Tree Structured Classifier

Size: px
Start display at page:

Download "Tree Structured Classifier"

Transcription

1 Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients wh will nt survive at least 3 days n the basis f the initial 2-hur data. 9 variables are measured during the first 2 hurs. These include bld pressure, age, etc. A tree structure classificatin rule is as fllws: Is the minimum systlic bld pressure ver the initial 2 hur perid > 9? yes n Is sinus tachycardia present? Is age > 2.5 yes yes n n Lw risk High risk High risk Lw risk

2 Dente the feature space by X. The input vectr X X cntains p features X, X 2,..., X p, sme f which may be categrical. Tree structured classifiers are cnstructed by repeated splits f subsets f X int tw descendant subsets, beginning with X itself. Definitins: nde, terminal nde (leaf nde), parent nde, child nde. The unin f the regins ccupied by tw child ndes is the regin ccupied by their parent nde. Every leaf nde is assigned with a class. A query is assciated with class f the leaf nde it lands in. Ntatin: A nde is dented by t. Its left child nde is dented by t L and right by t R. The cllectin f all the ndes is dented by T ; and the cllectin f all the leaf ndes by T. A split is dented by s. The set f splits is dented by S. 2

3 X split X X 2 X X 2 X X 3 split 2 split 3 X X 5 X X X 2 X 3 X X 5 X X 7 X X 3 X X 5 X 8 X X 2 X 3 X X 5 X split 2 2 X 7 X 8 3 3

4 The Three Elements The cnstructin f a tree invlves the fllwing three elements:. The selectin f the splits. 2. The decisins when t declare a nde terminal r t cntinue splitting it. 3. The assignment f each terminal nde t a class. In particular, we need t decide the fllwing:. A set Q f binary questins f the frm {Is X A?}, A X. 2. A gdness f split criterin Φ(s, t) that can be evaluated fr any split s f any nde t. 3. A stp-splitting rule.. A rule fr assigning every terminal nde t a class.

5 Standard Set f Questins The input vectr X = (X,X 2,...,X p ) cntains features f bth categrical and rdered types. Each split depends n the value f nly a unique variable. Fr each rdered variable X j, Q includes all questins f the frm fr all real-valued c. {Is X j c?} Since the training data set is finite, there are nly finitely many distinct splits that can be generated by the questin {Is X j c?}. If X j is categrical, taking values, say in{, 2,...,M}, then Q cntains all questins f the frm {Is X j A?}. A ranges ver all subsets f {, 2,...,M}. The splits fr all p variables cnstitute the standard set f questins. 5

6 Gdness f Split The gdness f split is measured by an impurity functin defined fr each nde. Intuitively, we want each leaf nde t be pure, that is, ne class dminates. Definitin: An impurity functin is a functin φ defined n the set f all K-tuples f numbers (p,...,p K ) satisfying p j, j =,..., K, j p j = with the prperties:. φ is a maimum nly at the pint ( K, K,..., K ). 2. φ achieves its minimum nly at the pints (,,..., ), (,,,..., ),..., (,,...,, ). 3. φ is a symmetric functin f p,..., p K, i.e., if yu permute p j, φ remains cnstant.

7 Definitin: Given an impurity functin φ, define the impurity measure i(t) f a nde t as i(t) = φ(p( t),p(2 t),...,p(k t)), where p(j t) is the estimated prbability f class j within nde t. Gdness f a split s fr nde t, dented by Φ(s, t), is defined by Φ(s, t) = i(s, t) = i(t) p R i(t R ) p L i(t L ), where p R and p L are the prprtins f the samples in nde t that g t the right nde t R and the left nde t L respectively. 7

8 Define I(t) = i(t)p(t), that is, the impurity functin f nde t weighted by the estimated prprtin f data that g t nde t. The impurity f tree T, I(T) is defined by I(T) = t T I(t) = t T i(t)p(t). Nte fr any nde t the fllwing equatins hld: Define p(t L ) + p(t R ) = p(t) p L = p(t L )/p(t), p R = p(t R )/p(t) p L + p R = I(s, t) = I(t) I(t L ) I(t R ) = p(t)i(t) p(t L )i(t L ) p(t R )i(t R ) = p(t)(i(t) p L i(t L ) p R i(t R )) = p(t) i(s, t) 8

9 Pssible impurity functin:. Entrpy: K j= p j lg p j. If p j =, use the limit lim pj p j lg p j =. 2. Misclassificatin rate: ma j p j. 3. Gini inde: K j= p j( p j ) = K j= p2 j. Gini inde seems t wrk best in practice fr many prblems. The twing rule: At a nde t, chse the split s that maimizes p L p R 2 p(j t L ) p(j t R ). j 9

10 Estimate the psterir prbabilities f classes in each nde: The ttal number f samples is N and the number f samples in class j, j K, is N j. The number f samples ging t nde t is N(t); the number f samples with class j ging t nde t is N j (t). K j= N j(t) = N(t). N j (t L ) + N j (t R ) = N j (t). Fr a full tree (balanced), the sum f N(t) ver all the t s at the same level is N. Dente the prir prbability f class j by π j. The prirs π j can be estimated frm the data by N j /N. Smetimes prirs are given befre-hand. The estimated prbability f a sample in class j ging t nde t is p(t j) = N j (t)/n j. p(t L j) + p(t R j) = p(t j). Fr a full tree, the sum f p(t j) ver all t s at the same level is.

11 The jint prbability f a sample being in class j and ging t nde t is thus: p(j,t) = π j p(t j) = π j N j (t)/n j. The prbability f any sample ging t nde t is: p(t) = K p(j,t) = j= K π j N j (t)/n j. j= Nte p(t L ) + p(t R ) = p(t). The prbability f a sample being in class j given that it ges t nde t is: p(j t) = p(j,t)/p(t). Fr any t, K j= p(j t) =. When π j = N j /N, we have the fllwing simplificatin: p(j t) = N j (t)/n(t). p(t) = N(t)/N. p(j, t) = N j (t)/n.

12 Stpping Criteria A simple criteria: stp splitting a nde t when ma s S I(s,t) < β, where β is a chsen threshld. The abve stpping criteria is unsatisfactry. A nde with a small decrease f impurity after ne step f splitting may have a large decrease after multiple levels f splits. 2

13 Class Assignment Rule A class assignment rule assigns a class j = {,...,K} t every terminal nde t T. The class assigned t nde t T is dented by κ(t). Fr - lss, the class assignment rule is: κ(t) = arg ma j p(j t). The resubstitutin estimate r(t) f the prbability f misclassificatin, given that a case falls int nde t is r(t) = ma j Dente R(t) = r(t)p(t). p(j t) = p(κ(t) t). The resubstitutin estimate fr the verall misclassificatin rate R(T) f the tree classifier T is: R(T) = t T R(t). 3

14 Prpsitin: Fr any split f a nde t int t L and t R, Prf: Dente j = κ(t). R(t) R(t L ) + R(t R ). p(j t) = p(j,t L t) + p(j,t R t) = p(j t L )p(t L t) + p(j t R )p(t R t) = p L p(j t L ) + p R p(j t R ) Hence, p L ma j p(j t L ) + p R ma j p(j t R ) r(t) = p(j [ t) ] p L map(j t L ) + p R map(j t R ) j j = p L ( map(j t L )) + p R ( map(j t R )) j j = p L r(t L ) + p R r(t R ) Finally, R(t) = p(t)r(t) p(t)p L r(t L ) + p(t)p R r(t R ) = p(t L )r(t L ) + p(t R )r(t R ) = R(t L ) + R(t R )

15 Digit Recgnitin Eample (CART) The digits are shwn by different n-ff cmbinatins f seven hrizntal and vertical lights. Each digit is represented by a 7-dimensinal vectr f zers and nes. The ith sample is i = ( i, i2,..., i7 ). If ij =, the jth light is n; if ij =, the jth light is ff. Digit

16 The data fr the eample are generated by a malfunctining calculatr. Each f the seven lights has prbability. f being in the wrng state independently. The training set cntains 2 samples generated accrding t the specified distributin. A tree structured classifier is applied. The set f questins Q cntains: Is j =?, j =, 2,..., 7. The twing rule is used in splitting. The pruning crss-validatin methd is used t chse the right sized tree. Classificatin perfrmance: The errr rate estimated by using a test set f size 5 is.3. The errr rate estimated by crss-validatin using the training set is.3. The resubstitutin estimate f the errr rate is.29. The Bayes errr rate is.2. There is little rm fr imprvement ver the tree classifier.

17 Y X5= N Y X= N Y X2= N 2 Y X= Y X2= N Y X= N 7 3 Y X= N Y X3= N 8 Y X3= N 5 9 Accidently, every digit ccupies ne leaf nde. In general, ne class may ccupy any number f leaf ndes and ccasinally n leaf nde. X and X 7 are never used. 7

18 Wavefrm Eample (CART) Three functins h (τ), h 2 (τ), h 3 (τ) are shifted versins f each ther, as shwn in the figure. h h 3 h Each h j is specified by the equal-lateral right triangle functin. Its values at integers τ = 2 are measured. 8

19 The three classes f wavefrms are randm cnve cmbinatins f tw f these wavefrms plus independent Gaussian nise. Each sample is a 2 dimensinal vectr cntaining the values f the randm wavefrms measured at τ =, 2,..., 2. T generate a sample in class, a randm number u unifrmly distributed in [, ] and 2 randm numbers ɛ, ɛ 2,..., ɛ 2 nrmally distributed with mean zer and variance are generated. j = uh (j) + ( u)h 2 (j) + ɛ j, j =,..., 2. T generate a sample in class 2, repeat the abve prcess t generate a randm number u and 2 randm numbers ɛ,..., ɛ 2 and set j = uh (j) + ( u)h 3 (j) + ɛ j, j =,..., 2. Class 3 vectrs are generated by j = uh 2 (j) + ( u)h 3 (j) + ɛ j, j =,..., 2. Eample randm wavefrms are shwn belw. 9

20 Class Class Class

21 3 randm samples are generated using prir prbabilities ( 3, 3, 3 ) fr training. Cnstructin f the tree: The set f questins: {Is j c?} fr c ranging ver all real numbers and j =,..., 2. Gini inde is used fr measuring gdness f split. The final tree is selected by pruning and crssvalidatin. Results: The crss-validatin estimate f misclassificatin rate is.29. The misclassificatin rate n a separate test set f size 5 is.28. The Bayes classificatin rule can be derived. Applying this rule t the test set yields a misclassificatin rate f.. 2

22 <=2. <=.8 2<=. 7<=. <=2.5 <=2. 7<=.9 <=. 5<=.9 <=

23 Advantages f the Tree-Structured Apprach Handles bth categrical and rdered variables in a simple and natural way. Autmatic stepwise variable selectin and cmpleity reductin. It prvides an estimate f the misclassificatin rate fr a query sample. It is invariant under all mntne transfrmatins f individual rdered variables. Rbust t utliers and misclassified pints in the training set. Easy t interpret. 23

24 Variable Cmbinatins Splits perpendicular t the crdinate aes are inefficient in certain cases. Use linear cmbinatins f variables: Is a j j c? The amunt f cmputatin is increased significantly. Price t pay: mdel cmpleity increases. 2

25 Missing Values Certain variables are missing in sme training samples. Often ccurs in gene-epressin micrarray data. Suppse each variable has 5% chance being missing independently. Then fr a training sample with 5 variables, the prbability f missing sme variables is as high as 92.3%. A query sample t be classified may have missing variables. Find surrgate splits. Suppse the best split fr nde t is s which invlves a questin n X m. Find anther split s n a variable X j, j m, which is mst similar t s in a certain sense. Similarly, the secnd best surrgate split, the third, and s n, can be fund. 25

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint

Biplots in Practice MICHAEL GREENACRE. Professor of Statistics at the Pompeu Fabra University. Chapter 13 Offprint Biplts in Practice MICHAEL GREENACRE Prfessr f Statistics at the Pmpeu Fabra University Chapter 13 Offprint CASE STUDY BIOMEDICINE Cmparing Cancer Types Accrding t Gene Epressin Arrays First published:

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling? CS4445 ata Mining and Kwledge iscery in atabases. B Term 2014 Exam 1 Nember 24, 2014 Prf. Carlina Ruiz epartment f Cmputer Science Wrcester Plytechnic Institute NAME: Prf. Ruiz Prblem I: Prblem II: Prblem

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

Engineering Decision Methods

Engineering Decision Methods GSOE9210 vicj@cse.unsw.edu.au www.cse.unsw.edu.au/~gs9210 Maximin and minimax regret 1 2 Indifference; equal preference 3 Graphing decisin prblems 4 Dminance The Maximin principle Maximin and minimax Regret

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter

Midwest Big Data Summer School: Machine Learning I: Introduction. Kris De Brabanter Midwest Big Data Summer Schl: Machine Learning I: Intrductin Kris De Brabanter kbrabant@iastate.edu Iwa State University Department f Statistics Department f Cmputer Science June 24, 2016 1/24 Outline

More information

Math 10 - Exam 1 Topics

Math 10 - Exam 1 Topics Math 10 - Exam 1 Tpics Types and Levels f data Categrical, Discrete r Cntinuus Nminal, Ordinal, Interval r Rati Descriptive Statistics Stem and Leaf Graph Dt Plt (Interpret) Gruped Data Relative and Cumulative

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Sectin 8.1: The Binmial Distributins Chapter 8: The Binmial and Gemetric Distributins A randm variable X is called a BINOMIAL RANDOM VARIABLE if it meets ALL the fllwing cnditins: 1) 2) 3) 4) The MOST

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

1b) =.215 1c).080/.215 =.372

1b) =.215 1c).080/.215 =.372 Practice Exam 1 - Answers 1. / \.1/ \.9 (D+) (D-) / \ / \.8 / \.2.15/ \.85 (T+) (T-) (T+) (T-).080.020.135.765 1b).080 +.135 =.215 1c).080/.215 =.372 2. The data shwn in the scatter plt is the distance

More information

Pre-Calculus Individual Test 2017 February Regional

Pre-Calculus Individual Test 2017 February Regional The abbreviatin NOTA means Nne f the Abve answers and shuld be chsen if chices A, B, C and D are nt crrect. N calculatr is allwed n this test. Arcfunctins (such as y = Arcsin( ) ) have traditinal restricted

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1

Administrativia. Assignment 1 due thursday 9/23/2004 BEFORE midnight. Midterm exam 10/07/2003 in class. CS 460, Sessions 8-9 1 Administrativia Assignment 1 due thursday 9/23/2004 BEFORE midnight Midterm eam 10/07/2003 in class CS 460, Sessins 8-9 1 Last time: search strategies Uninfrmed: Use nly infrmatin available in the prblem

More information

Support Vector Machines and Flexible Discriminants

Support Vector Machines and Flexible Discriminants 12 Supprt Vectr Machines and Flexible Discriminants This is page 417 Printer: Opaque this 12.1 Intrductin In this chapter we describe generalizatins f linear decisin bundaries fr classificatin. Optimal

More information

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter 5 1 Chapter Summary Mathematical Inductin Strng Inductin Recursive Definitins Structural Inductin Recursive Algrithms Sectin 5.1 3 Sectin Summary Mathematical Inductin Examples f Prf by Mathematical

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Elements of Machine Intelligence - I

Elements of Machine Intelligence - I ECE-175A Elements f Machine Intelligence - I Ken Kreutz-Delgad Nun Vascncels ECE Department, UCSD Winter 2011 The curse The curse will cver basic, but imprtant, aspects f machine learning and pattern recgnitin

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Practice Final (Solutions) Duration: 3 hours STATS216v Intrductin t Statistical Learning Stanfrd University, Summer 2016 Practice Final (Slutins) Duratin: 3 hurs Instructins: (This is a practice final and will nt be graded.) Remember the university

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

WYSE Academic Challenge Regional Mathematics 2007 Solution Set

WYSE Academic Challenge Regional Mathematics 2007 Solution Set WYSE Academic Challenge Reginal Mathematics 007 Slutin Set 1. Crrect answer: C. ( ) ( ) 1 + y y = ( + ) + ( y y + 1 ) = + 1 1 ( ) ( 1 + y ) = s *1/ = 1. Crrect answer: A. The determinant is ( 1 ( 1) )

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES

SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES 1 SURVIVAL ANALYSIS WITH SUPPORT VECTOR MACHINES Wlfgang HÄRDLE Ruslan MORO Center fr Applied Statistics and Ecnmics (CASE), Humbldt-Universität zu Berlin Mtivatin 2 Applicatins in Medicine estimatin f

More information

Probability, Random Variables, and Processes. Probability

Probability, Random Variables, and Processes. Probability Prbability, Randm Variables, and Prcesses Prbability Prbability Prbability thery: branch f mathematics fr descriptin and mdelling f randm events Mdern prbability thery - the aximatic definitin f prbability

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

Source Coding and Compression

Source Coding and Compression Surce Cding and Cmpressin Heik Schwarz Cntact: Dr.-Ing. Heik Schwarz heik.schwarz@hhi.fraunhfer.de Heik Schwarz Surce Cding and Cmpressin September 22, 2013 1 / 60 PartI: Surce Cding Fundamentals Heik

More information

COMP9444 Neural Networks and Deep Learning 3. Backpropagation

COMP9444 Neural Networks and Deep Learning 3. Backpropagation COMP9444 Neural Netwrks and Deep Learning 3. Backprpagatin Tetbk, Sectins 4.3, 5.2, 6.5.2 COMP9444 17s2 Backprpagatin 1 Outline Supervised Learning Ockham s Razr (5.2) Multi-Layer Netwrks Gradient Descent

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 50 DECEMBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

More information

SticiGui Chapter 4: Measures of Location and Spread Philip Stark (2013)

SticiGui Chapter 4: Measures of Location and Spread Philip Stark (2013) SticiGui Chapter 4: Measures f Lcatin and Spread Philip Stark (2013) Summarizing data can help us understand them, especially when the number f data is large. This chapter presents several ways t summarize

More information

Chapter 15 & 16: Random Forests & Ensemble Learning

Chapter 15 & 16: Random Forests & Ensemble Learning Chapter 15 & 16: Randm Frests & Ensemble Learning DD3364 Nvember 27, 2012 Ty Prblem fr Bsted Tree Bsted Tree Example Estimate this functin with a sum f trees with 9-terminal ndes by minimizing the sum

More information

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational)

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational) After yu cmplete each cncept give yurself a rating 1. 15 5 2 (5 3) 2. 2 4-8 (2 5) 3. Classify the fllwing Numbers (Cunting (natural), Whle, Integers, Ratinal, Irratinal) a. 7 b. 2 3 c. 2 4. Are negative

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information

B. Definition of an exponential

B. Definition of an exponential Expnents and Lgarithms Chapter IV - Expnents and Lgarithms A. Intrductin Starting with additin and defining the ntatins fr subtractin, multiplicatin and divisin, we discvered negative numbers and fractins.

More information

Hiding in plain sight

Hiding in plain sight Hiding in plain sight Principles f stegangraphy CS349 Cryptgraphy Department f Cmputer Science Wellesley Cllege The prisners prblem Stegangraphy 1-2 1 Secret writing Lemn juice is very nearly clear s it

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

15-381/781 Bayesian Nets & Probabilistic Inference

15-381/781 Bayesian Nets & Probabilistic Inference 15-381/781 Bayesian Nets & Prbabilistic Inference Emma Brunskill (this time) Ariel Prcaccia With thanks t Dan Klein (Berkeley), Percy Liang (Stanfrd) and Past 15-381 Instructrs fr sme slide cntent, and

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Localized Model Selection for Regression

Localized Model Selection for Regression Lcalized Mdel Selectin fr Regressin Yuhng Yang Schl f Statistics University f Minnesta Church Street S.E. Minneaplis, MN 5555 May 7, 007 Abstract Research n mdel/prcedure selectin has fcused n selecting

More information

A proposition is a statement that can be either true (T) or false (F), (but not both).

A proposition is a statement that can be either true (T) or false (F), (but not both). 400 lecture nte #1 [Ch 2, 3] Lgic and Prfs 1.1 Prpsitins (Prpsitinal Lgic) A prpsitin is a statement that can be either true (T) r false (F), (but nt bth). "The earth is flat." -- F "March has 31 days."

More information

Agenda. What is Machine Learning? Learning Type of Learning: Supervised, Unsupervised and semi supervised Classification

Agenda. What is Machine Learning? Learning Type of Learning: Supervised, Unsupervised and semi supervised Classification Agenda Artificial Intelligence and its applicatins Lecture 6 Supervised Learning Prfessr Daniel Yeung danyeung@ieee.rg Dr. Patrick Chan patrickchan@ieee.rg Suth China University f Technlgy, China Learning

More information

ELT COMMUNICATION THEORY

ELT COMMUNICATION THEORY ELT 41307 COMMUNICATION THEORY Matlab Exercise #2 Randm variables and randm prcesses 1 RANDOM VARIABLES 1.1 ROLLING A FAIR 6 FACED DICE (DISCRETE VALIABLE) Generate randm samples fr rlling a fair 6 faced

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

M thematics. National 5 Practice Paper D. Paper 1. Duration 1 hour. Total marks 40

M thematics. National 5 Practice Paper D. Paper 1. Duration 1 hour. Total marks 40 N5 M thematics Natinal 5 Practice Paper D Paper 1 Duratin 1 hur Ttal marks 40 Yu may NOT use a calculatr Attempt all the questins. Use blue r black ink. Full credit will nly be given t slutins which cntain

More information

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION Instructins: If asked t label the axes please use real wrld (cntextual) labels Multiple Chice Answers: 0 questins x 1.5 = 30 Pints ttal Questin Answer Number 1

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

Lecture 24: Flory-Huggins Theory

Lecture 24: Flory-Huggins Theory Lecture 24: 12.07.05 Flry-Huggins Thery Tday: LAST TIME...2 Lattice Mdels f Slutins...2 ENTROPY OF MIXING IN THE FLORY-HUGGINS MODEL...3 CONFIGURATIONS OF A SINGLE CHAIN...3 COUNTING CONFIGURATIONS FOR

More information

Floating Point Method for Solving Transportation. Problems with Additional Constraints

Floating Point Method for Solving Transportation. Problems with Additional Constraints Internatinal Mathematical Frum, Vl. 6, 20, n. 40, 983-992 Flating Pint Methd fr Slving Transprtatin Prblems with Additinal Cnstraints P. Pandian and D. Anuradha Department f Mathematics, Schl f Advanced

More information

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall

Stats Classification Ji Zhu, Michigan Statistics 1. Classification. Ji Zhu 445C West Hall Stats 415 - Classificatin Ji Zhu, Michigan Statistics 1 Classificatin Ji Zhu 445C West Hall 734-936-2577 jizhu@umich.edu Stats 415 - Classificatin Ji Zhu, Michigan Statistics 2 Examples f Classificatin

More information

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2

Exam #1. A. Answer any 1 of the following 2 questions. CEE 371 October 8, Please grade the following questions: 1 or 2 CEE 371 Octber 8, 2009 Exam #1 Clsed Bk, ne sheet f ntes allwed Please answer ne questin frm the first tw, ne frm the secnd tw and ne frm the last three. The ttal ptential number f pints is 100. Shw all

More information

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition

The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition The Kullback-Leibler Kernel as a Framewrk fr Discriminant and Lcalized Representatins fr Visual Recgnitin Nun Vascncels Purdy H Pedr Mren ECE Department University f Califrnia, San Dieg HP Labs Cambridge

More information

M thematics. National 5 Practice Paper E. Paper 1. Duration 1 hour. Total marks 40

M thematics. National 5 Practice Paper E. Paper 1. Duration 1 hour. Total marks 40 N5 M thematics Natinal 5 Practice Paper E Paper 1 Duratin 1 hur Ttal marks 40 Yu may NOT use a calculatr Attempt all the questins. Use blue r black ink. Full credit will nly be given t slutins which cntain

More information