Learning to Control an Unstable System with Forward Modeling

Size: px
Start display at page:

Download "Learning to Control an Unstable System with Forward Modeling"

Transcription

1 324 Jrdan and Jacbs Learning t Cntrl an Unstable System with Frward Mdeling Michael I. Jrdan Brain and Cgnitive Sciences MIT Cambridge, MA Rbert A. Jacbs Cmputer and Infrmatin Sciences University f Massachusetts Amherst, MA ABSTRACT The frward mdeling apprach is a methdlgy fr learning cntrl when data is available in distal crdinate systems. We extend previus wrk by cnsidering hw this methdlgy can be applied t the ptimizatin f quantities that are distal nt nly in space but als in time. In many learning cntrl prblems, the utput variables f the cntrller are nt the natural crdinates in which t specify tasks and evaluate perfrmance. Tasks are generally mre naturally specified in "distal" crdinate systems (e.g., endpint crdinates fr manipulatr mtin) than in the "prximal" crdinate system f the cntrller (e.g., jint angles r trques). Furthermre, the relatinship between prximal crdinates and distal crdinates is ften nt knwn a priri and, if knwn, nt easily inverted. The frward mdeling apprach is a methdlgy fr learning cntrl when training data is available in distal crdinate systems. A frward mdel is a netwrk that learns the transfrmatin frm prximal t distal crdinates s that distal specificatins can be used in training the cntrller (Jrdan & Rumelhart, 1990). The frward mdel can ften be learned separately frm the cntrller because it depends nly n the dynamics f the cntrlled system and nt n the clsed-lp dynamics. In previus wrk, we studied frward mdels f kinematic transfrmatins (Jrdan, 1988, 1990) and state transitins (Jrdan & Rumelhart, 1990). In the current paper,

2 Learning t Cntrl an Unstable System with Frward Mdeling 325 we g beynd the spatial credit assignment prblems studied in thse papers and braden the applicatin f frward mdeling t include cases f tempral credit assignment (cf. Bart, Suttn, & Andersn, 1983; Werbs, 1987). As discussed belw, the functin t be mdeled in such cases depends n a time integral f the clsed-lp dynamics. This fact has tw imprtant implicatins. First, the data needed fr learning the frward mdel can n lnger be btained slely by bserving the instantaneus state r utput f the plant. Secnd, the frward mdel is n lnger independent f the cntrller: If the parameters f the cntrller are changed by a learning algrithm, then the clsed-lp dynamics change and s des the mapping frm prximal t distal variables. Thus the learning f the frward mdel and the learning f the cntrller can n lnger be separated int different phases. 1 FORWARD MODELING In this sectin we briefly summarize ur previus wrk n frward mdeling (see als Nguyen & Widrw, 1989 and Werbs, 1987). 1.1 LEARNING A FORWARD MODEL Given a fixed cntrl law, the learning f a frward mdel is a system identificatin prblem. Let z = g(s, u) be a system t be mdeled, where z is the utput r the state-derivative, s is the state, and u is the cntrl. We require the frward mdel t minimize the cst functinal J Jm = ~ (z - z)t(z - z)dt. (1) where z = 9(s, u, v) is the parameterized functin cmputed by the mdel. Once the minimum is fund, backprpagatin thrugh the mdel prvides an estimate u f the system Jacbian matrix :~ (cf. Jrdan, 1988). 1.2 LEARNING A CONTROLLER Once the frward mdel is sufficiently accurate, it can be used in the training f the cntrller. Backprpagatin thrugh the mdel prvides derivatives that indicate hw t change the utputs f the cntrller. These derivatives can be used t change the parameters f the cntrller by a further applicatin f back prpagatin. Figure 1 illustrates the general prcedure. This prcedure minimizes the "distal" cst functinal where z is a reference signal. T see this, let the cntrller utput be given as a functin u = f(s, z, w) f the state s, the reference signal z, and a parameter vectr w. Differentiating J with respect t w yields J ut zt "wj = - w u (z - z)dt. (3) (2)

3 326 Jrdan and Jacbs z* ~ \ Feedfrward Cntrller x Plant z Frward + - -Mdel Figure 1: Learning a Cntrller. The Dashed Line Represents Backprpagatin. The Jacbian matrix u cannt be assumed t be available a priri, but can be estimated by backprpagatin thrugh the frward mdel. Thus the errr signal available fr learning the cntrller is the estimated gradient.. J u z T 0' T V'wJ = (z - z)dt. w OU (4) We nw cnsider a task in which the freging framewrk must be bradened t allw a mre general frm f distal task specificatin. 2 THE TASK The task is t learn t regulate an unstable nnminimum-phase plant. We have chsen the ft-studied (e.g., Bart, Suttn, & Andersn, 1983; \Vidrw & Smith, 1964) prblem f learning t balance an inverted pendulum n a mving cart. The plant dynamics are given by: [ M+m mlcs(j mlcs(j ] [ ~ ] + [ -mlsi~(j ] ip = [ F ] I (J -mglszn(j 0 where m is the mass f the ple, M is the mass f the cart, I is half the ple length, I is the inertia f the ple arund its base, and F is the frce applied t the cart. The task we studied is similar t that studied by Bart, Suttn, & Andersn (1983). A state-feedback cntrller prvides frces t the cart, and the system evlves until failure ccurs (the cart reaches the end f the track r the ple reaches a critical angle). The system learns frm failure; indeed, it is assumed that the nly teaching infrmatin prvided by the envirnment is the signal that failure has ccurred.

4 Learning t Cntrl an Unstable System with Frward Mdeling 327 sgn (x) 0 lielo sgn( x) 0 lei 0 sgn(e) 0 lei 0 sgn(e) 0 e Ii Frward Mdel Actin Unit -0 ~,.p.. nl Tempral Difference Unit -0 Cntrller Figure 2: The Netwrk Architecture There are several differences between ur task and that studied by Bart, Suttn, &. Andersn (1983). First, disturbances (white nise) are prvided by the envirnment rather than by the learning algrithm. This implies that in ur experiments the level f nise seen by the cntrller des nt diminish t zer ver the curse f learning. Secnd, we used real-valued frces rather than binary frces. Finally, we d nt assume the existence f a "reset buttn" that reinitializes the system t the rigin f state space; upn failure the system is restarted in a randm cnfiguratin. 3 OUR APPROACH In ur apprach, the cntrl system learns a mdel that relates the current state f the plant and the current cntrl signal t a predictin f future failure. We make use f a tempral difference algrithm (Suttn, 1988) t learn the transfrmatin frm (state, actin) pairs t an estimate f the inverse f the time until failure. This mapping is then used as a differentiable frward mdel in the learning f the cntrller-the cntrller is changed s as t minimize the utput f the mdel and thereby maximize the time until failure. The verall system architecture is shwn in Figure 2. We describe each cmpnent in detail in the fllwing sectins. An imprtant feature that distinguishes this architecture frm previus wrk (e.g.,

5 328 Jrdan and Jacbs Bart, Suttn, & Andersn, 1983) is the path frm the actin unit int the frward mdel. This path is necessary fr supervised learning algrithms t be used (see als Werbs, 1987). 3.1 LEARNING THE FORWARD MODEL Tempral difference algrithms learn t make lng term predictins by achieving lcal cnsistency between predictins at neighbring time steps, and by grunding the chain f predictins when infrmatin frm the envirnment is btained. In ur case, if z(t) is the inverse f the time until failure, then cnsistency is defined by the requirement that z-l(t) = z-l(t + 1) + 1. The chain is grunded by defining z(t) = 1, where T is the time step n which failure ccurs. T learn t estimate the inverse f the time until failure, the fllwing tempral difference errr terms are used. Fr time steps n which failure des nt ccur, ( ) 1 A( ) e t = (t + 1) - z t, where (t) dentes the utput f the frward mdel. When failure ccurs, the target fr the frward mdel is set t unity: e(t) = 1 -- (t) The errr signal e(t) is prpagated backwards at time t + 1 using activatins saved frm time t. Standard backprpagatin is used t cmpute the changes t the weights. 3.2 LEARNING THE CONTROLLER If the cntrller is perfrming as desired, then the utput f the frward mdel is zer (that is, the predicted time-until-failure is infinity). This suggests that an apprpriate distal errr signal fr the cntrller is zer minus the utput f the frward mdel. Given that the frward mdel has the cntrl actin as an input, the distal errr can be prpagated backward t the hidden units f the frward mdel, thrugh the actin unit, and int the cntrller where the weights are changed (see Figure 2). Thus the cntrller is changed in such a way as t minimize the utput f the frward mdel and thereby maximize the time until failure. 3.3 LEARNING THE FORWARD MODEL AND THE CONTROLLER SIMULTANEOUSLY As the cntrller varies, the mapping that the frward mdel must learn als varies. Thus, if the frward mdel is t prvide reasnable derivatives, it must be cntinuusly updated as the cntrller changes. We find that it is pssible t train the frward mdel and the cntrller simultaneusly, prvided that we use a larger learning rate fr the frward mdel than fr the cntrller.

6 Learning t Cntrl an Unstable System with Frward Mdeling MISCELLANY 4.1 RESET Althugh previus studies have assumed the existence f a "reset buttn" that can restart the system at the rigin f state space, we prefer nt t make such an assumptin. A reset buttn implies the existence f a cntrller that can stabilize the system, and the task f learning is t find such a cntrller. In ur simulatins, we restart the system at randm pints in state space after failure ccurs. 4.2 REDUNDANCY The mapping learned by the frward mdel depends n bth the state and the actin. The actin, hwever, is itself a functin f the state, s the actin unit prvides redundant infrmatin. This implies that the frward mdel culd have arbitrary weights in the path frm the actin unit and yet make reasnable predictins. Such a mdel, hwever, wuld yield meaningless derivatives fr learning the cntrller. Frtunately, backprpagatin tends t prduce meaningful weights fr a path that is crrelated with the utcme, even if that path cnveys redundant infrmatin. T further bias things in ur favr, we fund it useful t emply a larger learning rate in the path frm the actin unit t the hidden units f the frward mdel (0.9) than in the path frm the state units (0.3). 4.3 REPRESENTATION As seen in Figure 2, we chse input representatins that take advantage f symmetries in the dynamics f the cart-ple system. The frward mdel has even symmetry with respect t the state variables, whereas the cntrller has dd symmetry. 4.4 LONG-TERM BEHAVIOR There is never a need t "turn ff" the learning f the frward mdel. Once the ple is being successfully balanced in the presence f fluctuatins, the average time until failure ges t infinity. The frward mdel therefre learns t predict zer in the regin f state space arund the rigin, and the errr prpagated t the cntrller als ges t zer. 5 RESULTS We ran twenty simulatins starting with randm initial weights. The learning rate fr the cntrller was 0.05 and the learning rate fr the frward mdel was 0.3, except fr the cnnectin frm the actin unit where the learning rate was 0.9. Eighteen runs cnverged t cntrller cnfiguratins that balanced the ple, and tw runs cnverged n lcal minima. Figure 3 shws representative learning curves fr six f the successful runs. T btain sme idea f the size f the space f crrect slutins, we perfrmed an exhaustive search f a lattice in a rectangular regin f weight space that cntained

7 330 Jrdan and Jacbs Average time until failure Bins (1 bin., 20 fillur ) Figure 3: Learning Curves fr Six Runs all f the weight cnfiguratins fund by ur simulatins. As shwn in Figure 4, nly 15 ut f 10,000 weight cnfiguratins were able t balance the ple. 6 CONCLUSIONS Previus wr k within the frward mdeling paradigm fcused n mdels f fixed kinematic r dynamic prperties f the cntrlled plant (Jrdan, 1988,1990; Jrdan &, Rumelhart, 1990). In the current paper, the ntin f a frward mdel is brader. The functin that must be mdeled depends nt nly n prperties f the cntrlled plant, but als n prperties f the cntrller. Nnetheless, the mapping is welldefined, and the results demnstrate that it can be used t prvide apprpriate incremental changes fr the cntrller. These results prvide further demnstratin f the applicability f supervised learning algrithms t learning cntrl prblems in which explicit target infrmatin is nt available. Acknwledgments The first authr was supprted by BRSG 2 S07 RR awarded by the Bimedical Research Supprt Grant Prgram, Divisin f Research Resurces, Natinal Institutes f Health and by a grant frm Siemens Crpratin. The secnd authr was supprted by the Air Frce Office f Scientific Research, thrugh grant AFOSR

8 Learning t Cntrl an Unstable System with Frward Mdeling 331 Lg Frequency 3 2 ) ~--.-r_----r_--~ Median Time Steps Until Failure Figure 4: Perfrmance f Ppulatin f Cntrllers References Bart, A. G., Suttn, R. S., & Andersn, C. W. (1983). Neurnlike adaptive elements that can slve difficult learning cntrl prblems. IEEE Transactins n Systems, Man, and Cybernetics, SMC.19, Jrdan, M. I. (1988). Supervised learning and systems with excess degress f freedm. (COINS Tech. Rep ). Amherst, MA: University f Massachusetts, Cmputer and Infrmatin Sciences. Jrdan, M. I. (1990). Mtr learning and the degrees f freedm prblem. In M. Jeannerd, (Ed). Attentin and Perfrmance, XIII. Hillsdale, NJ: Erlbaum. Jrdan, M. I. & Rumelhart, D. E. (1990). Supervised learning with a distal teacher. Paper in preparatin. Nguyen, D. & Widrw, B. (1989). The truck backer-upper: An example f selflearning in neural netwrks. In: Prceedings f the Internatinal Jint Cnference n Neural Netwrks. Piscataway, NJ: IEEE Press. Suttn, R. S. (1987). Learning t predict by the methds f tempral differences. Machine Learning, 9, Werbs, P. (1987). Building and understanding adaptive systems: A statistical/numerical apprach t factry autmatin and brain research. IEEE Transactins n Systems, Man, and Cybernetics, 17, Widrw, B. & Smith, F. W. (1964). Pattern-recgnizing cntrl systems. In: Cmputer and Infrmatin Sciences Prceedings, Washingtn, D.C.: Spartan.

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

EXPERIMENTAL STUDY ON DISCHARGE COEFFICIENT OF OUTFLOW OPENING FOR PREDICTING CROSS-VENTILATION FLOW RATE

EXPERIMENTAL STUDY ON DISCHARGE COEFFICIENT OF OUTFLOW OPENING FOR PREDICTING CROSS-VENTILATION FLOW RATE EXPERIMENTAL STUD ON DISCHARGE COEFFICIENT OF OUTFLOW OPENING FOR PREDICTING CROSS-VENTILATION FLOW RATE Tmnbu Gt, Masaaki Ohba, Takashi Kurabuchi 2, Tmyuki End 3, shihik Akamine 4, and Tshihir Nnaka 2

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

Dataflow Analysis and Abstract Interpretation

Dataflow Analysis and Abstract Interpretation Dataflw Analysis and Abstract Interpretatin Cmputer Science and Artificial Intelligence Labratry MIT Nvember 9, 2015 Recap Last time we develped frm first principles an algrithm t derive invariants. Key

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

A.H. Helou Ph.D.~P.E.

A.H. Helou Ph.D.~P.E. 1 EVALUATION OF THE STIFFNESS MATRIX OF AN INDETERMINATE TRUSS USING MINIMIZATION TECHNIQUES A.H. Helu Ph.D.~P.E. :\.!.\STRAC'l' Fr an existing structure the evaluatin f the Sti"ffness matrix may be hampered

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Reinforcement Learning" CMPSCI 383 Nov 29, 2011!

Reinforcement Learning CMPSCI 383 Nov 29, 2011! Reinfrcement Learning" CMPSCI 383 Nv 29, 2011! 1 Tdayʼs lecture" Review f Chapter 17: Making Cmple Decisins! Sequential decisin prblems! The mtivatin and advantages f reinfrcement learning.! Passive learning!

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

WRITING THE REPORT. Organizing the report. Title Page. Table of Contents

WRITING THE REPORT. Organizing the report. Title Page. Table of Contents WRITING THE REPORT Organizing the reprt Mst reprts shuld be rganized in the fllwing manner. Smetime there is a valid reasn t include extra chapters in within the bdy f the reprt. 1. Title page 2. Executive

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

Multiple Source Multiple. using Network Coding

Multiple Source Multiple. using Network Coding Multiple Surce Multiple Destinatin Tplgy Inference using Netwrk Cding Pegah Sattari EECS, UC Irvine Jint wrk with Athina Markpulu, at UCI, Christina Fraguli, at EPFL, Lausanne Outline Netwrk Tmgraphy Gal,

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

Lower Limb Stiffness Estimation during Running: The Effect of Using Kinematic Constraints in Muscle Force Optimization Algorithms

Lower Limb Stiffness Estimation during Running: The Effect of Using Kinematic Constraints in Muscle Force Optimization Algorithms Lwer Limb Stiffness Estimatin during Running: The Effect f Using Kinematic Cnstraints in Muscle Frce Optimizatin Algrithms Rbert Brtlett 1, Enric Pagell 1, and Davide Pivesan 2 1 Intelligent Autnmus Systems

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

APPLICATION OF THE BRATSETH SCHEME FOR HIGH LATITUDE INTERMITTENT DATA ASSIMILATION USING THE PSU/NCAR MM5 MESOSCALE MODEL

APPLICATION OF THE BRATSETH SCHEME FOR HIGH LATITUDE INTERMITTENT DATA ASSIMILATION USING THE PSU/NCAR MM5 MESOSCALE MODEL JP2.11 APPLICATION OF THE BRATSETH SCHEME FOR HIGH LATITUDE INTERMITTENT DATA ASSIMILATION USING THE PSU/NCAR MM5 MESOSCALE MODEL Xingang Fan * and Jeffrey S. Tilley University f Alaska Fairbanks, Fairbanks,

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink American Jurnal f Engineering Research (AJER) 016 American Jurnal f Engineering Research (AJER) e-issn: 30-0847 p-issn : 30-0936 Vlume-5, Issue-, pp-9-36 www.ajer.rg Research Paper Open Access Design and

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

COMP9444 Neural Networks and Deep Learning 3. Backpropagation

COMP9444 Neural Networks and Deep Learning 3. Backpropagation COMP9444 Neural Netwrks and Deep Learning 3. Backprpagatin Tetbk, Sectins 4.3, 5.2, 6.5.2 COMP9444 17s2 Backprpagatin 1 Outline Supervised Learning Ockham s Razr (5.2) Multi-Layer Netwrks Gradient Descent

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

Training Algorithms for Recurrent Neural Networks

Training Algorithms for Recurrent Neural Networks raining Algrithms fr Recurrent Neural Netwrks SUWARIN PAAAVORAKUN UYN NGOC PIEN Cmputer Science Infrmatin anagement Prgram Asian Institute f echnlgy P.O. Bx 4, Klng Luang, Pathumthani 12120 AILAND http://www.ait.ac.th

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Biological Cybernetics 9 Springer-Verlag 1986

Biological Cybernetics 9 Springer-Verlag 1986 Bil. Cybern. 54, 125-132 (1986) Bilgical Cybernetics 9 Springer-Verlag 1986 Cnstraints fr Jint Angle Cntrl f the Human Arm H. Cruse Department f Bilgy, University f Bielefeld, D-48 Bielefeld 1, Federal

More information

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA 16802 Sandy Balkin is a graduate student

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1

Data Mining: Concepts and Techniques. Classification and Prediction. Chapter February 8, 2007 CSE-4412: Data Mining 1 Data Mining: Cncepts and Techniques Classificatin and Predictin Chapter 6.4-6 February 8, 2007 CSE-4412: Data Mining 1 Chapter 6 Classificatin and Predictin 1. What is classificatin? What is predictin?

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

INSTRUMENTAL VARIABLES

INSTRUMENTAL VARIABLES INSTRUMENTAL VARIABLES Technical Track Sessin IV Sergi Urzua University f Maryland Instrumental Variables and IE Tw main uses f IV in impact evaluatin: 1. Crrect fr difference between assignment f treatment

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

THERMAL TEST LEVELS & DURATIONS

THERMAL TEST LEVELS & DURATIONS PREFERRED RELIABILITY PAGE 1 OF 7 PRACTICES PRACTICE NO. PT-TE-144 Practice: 1 Perfrm thermal dwell test n prtflight hardware ver the temperature range f +75 C/-2 C (applied at the thermal cntrl/munting

More information

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms RU, Rand GOLOSINSKI, T.S. Early detectin f mining truck failure by mdelling its peratin with neural netwrks classificatin algrithms. Applicatin f Cmputers and Operatins Research ill the Minerals Industries,

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology Technical Bulletin Generatin Intercnnectin Prcedures Revisins t Cluster 4, Phase 1 Study Methdlgy Release Date: Octber 20, 2011 (Finalizatin f the Draft Technical Bulletin released n September 19, 2011)

More information

Sequential Allocation with Minimal Switching

Sequential Allocation with Minimal Switching In Cmputing Science and Statistics 28 (1996), pp. 567 572 Sequential Allcatin with Minimal Switching Quentin F. Stut 1 Janis Hardwick 1 EECS Dept., University f Michigan Statistics Dept., Purdue University

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD 3 J. Appl. Cryst. (1988). 21,3-8 Particle Size Distributins frm SANS Data Using the Maximum Entrpy Methd By J. A. PTTN, G. J. DANIELL AND B. D. RAINFRD Physics Department, The University, Suthamptn S9

More information

Department of Electrical Engineering, University of Waterloo. Introduction

Department of Electrical Engineering, University of Waterloo. Introduction Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd

More information

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison Jurnal f Physics: Cnference Series OPEN ACCESS Aerdynamic Separability in Tip Speed Rati and Separability in Wind Speed- a Cmparisn T cite this article: M L Gala Sants et al 14 J. Phys.: Cnf. Ser. 555

More information

BASD HIGH SCHOOL FORMAL LAB REPORT

BASD HIGH SCHOOL FORMAL LAB REPORT BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used

More information

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION NUROP Chinese Pinyin T Chinese Character Cnversin NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION CHIA LI SHI 1 AND LUA KIM TENG 2 Schl f Cmputing, Natinal University f Singapre 3 Science

More information

THE TOPOLOGY OF SURFACE SKIN FRICTION AND VORTICITY FIELDS IN WALL-BOUNDED FLOWS

THE TOPOLOGY OF SURFACE SKIN FRICTION AND VORTICITY FIELDS IN WALL-BOUNDED FLOWS THE TOPOLOGY OF SURFACE SKIN FRICTION AND VORTICITY FIELDS IN WALL-BOUNDED FLOWS M.S. Chng Department f Mechanical Engineering The University f Melburne Victria 3010 AUSTRALIA min@unimelb.edu.au J.P. Mnty

More information

Artificial Neural Networks MLP, Backpropagation

Artificial Neural Networks MLP, Backpropagation Artificial Neural Netwrks MLP, Backprpagatin 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Physical Layer: Outline

Physical Layer: Outline 18-: Intrductin t Telecmmunicatin Netwrks Lectures : Physical Layer Peter Steenkiste Spring 01 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital Representatin f Infrmatin Characterizatin f Cmmunicatin

More information

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern 0.478/msr-04-004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy

More information

How do scientists measure trees? What is DBH?

How do scientists measure trees? What is DBH? Hw d scientists measure trees? What is DBH? Purpse Students develp an understanding f tree size and hw scientists measure trees. Students bserve and measure tree ckies and explre the relatinship between

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan Detectin f fatigue crack initiatin frm a ntch under a randm lad C. Makabe," S. Nishida^C. Urashima,' H. Kaneshir* "Department f Mechanical Systems Engineering, University f the Ryukyus, Nishihara, kinawa,

More information

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Prfessr and Chair Mechanical Engineering Department Christian Brthers University 650 East Parkway Suth Memphis, TN 38104 Office: (901) 321-3424 Rm: N-110 Fax : (901) 321-3402

More information

Comprehensive Exam Guidelines Department of Chemical and Biomolecular Engineering, Ohio University

Comprehensive Exam Guidelines Department of Chemical and Biomolecular Engineering, Ohio University Cmprehensive Exam Guidelines Department f Chemical and Bimlecular Engineering, Ohi University Purpse In the Cmprehensive Exam, the student prepares an ral and a written research prpsal. The Cmprehensive

More information