0: Variables are nt related 1: Variables are perfectly related (same) 1: Variables are negatively related (different)

33 Crrelatin Cefficient Measures dependence between tw randm variables X and Y r = Cv(X, Y ) Var(X) Var(Y ) Crrelatin cefficient r is between [ 1, 1] 0: Variables are nt related 1: Variables are perfectly related (same) 1: Variables are negatively related (different) R 2 = r 2

34 Hypthesis Testing Null hypthesis H 0 : There is n relatinship between X and Y β 1 = 0 Alternative hypthesis H 1 : There is sme relatinship between X and Y β 1 0 Seek t reject hypthesis H 0 with small prbability (p-value) f making a mistake Imprtant tpic, but beynd the scpe f the curse

35 Multiple Linear Regressin Usually mre than ne feature is available sales = β 0 + β 1 TV + β 2 radi + β 3 newspaper + ɛ In general: p Y = β 0 + β j X j j=1

36 Multiple Linear Regressin Y X 2 X 1

37 Estimating Cefficients Predictin: p ŷ i = ˆβ 0 + ˆβ j x ij Errrs (y i are true values): j=1 Residual Sum f Squares e i = y i ŷ i RSS = e e e e 2 n = n i=1 e 2 i Hw t minimize RSS? Linear algebra!

38 Inference frm Linear Regressin 1. Are predictrs X 1, X 2,..., X p really predicting Y? 2. Is nly a subset f predictrs useful? 3. Hw well des linear mdel fit data? 4. What Y shuld be predict and hw accurate is it?

39 Inference 1 Are predictrs X 1, X 2,..., X p really predicting Y? Null hypthesis H 0 : There is n relatinship between X and Y β 1 = 0 Alternative hypthesis H 1 : There is sme relatinship between X and Y β 1 0 Seek t reject hypthesis H 0 with small prbability (p-value) f making a mistake See ISL n hw t cmpute F-statistic and reject H 0

40 Inference 2 Is nly a subset f predictrs useful? Cmpare predictin accuracy with nly a subset f features

41 Inference 2 Is nly a subset f predictrs useful? Cmpare predictin accuracy with nly a subset f features RSS always decreases with mre features!

42 Inference 2 Is nly a subset f predictrs useful? Cmpare predictin accuracy with nly a subset f features RSS always decreases with mre features! Other measures cntrl fr number f variables: 1. Mallws C p 2. Akaike infrmatin criterin 3. Bayesian infrmatin criterin 4. Adjusted R 2

43 Inference 2 Is nly a subset f predictrs useful? Cmpare predictin accuracy with nly a subset f features RSS always decreases with mre features! Other measures cntrl fr number f variables: 1. Mallws C p 2. Akaike infrmatin criterin 3. Bayesian infrmatin criterin 4. Adjusted R 2 Testing all subsets f features is impractical: 2 p ptins!

44 Inference 2 Is nly a subset f predictrs useful? Cmpare predictin accuracy with nly a subset f features RSS always decreases with mre features! Other measures cntrl fr number f variables: 1. Mallws C p 2. Akaike infrmatin criterin 3. Bayesian infrmatin criterin 4. Adjusted R 2 Testing all subsets f features is impractical: 2 p ptins! Mre n hw t d this later

45 Inference 3 Hw well des linear mdel fit data? R 2 als always increases with mre features (like RSS) Is the mdel linear? Plt it: Sales TV Radi Mre n this later

46 Inference 4 What Y shuld be predict and hw accurate is it? The linear mdel is used t make predictins: y predicted = ˆβ 0 + ˆβ 1 x new Can als predict a cnfidence interval (based n estimate n ɛ):

47 Inference 4 What Y shuld be predict and hw accurate is it? The linear mdel is used t make predictins: y predicted = ˆβ 0 + ˆβ 1 x new Can als predict a cnfidence interval (based n estimate n ɛ): Example: Spent $ n TV and $ n Radi advertising Cnfidence interval: predict f(x) (the average respnse): f(x) [10.985, 11, 528] Predictin interval: predict f(x) + ɛ (respnse + pssible nise) f(x) [7.930, ]

48 R ntebk

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb

Logistic Regression. and Maximum Likelihood. Marek Petrik. Feb Lgistic Regressin and Maximum Likelihd Marek Petrik Feb 09 2017 S Far in ML Regressin vs Classificatin Linear regressin Bias-variance decmpsitin Practical methds fr linear regressin Simple Linear Regressin

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

EASTERN ARIZONA COLLEGE Introduction to Statistics

EASTERN ARIZONA COLLEGE Introduction to Statistics EASTERN ARIZONA COLLEGE Intrductin t Statistics Curse Design 2014-2015 Curse Infrmatin Divisin Scial Sciences Curse Number PSY 220 Title Intrductin t Statistics Credits 3 Develped by Adam Stinchcmbe Lecture/Lab

More information

Statistical Learning. 2.1 What Is Statistical Learning?

Statistical Learning. 2.1 What Is Statistical Learning? 2 Statistical Learning 2.1 What Is Statistical Learning? In rder t mtivate ur study f statistical learning, we begin with a simple example. Suppse that we are statistical cnsultants hired by a client t

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Evaluating enterprise supprt: state f the art and future challenges Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Intrductin During the last decade, mircecnmetric ecnmetric cunterfactual

More information

Data mining/machine learning large data sets. STA 302 or 442 (Applied Statistics) :, 1

Data mining/machine learning large data sets. STA 302 or 442 (Applied Statistics) :, 1 Data mining/machine learning large data sets STA 302 r 442 (Applied Statistics) :, 1 Data mining/machine learning large data sets high dimensinal spaces STA 302 r 442 (Applied Statistics) :, 2 Data mining/machine

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Lecture 3: Principal Components Analysis (PCA)

Lecture 3: Principal Components Analysis (PCA) Lecture 3: Principal Cmpnents Analysis (PCA) Reading: Sectins 6.3.1, 10.1, 10.2, 10.4 STATS 202: Data mining and analysis Jnathan Taylr, 9/28 Slide credits: Sergi Bacallad 1 / 24 The bias variance decmpsitin

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

Inference in the Multiple-Regression

Inference in the Multiple-Regression Sectin 5 Mdel Inference in the Multiple-Regressin Kinds f hypthesis tests in a multiple regressin There are several distinct kinds f hypthesis tests we can run in a multiple regressin. Suppse that amng

More information

EECS E6690: Statistical Learning for Biological and Information Systems Lecture1: Introduction

EECS E6690: Statistical Learning for Biological and Information Systems Lecture1: Introduction EECS E6690: Statistical Learning for Biological and Information Systems Lecture1: Introduction Prof. Predrag R. Jelenković Time: Tuesday 4:10-6:40pm 1127 Seeley W. Mudd Building Dept. of Electrical Engineering

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77 Linear Regression Chapter 3 September 27, 2016 Chapter 3 September 27, 2016 1 / 77 1 3.1. Simple linear regression 2 3.2 Multiple linear regression 3 3.3. The least squares estimation 4 3.4. The statistical

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Supervised Learning: Regression I Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Some of the

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

Competency Statements for Wm. E. Hay Mathematics for grades 7 through 12:

Competency Statements for Wm. E. Hay Mathematics for grades 7 through 12: Cmpetency Statements fr Wm. E. Hay Mathematics fr grades 7 thrugh 12: Upn cmpletin f grade 12 a student will have develped a cmbinatin f sme/all f the fllwing cmpetencies depending upn the stream f math

More information

Chapter 15 & 16: Random Forests & Ensemble Learning

Chapter 15 & 16: Random Forests & Ensemble Learning Chapter 15 & 16: Randm Frests & Ensemble Learning DD3364 Nvember 27, 2012 Ty Prblem fr Bsted Tree Bsted Tree Example Estimate this functin with a sum f trees with 9-terminal ndes by minimizing the sum

More information

Linear Classification

Linear Classification Linear Classificatin CS 54: Machine Learning Slides adapted frm Lee Cper, Jydeep Ghsh, and Sham Kakade Review: Linear Regressin CS 54 [Spring 07] - H Regressin Given an input vectr x T = (x, x,, xp), we

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

Multiple (non) linear regression. Department of Computer Science, Czech Technical University in Prague

Multiple (non) linear regression. Department of Computer Science, Czech Technical University in Prague Multiple (non) linear regression Jiří Kléma Department of Computer Science, Czech Technical University in Prague Lecture based on ISLR book and its accompanying slides http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

Performance Bounds for Detect and Avoid Signal Sensing

Performance Bounds for Detect and Avoid Signal Sensing Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Real-ime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

Probability and Statistical Decision Theory

Probability and Statistical Decision Theory Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/ Probability and Statistical Decision Theory Many slides attributable to: Erik Sudderth (UCI) Prof. Mike Hughes

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.

SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A. SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

Eric Klein and Ning Sa

Eric Klein and Ning Sa Week 12. Statistical Appraches t Netwrks: p1 and p* Wasserman and Faust Chapter 15: Statistical Analysis f Single Relatinal Netwrks There are fur tasks in psitinal analysis: 1) Define Equivalence 2) Measure

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants 12 Supprt Vectr Machines and Flexible Discriminants This is page 417 Printer: Opaque this 12.1 Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION

MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION MACHINE LEARNING FOR CLUSTER- GALAXY CLASSIFICATION Silvia de Castr García Directres: Dr. Ricard Pérez Martínez, Dra. Ana María Pérez García 16/03/2018 Machine Learning fr cluster-galaxy classificatin

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Statistics Statistical method Variables Value Score Type of Research Level of Measurement...

Statistics Statistical method Variables Value Score Type of Research Level of Measurement... Lecture 1 Displaying data... 12 Statistics... 13 Statistical methd... 13 Variables... 13 Value... 15 Scre... 15 Type f Research... 15 Level f Measurement... 15 Numeric/Quantitative variables... 15 Ordinal/Rank-rder

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

Evaluation of Classification Procedures for Estimating Wheat Acreage in Kansas

Evaluation of Classification Procedures for Estimating Wheat Acreage in Kansas Purdue University Purdue e-pubs LARS Sympsia Labratry fr Applicatins f Remte Sensing 1-1-1976 Evaluatin f Classificatin Prcedures fr Estimating Wheat Acreage in Kansas L. M. Flres D. T. Register Fllw this

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

The standards are taught in the following sequence.

The standards are taught in the following sequence. B L U E V A L L E Y D I S T R I C T C U R R I C U L U M MATHEMATICS Third Grade In grade 3, instructinal time shuld fcus n fur critical areas: (1) develping understanding f multiplicatin and divisin and

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

GENESIS Structural Optimization for ANSYS Mechanical

GENESIS Structural Optimization for ANSYS Mechanical P3 STRUCTURAL OPTIMIZATION (Vl. II) GENESIS Structural Optimizatin fr ANSYS Mechanical An Integrated Extensin that adds Structural Optimizatin t ANSYS Envirnment New Features and Enhancements Release 2017.03

More information

Data Mining with Linear Discriminants. Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel

Data Mining with Linear Discriminants. Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel Data Mining with Linear Discriminants Exercise: Business Intelligence (Part 6) Summer Term 2014 Stefan Feuerriegel Tday s Lecture Objectives 1 Recgnizing the ideas f artificial neural netwrks and their

More information

Computational Statistics

Computational Statistics Cmputatinal Statistics Spring 2008 Peter Bühlmann and Martin Mächler Seminar für Statistik ETH Zürich February 2008 (February 23, 2011) ii Cntents 1 Multiple Linear Regressin 1 1.1 Intrductin....................................

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line

We say that y is a linear function of x if. Chapter 13: The Correlation Coefficient and the Regression Line Chapter 13: The Crrelatin Cefficient and the Regressin Line We begin with a sme useful facts abut straight lines. Recall the x, y crdinate system, as pictured belw. 3 2 1 y = 2.5 y = 0.5x 3 2 1 1 2 3 1

More information

Discussion on Regularized Regression for Categorical Data (Tutz and Gertheiss)

Discussion on Regularized Regression for Categorical Data (Tutz and Gertheiss) Discussin n Regularized Regressin fr Categrical Data (Tutz and Gertheiss) Peter Bühlmann, Ruben Dezeure Seminar fr Statistics, Department f Mathematics, ETH Zürich, Switzerland Address fr crrespndence:

More information

Section 11 Simultaneous Equations

Section 11 Simultaneous Equations Sectin 11 Simultaneus Equatins The mst crucial f ur OLS assumptins (which carry er t mst f the ther estimatrs that we hae studied) is that the regressrs be exgenus uncrrelated with the errr term This assumptin

More information

Functional Form and Nonlinearities

Functional Form and Nonlinearities Sectin 6 Functinal Frm and Nnlinearities This is a gd place t remind urselves f Assumptin #0: That all bservatins fllw the same mdel. Levels f measurement and kinds f variables There are (at least) three

More information

Mathematics and Computer Sciences Department. o Work Experience, General. o Open Entry/Exit. Distance (Hybrid Online) for online supported courses

Mathematics and Computer Sciences Department. o Work Experience, General. o Open Entry/Exit. Distance (Hybrid Online) for online supported courses SECTION A - Curse Infrmatin 1. Curse ID: 2. Curse Title: 3. Divisin: 4. Department: 5. Subject: 6. Shrt Curse Title: 7. Effective Term:: MATH 70S Integrated Intermediate Algebra Natural Sciences Divisin

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Application of ILIUM to the estimation of the T eff [Fe/H] pair from BP/RP

Application of ILIUM to the estimation of the T eff [Fe/H] pair from BP/RP Applicatin f ILIUM t the estimatin f the T eff [Fe/H] pair frm BP/RP prepared by: apprved by: reference: issue: 1 revisin: 1 date: 2009-02-10 status: Issued Cryn A.L. Bailer-Jnes Max Planck Institute fr

More information