Department of Electrical Engineering, University of Waterloo. Introduction

Save this PDF as:
Size: px
Start display at page:

Download "Department of Electrical Engineering, University of Waterloo. Introduction"

Transcription

1 Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd State reductins Cunters Shift registers /59 Cmbinatinal Circuit Output = f ( present inputs) Intrductin Sequential circuit Output = f ( present and past inputs) Circuit remembers past histry Must cntain memry elements Time is variable that must be cnsidered Memry elements hld the present state f the system The past histry is recrded in the state As time prgresses, the system mves frm state t state 2/59

2 General sequential circuit mdel inputs k present state cmbinatinal circuit n utputs next state m memry state m Outputs are functins f inputs and present state Next state is functin f inputs and present state 3/59 Chsing the set f permissible states is a crucial part f sequential circuit design Chice f states has three issues: Identifying the number f unique states Identifying rules fr transitin frm state t state Finding a cding fr the state that simplifies the circuit (usually fairly bvius fr small systems) 4/59 2

3 Types f Sequential Circuits Fundamental Mde (asynchrnus) Shrt-term memry cnsists f signal prpagatin delay (gate delays) in the cmbinatinal circuit Frequently memry is nt distinct Fastest pssible circuit Cmbinatinal circuit with feedback Feedback can cause instability Difficult t design, analyse, debug Dn t use them unless frced t 5/59 Pulse r synchrnus Mde memry is prvided by flip-flps Circuit nly changes state in respnse t a pulse input Unless pulse rate is t high, circuit is always stable Synchrnizatin is achieved thrugh clck pulses Circuit behavir depends nly n the inputs at the discrete times at which clck pulse ccurs 6/59 3

4 In fundamental mde ne must cnsider the differences in delay alng varius paths, and the effect f simultaneusly input changes With several different pulse inputs, in the wrst case the circuit must be designed as a fundamental mde circuit Hwever, in clcked sequential circuits ne is nly cncerned with Crrect cmbinatinal circuit Clck perid greater than the maximum prpagatin delay thrugh the cmbinatinal circuit 7/59 Flip - Flps A flip-flp (FF) is the basic memry element f pulse mde circuit A flip-flp stres ne bit f infrmatin RS (Reset/Set) Latch (Flip-flp)* (unlcked versin) R S S S R R S R Tw states :- Set : =, = 0 ; Reset: = 0, = 8/59 4

5 * Sme texts use the term latch and flip-flp interchangeably Others restrict flip-flp t elements with a pulse (clck) input, and latches t elements withut a pulse input, althugh a latch may have an enable input 9/59 Truth Table (Characteristic Table) R S n n+ n = present utput n+ = utput after input applied Output undefined - Output undefined If R = S = then = = 0 (NOR) and = = (NAND) If R and S g t 0 almst simultaneusly then the circuit can () Fall int either state (2) Oscillate, r (3) Remain at an indeterminate value fr an arbitrarily lng time, i.e. metastable state 0/59 5

6 A) (Clcked) RS FF R S Characteristic table as befre n - utput befre clck pulse n+ - utput after clck pulse Characteristic equatin = Clck Pulse n+ S R SR n 0 X X n+ = S + R n with cnstraint: RS = 0 /59 B) Clck RS FF with asynchrnus Reset and Set Direct Clear and Preset clear R S preset Asynchrnus Reset and Set cntrls Used fr circuit initializatin 2/59 6

7 C) D (data) flip-flp D D Characteristic Table D n n n+ = D cpies input t utput n clck pulse 3/59 D) T (tggle) flip-flp T n n n+ = T n changes state n clck pulse when T = 4/59 7

8 E) JK flip-flp Eliminate the indeterminate state f the RS flip-flp n+ J = set K = clear JK simultaneusly = tggle JK n 0 characteristic equatin n+ = J n + K n J K n n /59 Flip - Flp Triggering T prevent repeated triggering f a JK flip-flp when J=K=, clck pulse width must be less than prpagatin delay thrugh flip-flp T avid clck pulse width prblems, prefer t trigger n edges f Tw appraches Master-slave flip-flp Edge triggered flip-flp 6/59 8

9 Master - Slave Flip - Flp Basic idea (RS flip-flp) S master S Y slave S R R Y R = master is affected = 0 slave is affected Y 7/59 Master- Slave JK Flip- Flp J K Master Slave master affected slave affected (JK inputs ignred) (slave is an RS flip-flp) 8/59 9

10 J - K master- slave flip-flps are susceptible t nise n cntrl lines while clck is high nise pulse J K Y Wuld prefer a system where the interval fr nise/glitch susceptibility is small 9/59 Edge Triggered Flip - Flps Basic ideal is t make the intervals where flip-flp is susceptible t nise as small as pssible Example- D- flip-flp utput changes here (psitive edge triggered) 20/59 0

11 Edge Triggered D Flip- Flp A S R D B Changes state (if D) when makes a psitive transitin (0fi ) 2/59 in circuit, D must be present fr befre fi t setup = delay frm D t A utput D must stay cnstant fr t hld after fi t hld is delay thrugh S and R gates D t setup t hld Nte: - All flips-flps have a t setup and t hld cnstraints - If the cnstraints are nt met, the flip-flp may g int metastable state. 22/59

12 Analysis f Clcked Sequential Circuits Analysis Prcedure Circuit equatins Excitatin table (Next state) Transitin Table and State equatins State diagram Timing chart SYNTHESIS IS JUST REVERSE! 23/59 Analysis Example x D A A D B B y A ( t + ) = A ( t ) x ( t ) + B ( t ) x ( t ) B ( t + ) = A' ( t ) x ( t ) 24/59 2

13 Alternatively A ( t + ) = Ax + Bx B ( t + ) = A' x Similarly y ( t ) = [ A ( t ) + B ( t ) ] x' ( t ) y = ( A + B ) x' 25/59 State Table Present Input Next Output State State A B x A B y /59 3

14 State Table Cntinued Next State Output Present State x = 0 x = x = 0 x = AB AB AB y y /59 Flip - Flp Characteristic Tables JK Flip - Flp J K ( t + ) 0 0 ( t ) N change 0 0 Reset 0 Set ' ( t ) Cmplement S R ( t + ) RS Flip - Flp 0 0 ( t ) N change 0 0 Reset 0 Set? Unpredictabe D Flip - Flp D ( t + ) 0 0 Reset Set T Flip - Flp T ( t + ) 0 ( t ) N Change ' ( t ) Cmplement 28/59 4

15 Mealy Machine Mre and Mealy Machines Output are pulses dependent upn the ttal input state ttal input state inputs + internal state Internal state inputs utputs q 0/0 q 2 29/59 Mre Machine Outputs are levels dependent upn nly the present internal state utputs q / internal state 0 inputs q 2 /0 try t use this frm when designing clcked circuits 30/59 5

16 Flip - Flp Excitatin Tables ( t ) ( t + ) S R X X 0 (a) RS ( t ) ( t + ) D (c) D ( t ) ( t + ) J K X 0 X 0 X X 0 (b) JK ( t ) ( t + ) T (d) T 3/59 Design Prcedure The (classical) apprach t clcked sequential circuit design fllws the steps: ) wrds r timing diagram 2) state transitin diagram 3) state table 4) reduced state table (if pssible) 5) assign binary values t states (state variable assignment) 6) develp transitin table 7) select flip-flp type 8) excitatin table and utput table 9) simplified equatins 0) circuit diagram 32/59 6

17 Example Next State Present State x = 0 x = A B A B A B /59 Inputs f Cmbinatinal Circuit Present State Input Excitatin Table Next State Outputs f Cmbinatinal Circuit Flip- Flp Inputs A B x A B JA KA JB KB X 0 X X X X X X X X 0 0 X 0 X 0 X 0 X 0 X X X 34/59 7

18 Blck Diagram ' K A' A B' A' KA J A JA Cmbinatinal circuit B' ' K KB B J JB External utputs (nne) B x External inputs 35/59 Lgic Diagram Bx B A X X X X A X X X X x JA = Bx' KA = Bx X X X X JB = x X X X X KB = ( A x )' 36/59 8

19 F Lgic Diagram Cntinued A B ' K J ' K J x 37/59 State Reductins Redundant states can be generated in ging frm a verbal descriptin t the state diagram Tw states are equivalent if, fr each member f the set f inputs, they give exactly the same utput and send the circuit t the same state r t an equivalent state M.M. Man When tw states are equivalent, ne f them may be remved Example Present Next state Output state x = 0 x = A D C B A E 0 C D A D B D 0 E C B 0 A and C are equivalent, B and E are equivalent 38/59 9

20 Reduced table 0 Present Next state state x = 0 x = utput (A,C) P D P (B,E) P 0 D D 0 A/ C/ P/ 0 B/0 0 0 D/0 0 0 D/0 0 E/0 /0 0 39/59 Registers A register is a bank f D flip-flps (direct ) clear (0 clear ) I A (negative edge triggered) I n lad A n (lad- s can disable circuit withut perfrming lgic n clck pulse) 40/59 20

21 RS versin lad I i S A i clear R D versin lad I i D A i clear Nte feedback t maintain value when lad = 0 4/59 Registers + Lgic Sequential Circuits n registers (present state) next state n Cmbinatinal m k inputs circuit utputs Use f ROM n registers (present state) n 2 (n +m) x(n + k) inputs m ROM k culd be PLA next state utputs culd be PLA N.B. If system is a Mre Machine, try t take the utputs directly frm registers if pssible (bth f abve cases) 42/59 2

22 Shift Registers serial in D D D D serial ut Abve is a sample shift register usually has an asynchrnus clear input used in serial t wrd cnversins many can be read in parallel many can be laded in parallel 43/59 Bi-directinal Shift Register with Parallel Lad A 4 (parallel utputs) A 3 A 2 A A i+ A i MUX D A i I 4 I 3 I 2 I (parallel inputs) s s 0 functin 0 0 n change 0 shift right 0 shift left lad I i s s 0 clear 44/59 22

23 Special Sequential Circuits 4.7. Serial Adder This circuit was develped n slide number 6 as the Carry Save Adder (CSA) least significant bits first serial input x y z S full adder C carry D serial utput The clck pulse recrds the carry advances inputs and utputs clear 45/59 Ripple Cunter (Asynchrnus Cunter) A 4 A 3 A 2 A K J K J K J K J ( negative edge triggered flip-flps) Flip-flps d nt change state simultaneusly Cnsider case where cunt pulse is the clck pulse: cunt pulse A A 2 A 3 flip-flp setting delay Nte: In asynchrnus mde clck skew will ccur at each stage 46/59 23

24 Synchrnus Cunters A 4 A 3 A 2 A K J K J K J K J cntrl lgic (cmbinatinal circuit) This is a general versin f cunters. 47/59 Binary Cunter (Iterative Design) Cunters are cmmnly designed using an iterative cell apprach: A i ' K J A i - A E clear cell changes state if all cells t the right are and E = 48/59 24

25 A fur bit cunter has the frm: A 4 A 3 A 2 A K J K J K J K J E E - cunt enable C - (asynchrnus) clear C 49/59 E A A 2 A 3 flip-flp setting delay max. clck rate < T where delay + T settling + T setup T delay = delay thrugh AND gate chain T settling = flip-flp settling time T setup = flip-flp set up time 50/59 25

26 Binary Up-Dwn Cunter The (iterative) cell has the frm: A i ' K J clear A I -... A U A i -... A D U = cunt up and D = cunt dwn U D 5/59 Up Cunter with Parallel Lad A i K J LE Functin X lad 0 cunt 00 n change C = A i -... A EL N.B. This is iterative design nn-iterative design is faster clear C I i L 52/59 26

27 Mdul-N Cunter Suppse we want,2,3,4,5,6,7,8,9 (md-9 cunter) Ntes: any initial value any final value self crrecting A 4 A 3 A 2 A L parallel lad E up cunter clear I 4 I 3 I 2 I reset cunt 53/59 What is needed? Timing Signal Generatin T 0 T T 2 T 3 54/59 27

28 Cunter and Decder 2- bit 2 2 x 4 cunter decder enable T 0 T T 2 T 3 2 n states required n flip-flps n x 2 n decder 55/59 Circular Shift Register ( Ring Cunter ) D T 0 T T 2 T 3 D D 0 D 0 circuit nrmally has an enable input requires a methd f lading initial pattern ( ) 2 n flip-flps 56/59 28

29 If the circulating pattern is made 0 0 symmetric signals are generated T 0 T T 2 T 3 57/59 Jhnsn (Switched-Tail) Cunter The number f states in a circular shaft register can be dubled by cnnecting the cmplement f the last stage as the input t the first. A B C D D D ' Nrmally have enable input Als needs clear (fr resetting) Self starting (after clear) 58/59 29

30 Sequence number A B C Timing signal 3 flip-flps, 6 AND gates N flip-flps, 2N AND gates 6 timing signals 2N timing signals Drawback: Lcks int invalid sequences (Can be fixed) etc A ' C ' (extreme 0s ) AB ' ( 0 ) 3 0 BC ' ( 0 ) 4 AC (extreme s ) 5 0 A ' B ( 0 ) B ' C ( 0 ) 59/59 30

ENG2410 Digital Design Sequential Circuits: Part A

ENG2410 Digital Design Sequential Circuits: Part A ENG2410 Digital Design Sequential Circuits: Part A Fall 2017 S. Areibi Schl f Engineering University f Guelph Week #6 Tpics Sequential Circuit Definitins Latches Flip-Flps Delays in Sequential Circuits

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

ENG2410 Digital Design Arithmetic Circuits

ENG2410 Digital Design Arithmetic Circuits ENG24 Digital Design Arithmetic Circuits Fall 27 S. Areibi Schl f Engineering University f Guelph Recall: Arithmetic -- additin Binary additin is similar t decimal arithmetic N carries + + Remember: +

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

ENG2410 Digital Design Sequencing and Control

ENG2410 Digital Design Sequencing and Control ENG24 igital esign equencing and ntrl atapath cnsists f: Parts f PU Registers, Multiplers, dders, ubtractrs and lgic t perfrm peratins n data (mb Lgic) ntrl unit Generates signals t cntrl data-path ccepts

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmissin Fundamentals Errr Detectin and Crrectin Errr Cntrl Digital transmissin systems intrduce errrs, BER ranges frm 10-3 fr wireless t 10-9 fr ptical fiber Applicatins require certain

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Sequential vs. Combinational

Sequential vs. Combinational Sequential Circuits Sequential vs. Combinational Combinational Logic: Output depends only on current input TV channel selector (-9) inputs system outputs Sequential Logic: Output depends not only on current

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

ABSORPTION OF GAMMA RAYS

ABSORPTION OF GAMMA RAYS 6 Sep 11 Gamma.1 ABSORPTIO OF GAMMA RAYS Gamma rays is the name given t high energy electrmagnetic radiatin riginating frm nuclear energy level transitins. (Typical wavelength, frequency, and energy ranges

More information

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Sequential Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design Sequential Logic Combinational circuits with memory

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

BASD HIGH SCHOOL FORMAL LAB REPORT

BASD HIGH SCHOOL FORMAL LAB REPORT BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement: Turing Machines Human-aware Rbtics 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Annuncement: q q q q Slides fr this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/tm-ii.pdf

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

ECE 545 Project Deliverables

ECE 545 Project Deliverables ECE 545 Prject Deliverables Tp-level flder: _ Secnd-level flders: 1_assumptins 2_blck_diagrams 3_interface 4_ASM_charts 5_surce_cde 6_verificatin 7_timing_analysis 8_results

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method. Lessn Plan Reach: Ask the students if they ever ppped a bag f micrwave ppcrn and nticed hw many kernels were unppped at the bttm f the bag which made yu wnder if ther brands pp better than the ne yu are

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Chapter 5 Synchronous Sequential Logic

Chapter 5 Synchronous Sequential Logic Chapter 5 Synchronous Sequential Logic Sequential circuit: A circuit that includes memory elements. In this case the output depends not only on the current input but also on the past inputs. Memory A synchronous

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Review Problems 3. Four FIR Filter Types

Review Problems 3. Four FIR Filter Types Review Prblems 3 Fur FIR Filter Types Fur types f FIR linear phase digital filters have cefficients h(n fr 0 n M. They are defined as fllws: Type I: h(n = h(m-n and M even. Type II: h(n = h(m-n and M dd.

More information

Synchronous Sequential Logic

Synchronous Sequential Logic 1 IT 201 DIGITAL SYSTEMS DESIGN MODULE4 NOTES Synchronous Sequential Logic Sequential Circuits - A sequential circuit consists of a combinational circuit and a feedback through the storage elements in

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

Subject description processes

Subject description processes Subject representatin 6.1.2. Subject descriptin prcesses Overview Fur majr prcesses r areas f practice fr representing subjects are classificatin, subject catalging, indexing, and abstracting. The prcesses

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION NUROP Chinese Pinyin T Chinese Character Cnversin NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION CHIA LI SHI 1 AND LUA KIM TENG 2 Schl f Cmputing, Natinal University f Singapre 3 Science

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

AIP Logic Chapter 4 Notes

AIP Logic Chapter 4 Notes AIP Lgic Chapter 4 Ntes Sectin 4.1 Sectin 4.2 Sectin 4.3 Sectin 4.4 Sectin 4.5 Sectin 4.6 Sectin 4.7 4.1 The Cmpnents f Categrical Prpsitins There are fur types f categrical prpsitins. Prpsitin Letter

More information

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~

Section 6-2: Simplex Method: Maximization with Problem Constraints of the Form ~ Sectin 6-2: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard

More information

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967 Measurement f Radial Lss and Lifetime f Micrwave Plasma in the Octup1e J. C. Sprtt PLP 165 Plasma Studies University f Wiscnsin DEC 1967 1 The number f particles in the tridal ctuple was measured as a

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

Overview of Chapter 4

Overview of Chapter 4 Overview of hapter 4 Types of Sequential ircuits Storage Elements Latches Flip-Flops Sequential ircuit Analysis State Tables State Diagrams Sequential ircuit Design Specification Assignment of State odes

More information

RECHERCHES Womcodes constructed with projective geometries «Womcodes» construits à partir de géométries projectives Frans MERKX (') École Nationale Su

RECHERCHES Womcodes constructed with projective geometries «Womcodes» construits à partir de géométries projectives Frans MERKX (') École Nationale Su Wmcdes cnstructed with prjective gemetries «Wmcdes» cnstruits à partir de gémétries prjectives Frans MERKX (') Écle Natinale Supérieure de Télécmmunicatins (ENST), 46, rue Barrault, 75013 PARIS Étudiant

More information

Purpose: Use this reference guide to effectively communicate the new process customers will use for creating a TWC ID. Mobile Manager Call History

Purpose: Use this reference guide to effectively communicate the new process customers will use for creating a TWC ID. Mobile Manager Call History Purpse: Use this reference guide t effectively cmmunicate the new prcess custmers will use fr creating a TWC ID. Overview Beginning n January 28, 2014 (Refer t yur Knwledge Management System fr specific

More information

LCA14-206: Scheduler tooling and benchmarking. Tue-4-Mar, 11:15am, Zoran Markovic, Vincent Guittot

LCA14-206: Scheduler tooling and benchmarking. Tue-4-Mar, 11:15am, Zoran Markovic, Vincent Guittot LCA14-206: Scheduler tling and benchmarking Tue-4-Mar, 11:15am, Zran Markvic, Vincent Guittt Scheduler Tls and Benchmarking Frm Energy Aware mini-summit @ Ksummit 2013 extract frm [1]: Ing Mlnar came in

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Assessment Primer: Writing Instructional Objectives

Assessment Primer: Writing Instructional Objectives Assessment Primer: Writing Instructinal Objectives (Based n Preparing Instructinal Objectives by Mager 1962 and Preparing Instructinal Objectives: A critical tl in the develpment f effective instructin

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements:., Materials in this lecture are courtesy of the following people and used with permission. - Randy H. Katz (University

More information

B. Definition of an exponential

B. Definition of an exponential Expnents and Lgarithms Chapter IV - Expnents and Lgarithms A. Intrductin Starting with additin and defining the ntatins fr subtractin, multiplicatin and divisin, we discvered negative numbers and fractins.

More information

Lecture 20a. Circuit Topologies and Techniques: Opamps

Lecture 20a. Circuit Topologies and Techniques: Opamps Lecture a Circuit Tplgies and Techniques: Opamps In this lecture yu will learn: Sme circuit tplgies and techniques Intrductin t peratinal amplifiers Differential mplifier IBIS1 I BIS M VI1 vi1 Vi vi I

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

THE LIFE OF AN OBJECT IT SYSTEMS

THE LIFE OF AN OBJECT IT SYSTEMS THE LIFE OF AN OBJECT IT SYSTEMS Persns, bjects, r cncepts frm the real wrld, which we mdel as bjects in the IT system, have "lives". Actually, they have tw lives; the riginal in the real wrld has a life,

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

High penetration of renewable resources and the impact on power system stability. Dharshana Muthumuni

High penetration of renewable resources and the impact on power system stability. Dharshana Muthumuni High penetratin f renewable resurces and the impact n pwer system stability Dharshana Muthumuni Outline Intrductin Discussin f case studies Suth Australia system event f September 2016 System Study integratin

More information

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Lecture 02 CSE 40547/60547 Computing at the Nanoscale PN Junctin Ntes: Lecture 02 CSE 40547/60547 Cmputing at the Nanscale Letʼs start with a (very) shrt review f semi-cnducting materials: - N-type material: Obtained by adding impurity with 5 valence elements

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink American Jurnal f Engineering Research (AJER) 016 American Jurnal f Engineering Research (AJER) e-issn: 30-0847 p-issn : 30-0936 Vlume-5, Issue-, pp-9-36 www.ajer.rg Research Paper Open Access Design and

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

L4: Sequential Building Blocks (Flip-flops, Latches and Registers)

L4: Sequential Building Blocks (Flip-flops, Latches and Registers) L4: Sequential Building Blocks (Flip-flops, Latches and Registers) Acknowledgements: Lecture material adapted from R. Katz, G. Borriello, Contemporary Logic esign (second edition), Prentice-Hall/Pearson

More information

BIOLOGY 101. CHAPTER 17: Gene Expression: From Gene to Protein. The Flow of Genetic Information

BIOLOGY 101. CHAPTER 17: Gene Expression: From Gene to Protein. The Flow of Genetic Information BIOLOGY 101 CHAPTER 17: Gene Expressin: Frm Gene t Prtein Gene Expressin: Frm Gene t Prtein: CONCEPTS: 17.1 Genes specify prteins via transcriptin and translatin 17.2 Transcriptin is the DNA-directed synthesis

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

2/3 Axis Position Indicator

2/3 Axis Position Indicator SERIES Z-89 2/3 Axis Psitin Indicatr Pwer dwn memry Selectable decimal pint Multi edge functin Pulse factr Reference value External reset r preset inputs Digital brightness cntrl Z89-000-E_21-06.dc Dku

More information

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y ) (Abut the final) [COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t m a k e s u r e y u a r e r e a d y ) The department writes the final exam s I dn't really knw what's n it and I can't very well

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

David HORN and Irit OPHER. School of Physics and Astronomy. Raymond and Beverly Sackler Faculty of Exact Sciences

David HORN and Irit OPHER. School of Physics and Astronomy. Raymond and Beverly Sackler Faculty of Exact Sciences Cmplex Dynamics f Neurnal Threshlds David HORN and Irit OPHER Schl f Physics and Astrnmy Raymnd and Beverly Sackler Faculty f Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel hrn@neurn.tau.ac.il

More information

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS J.e. Sprtt PLP 924 September 1984 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

2. A Table (Partially Completed) With a list of Basic Identities of. Boolean Algebra is appended to the end of the examination booklet.

2. A Table (Partially Completed) With a list of Basic Identities of. Boolean Algebra is appended to the end of the examination booklet. I -. ; I-.,. -. SCUji Instructr: Lcatin: Shawki M, Areibi. DOG (RICH 2520)/SAS Date: Time: Saturday, Octber 29th 2016 _ 11:30-1:00 PM Duratin: 90 minutes. Type: R-C1Clsed Bk." Instructins: L There are

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Mark Scheme (Results) January International GCSE Mathematics B (4MB0) Paper 01

Mark Scheme (Results) January International GCSE Mathematics B (4MB0) Paper 01 Mark Scheme (Results) January 013 Internatinal GCSE Mathematics B (4MB0) Paper 01 Edexcel and BTEC Qualificatins Edexcel and BTEC qualificatins cme frm Pearsn, the wrld s leading learning cmpany. We prvide

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

Graduate AI Lecture 16: Planning 2. Teachers: Martial Hebert Ariel Procaccia (this time)

Graduate AI Lecture 16: Planning 2. Teachers: Martial Hebert Ariel Procaccia (this time) Graduate AI Lecture 16: Planning 2 Teachers: Martial Hebert Ariel Prcaccia (this time) Reminder State is a cnjunctin f cnditins, e.g., at(truck 1,Shadyside) at(truck 2,Oakland) States are transfrmed via

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information