Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Size: px
Start display at page:

Download "Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics"

Transcription

1 Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm materials prepared by Jerry Sacks and Will Welch fr varius shrt curses Acadia/SFU/UBC Curse n Dynamic Cmputer Experiments September December 2014 J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

2 Outline f Tpics Outline 1 Estimating the Parameters f the GP Mdel 2 Case Study: G-Prtein Cmputer Experiment 3 Measuring Predictin Accuracy 4 GP Diagnstics 5 Summary 6 Appendix J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

3 Estimating the Parameters f the GP Mdel Parameters f the Gaussian Prcess (GP) Mdel Recall frm Mdule 2 that the Gaussian prcess prir fr y(x) = y(x 1,, x d ) has hyper-parameters: mean, µ, variance, σ 2 crrelatin parameters, eg, θ 1,, θ d and p 1,, p d fr the pwer-expnential crrelatin functin, R(x, x ) = d exp( θ j x j x j p j ) j=1 Their values will be chsen t be cnsistent with the cmputer-mdel runs J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

4 Estimating the Parameters f the GP Mdel Maximum Likelihd Recall als that y(x) is assumed t be Gaussian Hence, y = [y(x (1) ),, y(x (n) )] T, the data frm the cmputer mdel, are a sample frm a multivariate-nrmal distributin The likelihd, L(y µ, σ 2, θ 1,, θ d, p 1,, p d ), is 1 (2πσ 2 ) n/2 det 1/2 (R) exp( 1 2σ 2 (y µ1)t R 1 (y µ1)) Maximum likelihd estimatin (MLE) chses the hyper-parameters t maximize this Or use Bayes rule t get a psterir distributin fr the hyper-parameters and fr predictins f y(x) (see Appendix A) J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

5 Estimating the Parameters f the GP Mdel Maximum Likelihd: Cmputatin Fr fixed crrelatin parameters, and ˆµ = 1T R 1 y 1 T R 1 1 σ 2 = 1 n (y ˆµ1)T R 1 (y ˆµ1) The likelihd functin (with ˆµ and σ 2 substituted) has t be numerically maximized wrt the crrelatin parameters J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

6 Case Study: G-Prtein Cmputer Experiment G-Prtein Cmputer Mdel Bisystems mdel fr s-termed ligand activatin f G-prtein in yeast d = 4 input variables x is cncentratin f ligand u 1,, u 8 is a vectr f 8 kinetic parameters (nly u 1, u 6, and u 7 are varied) Output variable y is the nrmalized cncentratin f part f the cmplex J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

7 Case Study: G-Prtein Cmputer Experiment G-Prtein System Dynamics: Differential Equatins 1 η 1 = u 1 η 1 x + u 2 η 2 u 3 η 1 + u 5 2 η 2 = u 1 η 1 x u 2 η 2 u 4 η 2 3 η 3 = u 6 η 2 η 3 + u 8 (G tt η 3 η 4 )(G tt η 3 ) 4 η 4 = u 6 η 2 η 3 u 7 η 4 5 y = (G tt η 3 )/G tt where η 1,, η 4 are cncentratins f 4 chemical species and η 1 η 1 t, etc G tt = (fixed) ttal cncentratin f G-prtein cmplex after 30 secnds J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

8 Case Study: G-Prtein Cmputer Experiment Inputs and Cde Runs Input variables d = 4 variables Wrk with lg(x), lg(u 1 ), lg(u 6 ), lg(u 7 ) ie, what we called the x vectr befre is lg(x), lg(u 1 ), lg(u 6 ), and lg(u 7 ) here All input variable ranges are nrmalized t [0, 1] n the lg scale Number f runs n = 33 (this chice and the design fr the 33 runs is described in Mdule 4) J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

9 Case Study: G-Prtein Cmputer Experiment Cmputer Mdel Data ymd ymd lgu lgu6 ymd ymd lgu lgx J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

10 Case Study: G-Prtein Cmputer Experiment Gaussian Prcess (GP) Mdel y(x) is a realizatin f a Gaussian prcess with: mean µ variance σ 2 crrelatins given by Cr(y(x), y(x )) R(x, x ) = The parameters in red need t be estimated 4 j=1 e θ j x j x j p j J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

11 Case Study: G-Prtein Cmputer Experiment Maximum Likelihd Estimates ˆµ = 036 ˆσ 2 = 051 Variable ˆθ ˆp lg(x) lg(u 1 ) lg(u 6 ) lg(u 7 ) It is difficult t interpret the magnitudes f the estimates (we will revisit this example in Mdule 5 and d a sensitivity analysis) J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

12 Measuring Predictin Accuracy Plug-In Predictin and Standard Errr Replace all hyper-parameters by their MLEs in the cnditinal mean and variance frmulas: and predictin f y(x) = ŷ = ˆm(x) = ˆµ + r T (x)r 1 (y ˆµ1) estimated variance f predictin = ˆv(x) = σ 2 (1 r T (x)r 1 r(x)) (R and r(x) are als estimates) The plug-in estimated variance ignres uncertainty in estimating the hyper-parameters It can be adapted t include uncertainty frm estimating µ: ˆv(x) = σ 2 ( 1 r T (x)r 1 r(x) + [1 1T R 1 r(x)] 2 1 T R 1 1 This plug-in frmula is ften used t give a standard errr, ie, s(x) = ˆv(x) J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20 )

13 Measuring Predictin Accuracy Measures f Accuracy We culd rely n the standard errr, ˆv(x) If we have m test data bservatins, the rt mean squared errr (RMSE) f predictin is 1 RMSE = (ŷ y(x)) m 2 But rarely available Crss validatin (CV) test pts J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

14 Crss Validatin (CV) GP Diagnstics Let x (i) dente x fr run i in the data (i = 1,, n) Fr run i: The crss validated predictin f y(x (i) ) is ŷ i (x (i) ), ie, ŷ(x) = ˆm(x) cmputed frm the n 1 runs excluding run i The crss validated standard errr f ŷ i (x (i) ) is s i (x (i) ), ie, s(x) = ˆv(x) cmputed frm the n 1 runs excluding run i The crss-validated residual fr run i is y(x (i) ) ŷ i (x (i) ) The standardized crss-validated residual fr run i is y(x (i) ) ŷ i (x (i) ) s i (x (i) ) J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

15 Diagnstic Plts GP Diagnstics Plt the crss-validated residuals t assess the verall magnitude f errr Plt the standardized crss-validated residuals t assess the validity f the standard errr fr individual predictins J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

16 GP Diagnstics G-Prtein Diagnstic Plts ymd Standardized residual Predicted ymd Predicted ymd J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

17 GP Diagnstics Crss Validatin: Numerical Summaries Magnitude f errr The crss-validated rt mean squared errr is 1 CVRMSE (y(x n (i) ) ŷ i (x (i) )) 2 = 020 Maximum crss-validated residual is 044 Fairly accurate relative t a range f abut 07 in y Standard errrs? y(x(i) ) ŷ i (x (i) ) fr i = 1,, n are rughly in ( 2, 2) s i (x (i) ) Standard errrs lk reliable J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

18 Fast and Slw CV GP Diagnstics When run i is remved, the hyper-parameters shuld be re-estimated Fr cmputatinal reasns the crrelatin parameters are ften nt updated (it is cheap t update the estimates f µ and σ 2 ), prducing a fast CV Fr slw CV, d say 10-fld crss-validatin, re-estimating all hyper-parameters The agreement between fast CVRMSE and slw CVRMSE is ften gd The agreement between fast CVRMSE and the RMSE frm test pints has been gd in examples J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

19 Mdule Summary Summary The GP mdel has t be tuned t data s that its prperties match thse f the cmputer mdel Tuning (fitting) the GP by maximum likelihd is cmputatinally feasible fr up t abut n = 1000 runs and d = 50 input variables GP mdel gives an apprximatin and a measure f accuracy The measure f accuracy (standard errr) can be checked fr validity by crss validatin J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

20 Appendix Appendix A: Bayesian Treatment f the Hyper-parameters Psterir distributin f the hyper-parameters ( hyper belw), µ, σ 2, θ 1,, θ d, etc, f the GP Frm Bayes rule, given the data y p(hyper y) π(hyper)l(y hyper), π(hyper) is the prir fr hyper L(y hyper) is the multivariate nrmal likelihd Predictive distributin fr y(x) at a new x p(y(x) y) = p(y(x) y, hyper)p(hyper y) dhyper Usually, the integratin is nt carried ut explicitly Rather, prperties such as the psterir predictive mean and variance f p(y(x 0 ) y) are btained by MCMC sampling f the psterir distributin fr the hyper-parameters, p(hyper y) J Sacks and WJ Welch (NISS & UBC) Mdule 3: Estimatin and Uncertainty Cmputer Experiments / 20

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Drought damaged area

Drought damaged area ESTIMATE OF THE AMOUNT OF GRAVEL CO~TENT IN THE SOIL BY A I R B O'RN EMS S D A T A Y. GOMI, H. YAMAMOTO, AND S. SATO ASIA AIR SURVEY CO., l d. KANAGAWA,JAPAN S.ISHIGURO HOKKAIDO TOKACHI UBPREFECTRAl OffICE

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Smoothing, penalized least squares and splines

Smoothing, penalized least squares and splines Smthing, penalized least squares and splines Duglas Nychka, www.image.ucar.edu/~nychka Lcally weighted averages Penalized least squares smthers Prperties f smthers Splines and Reprducing Kernels The interplatin

More information

CS 109 Lecture 23 May 18th, 2016

CS 109 Lecture 23 May 18th, 2016 CS 109 Lecture 23 May 18th, 2016 New Datasets Heart Ancestry Netflix Our Path Parameter Estimatin Machine Learning: Frmally Many different frms f Machine Learning We fcus n the prblem f predictin Want

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS

CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date

AP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares

More information

Introduction to Regression

Introduction to Regression Intrductin t Regressin Administrivia Hmewrk 6 psted later tnight. Due Friday after Break. 2 Statistical Mdeling Thus far we ve talked abut Descriptive Statistics: This is the way my sample is Inferential

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Data Analysis, Statistics, Machine Learning

Data Analysis, Statistics, Machine Learning Data Analysis, Statistics, Machine Learning Leland Wilkinsn Adjunct Prfessr UIC Cmputer Science Chief Scien

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCurseWare http://cw.mit.edu 5.60 Thermdynamics & Kinetics Spring 2008 Fr infrmatin abut citing these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. 5.60 Spring 2008 Lecture #17 page

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

Lecture 8: Multiclass Classification (I)

Lecture 8: Multiclass Classification (I) Bayes Rule fr Multiclass Prblems Traditinal Methds fr Multiclass Prblems Linear Regressin Mdels Lecture 8: Multiclass Classificatin (I) Ha Helen Zhang Fall 07 Ha Helen Zhang Lecture 8: Multiclass Classificatin

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

How do we solve it and what does the solution look like?

How do we solve it and what does the solution look like? Hw d we slve it and what des the slutin l lie? KF/PFs ffer slutins t dynamical systems, nnlinear in general, using predictin and update as data becmes available. Tracing in time r space ffers an ideal

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

Rigid Body Dynamics (continued)

Rigid Body Dynamics (continued) Last time: Rigid dy Dynamics (cntinued) Discussin f pint mass, rigid bdy as useful abstractins f reality Many-particle apprach t rigid bdy mdeling: Newtn s Secnd Law, Euler s Law Cntinuus bdy apprach t

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Sectin 2 - Spring 2017 Lecture 7 Jan-Willem van de Meent (credit: David Blei) Review: K-means Clustering μ1 Objective: Sum f Squares μ2 µ k One-ht assignment Center fr

More information

ELT COMMUNICATION THEORY

ELT COMMUNICATION THEORY ELT 41307 COMMUNICATION THEORY Matlab Exercise #2 Randm variables and randm prcesses 1 RANDOM VARIABLES 1.1 ROLLING A FAIR 6 FACED DICE (DISCRETE VALIABLE) Generate randm samples fr rlling a fair 6 faced

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Artificial Neural Networks MLP, Backpropagation

Artificial Neural Networks MLP, Backpropagation Artificial Neural Netwrks MLP, Backprpagatin 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

15-381/781 Bayesian Nets & Probabilistic Inference

15-381/781 Bayesian Nets & Probabilistic Inference 15-381/781 Bayesian Nets & Prbabilistic Inference Emma Brunskill (this time) Ariel Prcaccia With thanks t Dan Klein (Berkeley), Percy Liang (Stanfrd) and Past 15-381 Instructrs fr sme slide cntent, and

More information

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern 0.478/msr-04-004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy

More information

TEST 3A AP Statistics Name: Directions: Work on these sheets. A standard normal table is attached.

TEST 3A AP Statistics Name: Directions: Work on these sheets. A standard normal table is attached. TEST 3A AP Statistics Name: Directins: Wrk n these sheets. A standard nrmal table is attached. Part 1: Multiple Chice. Circle the letter crrespnding t the best answer. 1. In a statistics curse, a linear

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance Verificatin f Quality Parameters f a Slar Panel and Mdificatin in Frmulae f its Series Resistance Sanika Gawhane Pune-411037-India Onkar Hule Pune-411037- India Chinmy Kulkarni Pune-411037-India Ojas Pandav

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2 CEE 371 Octber 8, 2009 Exam #1 Clsed Bk, ne sheet f ntes allwed Please answer ne questin frm the first tw, ne frm the secnd tw and ne frm the last three. The ttal ptential number f pints is 100. Shw all

More information

Bayesian nonparametric modeling approaches for quantile regression

Bayesian nonparametric modeling approaches for quantile regression Bayesian nnparametric mdeling appraches fr quantile regressin Athanasis Kttas Department f Applied Mathematics and Statistics University f Califrnia, Santa Cruz Department f Statistics Athens University

More information

Microfacet models for refraction through rough surfaces

Microfacet models for refraction through rough surfaces Micrfacet mdels fr refractin thrugh rugh surfaces Bruce Walter Steve Marschner Hngsng Li Ken Trrance Crnell University Prgram f Cmputer Graphics Diffuse transmissin measured transmissin grund glass interface

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967 Measurement f Radial Lss and Lifetime f Micrwave Plasma in the Octup1e J. C. Sprtt PLP 165 Plasma Studies University f Wiscnsin DEC 1967 1 The number f particles in the tridal ctuple was measured as a

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons

Slide04 (supplemental) Haykin Chapter 4 (both 2nd and 3rd ed): Multi-Layer Perceptrons Slide04 supplemental) Haykin Chapter 4 bth 2nd and 3rd ed): Multi-Layer Perceptrns CPSC 636-600 Instructr: Ynsuck Che Heuristic fr Making Backprp Perfrm Better 1. Sequential vs. batch update: fr large

More information

City of Angels School Independent Study Los Angeles Unified School District

City of Angels School Independent Study Los Angeles Unified School District City f Angels Schl Independent Study Ls Angeles Unified Schl District INSTRUCTIONAL GUIDE Algebra 1B Curse ID #310302 (CCSS Versin- 06/15) This curse is the secnd semester f Algebra 1, fulfills ne half

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Homework 1 AERE355 Fall 2017 Due 9/1(F) NOTE: If your solution does not adhere to the format described in the syllabus, it will be grade as zero.

Homework 1 AERE355 Fall 2017 Due 9/1(F) NOTE: If your solution does not adhere to the format described in the syllabus, it will be grade as zero. 1 Hmerk 1 AERE355 Fall 217 Due 9/1(F) Name NOE: If yur slutin des nt adhere t the frmat described in the syllabus, it ill be grade as zer. Prblem 1(25pts) In the altitude regin h 1km, e have the flling

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

Lecture 24: Flory-Huggins Theory

Lecture 24: Flory-Huggins Theory Lecture 24: 12.07.05 Flry-Huggins Thery Tday: LAST TIME...2 Lattice Mdels f Slutins...2 ENTROPY OF MIXING IN THE FLORY-HUGGINS MODEL...3 CONFIGURATIONS OF A SINGLE CHAIN...3 COUNTING CONFIGURATIONS FOR

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

Linear programming III

Linear programming III Linear prgramming III Review 1/33 What have cvered in previus tw classes LP prblem setup: linear bjective functin, linear cnstraints. exist extreme pint ptimal slutin. Simplex methd: g thrugh extreme pint

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling? CS4445 ata Mining and Kwledge iscery in atabases. B Term 2014 Exam 1 Nember 24, 2014 Prf. Carlina Ruiz epartment f Cmputer Science Wrcester Plytechnic Institute NAME: Prf. Ruiz Prblem I: Prblem II: Prblem

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

ON-LINE PROCEDURE FOR TERMINATING AN ACCELERATED DEGRADATION TEST

ON-LINE PROCEDURE FOR TERMINATING AN ACCELERATED DEGRADATION TEST Statistica Sinica 8(1998), 207-220 ON-LINE PROCEDURE FOR TERMINATING AN ACCELERATED DEGRADATION TEST Hng-Fwu Yu and Sheng-Tsaing Tseng Natinal Taiwan University f Science and Technlgy and Natinal Tsing-Hua

More information

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 50 DECEMBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

More information

Tutorial 4: Parameter optimization

Tutorial 4: Parameter optimization SRM Curse 2013 Tutrial 4 Parameters Tutrial 4: Parameter ptimizatin The aim f this tutrial is t prvide yu with a feeling f hw a few f the parameters that can be set n a QQQ instrument affect SRM results.

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Sectin 3 - Fall 2016 Lecture 11 Jan-Willem van de Meent (credit: Yijun Zha, Dave Blei) PROJECT GUIDELINES (updated) Prject Gals Select a dataset / predictin prblem Perfrm

More information

Randomized Quantile Residuals

Randomized Quantile Residuals Randmized Quantile Residuals Peter K. Dunn and Grdn K. Smyth Department f Mathematics, University f Queensland, Brisbane, Q 47, Australia. 4 April 996 Abstract In this paper we give a general definitin

More information

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA 16802 Sandy Balkin is a graduate student

More information