Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Size: px
Start display at page:

Download "Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System"

Transcription

1 Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed n a frictinless surface. When the mass is at rest, the spring will be at the equilibrium r rest psitin. This is the vertical line shwn in the diagram belw. We can then pull the mass t the right and hld it there. Let s call this psitin #1. Ntice at psitin #1 the frce f the spring, F s1, is t the left because the displacement f the spring frm equilibrium psitin, x 1, is t the right. We knw this because f Hke s Law, F s = k x. When we let g f the mass the spring frce will accelerate the mass t the left, the mass will pass thrugh the equilibrium psitin, which we can call psitin #2. After passing thrugh rest psitin, the mass will pause t the left f the equilibrium psitin. Let s call this psitin #3. Ntice psitin #3 is the same distance frm psitin #2 as psitin #1. At psitin #2, the displacement frm equilibrium psitin, x 2, is zer. Therefre, accrding t Hke s Law, the frce f the spring, F s2, is als equal t zer. At psitin #3, the displacement frm rest psitin, x 3, is t the left. Therefre, accrding t Hke s Law, the frce f the spring, F s3, is t the right. In the absence f frictin, the spring will cntinue t mve back and frth thrugh these psitins like this: 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1 and it will never stp. This is called Simple Harmnic Mtin. There are tw requirements fr the frce that causes simple harmnic mtin: 1) It must be a Restring Frce: A frce that is always twards equilibrium. a. The spring frce is a restring frce because it is always directed tward rest psitin and therefre will always accelerate the mass tward equilibrium psitin. 2) The frce must be prprtinal t displacement frm equilibrium psitin. a. Accrding t Hke s Law, F s = k x, the spring frce is prprtinal t displacement frm equilibrium psitin. In ther wrds, the larger the displacement frm equilibrium psitin, the larger the spring frce Lecture Ntes - Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System.dcx page 1 f 1

2 Flipping Physics Lecture Ntes: Simple Harmnic Mtin - Frce, Acceleratin, and Velcity at 3 Psitins We previusly defined three lcatins fr an bject in simple harmnic mtin. Psitins 1 and 3 are at the maximum displacement frm and n either side f equilibrium psitin. Psitin 2 is when the mass is at rest psitin. Nw let s determine sme basics abut the magnitudes f the velcities and acceleratins at thse psitins. Ntice that at psitins 1 and 3, the velcity f the mass changes directins. This means the velcities at 1 and 3 are zer. This is just like the velcity at the tp is zer fr an bject in free fall. This means the magnitude f the velcity halfway in between thse tw psitins, in ther wrds at psitin 2, will have a maximum value. At psitins 1 and 3, displacement frm equilibrium psitin, x, will have a maximum magnitude. That means, accrding t Hke s Law, psitins 1 and 3. If we sum the frces in the x directin, will als have its maximum magnitude at psitins 1 and 3. F s = k x, the spring frce will als have it s maximum magnitude at F x = F s = ma x, we can see the acceleratin Please realize that the spring frce changes as a functin f psitin, therefre, the net frce in the x- directin changes as a functin f psitin, therefre the acceleratin f the mass changes as a functin f psitin, therefre simple harmnic mtin is nt unifrmly accelerated mtin. In simple harmnic mtin the acceleratin is nt cnstant, therefre, yu cannt use the unifrmly accelerated mtin equatins. F x = F s = ma x kx = ma x x cnstant therefre a cnstant. Yes, I am ignring whether the spring frce is t the left r right in this equatin. It des nt matter. I am simply shwing that simple harmnic mtin is nt unifrmly accelerated mtin Lecture Ntes - Simple Harmnic Mtin - Frce, Acceleratin, and Velcity at 3 Psitins.dcx page 1 f 1

3 Flipping Physics Lecture Ntes: Hrizntal vs. Vertical Mass-Spring System Hrizntal and vertical mass-spring systems are bth in simple harmnic mtin. A vertical mass spring system scillates arund the pint where the dwnward frce f gravity and the upward spring frce cancel ne anther ut. The restring frce fr a hrizntal mass-spring system is just the spring frce, because that is the net frce in the x-directin. The restring frce fr a vertical mass-spring system is the net frce in the y-directin which equals the spring frce minus the frce f gravity Lecture Ntes - Hrizntal vs Vertical Mass-Spring System.dcx page 1 f 1

4 Flipping Physics Lecture Ntes: When is a Pendulum in Simple Harmnic Mtin? Mass-spring systems and pendulums are bth in simple harmnic mtin. Bth scillate arund an equilibrium psitin and have a restring frce pinted twards the equilibrium psitin that increases prprtinally with displacement frm the equilibrium r rest psitin. The displacement frm equilibrium psitin fr a pendulum is an angular displacement. Units are in degrees r radians. Symbl is theta, θ. Maximum displacement frm equilibrium psitin is still Amplitude, A. The restring frce fr a pendulum is the frce f gravity tangential t the path f the pendulum. This frce is: Prprtinal t displacement frm equilibrium psitin and Directed tward equilibrium psitin. Actually, the frce f gravity tangential is nly cnsidered t be directed tward equilibrium r rest psitin fr small angles. Typically I cnsider this t be less than 15, hwever, sme surces require the angle t be less than 10. It depends n hw much errr yu are willing t allw. The larger the angle, the larger the errr. This is because f the small angle apprximatin Lecture Ntes - When is a Pendulum in Simple Harmnic Mtin.dcx page 1 f 1

5 Flipping Physics Lecture Ntes: Demnstrating What Changes the Perid f Simple Harmnic Mtin The perid f simple harmnic mtin is the time it takes t cmplete ne full cycle. The units fr perid are typically secnds r secnds per cycle, hwever, they culd als be in minutes, hurs, days, frtnights, decades, millenniums, etc. The symbl fr perid is T. Using ur previusly defined pstins f 1 and 3 where the bject is at its maximum displacement frm equilibirum psitin and psitin 2 is at the equilibrium psitin, recall that the simple harmnic mtin pattern is 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, One full cylce in terms f psitin culd be: 1, 2, 3, 2, 1 r 3, 2, 1, 2, 3 r 2, 1, 2, 3, 2 r 2, 3, 2, 1, 2 r starting and ending smewhere between ne f the psitins as lng as: 1. the bject starts and ends at the same lcatin 2. the bject is mving in the same directin at the end as at the start The equatins fr the perid f simple harmnic mtin are: Fr a mass-spring system: T = 2π m k m is the mass in the mass-spring system. k is the spring cnstant f the spring. Fr a pendulum: T = 2π L g L is the pendulum length which is the distance frm the center f suspensin t the center f mass f the pendulum bb. Center f suspensin is the tp, fixed end f the pendulum. Pendulum bb is the mass at the bttm f the pendulum. g is the acceleratin due t gravity in which the pendulum is lcated. On Earth that wuld be 9.81 m/s 2. This is called a simple pendulum. Meaning the rd/string is f negligible mass therefre the center f mass f a simple pendulum is the center f mass f the pendulum bb. What affects the perid f a pendulum and a mass-spring system? Amplitude is nt in either perid equatin. Amplitude des nt affect the perid f a pendulum r the perid f a mass-spring system. Acceleratin due t gravity is nt in the perid equatin fr a mass-spring system. g des nt affect the perid f a mass-spring system. Mass is nt in the perid equatin fr a pendulum. The mass f the pendulum bb des nt affect the perid f a pendulum. Increasing the mass in a mass-spring system increases its perid. m T fr a mass-spring system. Increasing the spring cnstant in a mass-spring system decreases its perid. k T fr a mass-spring system. Increasing the pendulum length increases its perid. L T fr a pendulum. Increasing the acceleratin due t gravity decreases the perid f a pendulum. g T fr a pendulum Lecture Ntes - Demnstrating What Changes the Perid f Simple Harmnic Mtin.dcx page 1 f 1

6 Flipping Physics Lecture Ntes: Triple the Mass in a Mass-Spring System. Hw des Perid Change? Example: If the mass in a mass-spring system is tripled, hw des the perid change? Knwns: m 2 = 3m 1 and T 2 =?T 1 We knw the equatin fr the perid f a mass-spring system: T = 2π m k S the perid f the riginal mass-spring system is: T 1 = 2π m 1 k And the perid f the new mass-spring system with three times the mass is: T 2 = 2π m 2 k = 2π 3m 1 k = 2π m 1 k 3 = T 1 3 T 2 = T 1 3 S tripling the mass, increases the perid by the square rt f 3: T 2 = T 1 3 Demnstratin: T 1 =1.67s & T 2 = T 1 3 = ( 1.67) 3 = s Hwever, the bserved value fr the perid with three times the mass is 2.83 secnds. E r = O A A 100 = I think we can cnfidently say, The physics wrks 100 = % 0256 Lecture Ntes - Triple the Mass in a Mass-Spring System. Hw des Perid Change.dcx page 1 f 1

7 Flipping Physics Lecture Ntes: Frequency vs. Perid in Simple Harmnic Mtin We have already defined the perid, T, f simple harmnic mtin as the time it takes fr ne full cycle r scillatin. Frequency, f, is defined as the number f cycles r scillatins per secnd. Hpefully yu recgnize then that frequency and perid are inverses f ne anther. The units fr frequency are cycles secnd T = 1 f which we call hertz (Hz) after the 19th century German physicist Heinrich Hertz ( ) wh was the first t give cnclusive prf f the existence f electrmagnetic waves which were therized by James Clerk Maxwell's electrmagnetic thery f light which we will learn abut later. Fr example, if we have a vertical mass-spring system with a perid f 0.77 secnds, the frequency f that mass-spring system is: f = 1 T = 1 cycles = r1.3 Hz 0.77 secnd Which means the mass-spring system shuld g thrugh 1.3 scillatins every secnd. Anther example, if we have a pendulum which ges thrugh 15 cycles in 11 secnds, then the frequency f that pendulum is: 15 cycles f = = Hz 11 secnds Which we can cmpare t the perid f the pendulum: T = 1 f = 1 = sec Lecture Ntes - Frequency vs Perid in Simple Harmnic Mtin.dcx page 1 f 1

8 Flipping Physics Lecture Ntes: Cmparing Simple Harmnic Mtin t Circular Mtin Circular mtin, when viewed frm the side, is simple harmnic mtin. It is difficult t see n paper, which is why I make the vides. If yu just lk at the x r y directin mtin f the yellw marker cap n tp f the rtating turntable, the cap is mving in simple harmnic mtin. Here is a picture, hwever, really, yu shuld g watch the vide: If yu lk at the lcatin f the cap in ne dimensin as a functin f time, then yu end up with a sine/csine curve. Again, g watch the vide: 0260 Lecture Ntes - Cmparing Simple Harmnic Mtin t Circular Mtin.dcx page 1 f 1

9 Flipping Physics Lecture Ntes: Simple Harmnic Mtin Psitin Equatin Derivatin Circular mtin, when viewed frm the side, is simple harmnic mtin. We can use this fact t derive an equatin fr the psitin f an bject in simple harmnic mtin. r is radius f the circular mtin. x is the psitin f the cap in the x-directin, assuming the center f the turntable is the center f ur crdinate system. θ is the angular displacement f the cap frm an initial psitin where the cap was at its extreme psitin t the right. A x = x = r cs θ & H r Δθ θ f θ i θ 0 θ ω= = = = θ = ωt Δt tf ti t 0 t cs θ = Assuming we let θ i = 0; ti = 0; θ f = θ ; tf = t Δθ 2π 1 = = 2π f remember: f = Δt T T Therefre θ = ω t = 2π ft and x = r cs θ = r cs ω t = r cs 2π ft x = r cs θ = r cs ω t & ω = ( ) Identifying that the maximum displacement frm equilibrium psitin is the amplitude, A, is als r in the psitin equatin. Therefre: () ( x t = Acs 2π ft ) Ntice this is an equatin which can be used t describe an bject scillating in simple harmnic mtin. The equatin culd als be: () ( ) () ( ) x t = Asin 2π ft r even x t = Acs 2π ft + φ. φ is the phase cnstant and phase shifts the sine and csine wave alng the hrizntal axis. Realize φ is nt in the AP Physics 1 curriculum, hwever, it is very useful. π Fr example: x t = Acs 2π ft = Asin 2π ft + 2 () ( ) Sme useful pints: θ was in radians in ur derivatin, therefre angles in the equatins fr simple harmnic mtin are in radians and yur calculatr needs t be in radians when using these equatins. ω is angular frequency which is nt the same as frequency, f. Yes, ω= T= Δθ 2π = = 2π f Δt T 2π, is n the AP Physics equatin sheets, hwever, yu are much better served t ω remember and understand its derivatin Lecture Ntes - Simple Harmnic Mtin - Psitin Equatin Derivatin.dcx page 1 f 1

10 Flipping Physics Lecture Ntes: Simple Harmnic Mtin - Velcity and Acceleratin Equatin Derivatins Previusly we derived the equatin n the AP Physics 1 equatin sheet fr an bject mving in simple harmnic mtin: x t = Acs( 2π ft). In rder t derive the equatins fr velcity and acceleratin, let s get psitin in terms f angular frequency: f = 1 T & ω = Δθ Δt = 2π T = 2π f therefre x t = Acs( 2π ft) = Acs( ωt). = Acs( ωt +φ). Let s add the phase cnstant that shifts the wave alng the hrizntal axis: x t Velcity is the derivative f psitin as a functin f time. I knw sme f yu might nt have taken calculus yet and might nt understand derivatives. Realize yu need derivatives t derive velcity and acceleratin simple harmnic mtin equatins. Sme f this math might g ver yur heads, hwever, it is still useful t get sme expsure t. J Uses chain rule. v = dx dt = d Acs ωt +φ dt = A d cs ωt +φ dt = A sin ωt +φ d ωt +φ dt v ( t) = Asin( ωt +φ)ω v ( t) = Aω sin( ωt +φ) Nte: Because 1 sinθ 1 v max = Aω The derivatin f acceleratin is very similar: Again, uses chain rule. a = dv dt = d Aω sin ωt +φ dt = Aω d sin ωt +φ dt = Aω cs ωt +φ d ωt +φ dt a = Aω cs ωt +φ ω a( t) = Aω 2 cs( ωt +φ) Again nte: Because 1 csθ 1 a max = Aω 2 Remember: Because the derivatin f these equatins requires theta t be in radians, all angles in these equatins need t be in radians and yur calculatr needs t be in radian mde when using equatins fr psitin, velcity, and acceleratin as a functin f time in simple harmnic mtin Lecture Ntes - Simple Harmnic Mtin - Velcity and Acceleratin Equatin Derivatins.dcx page 1 f 1

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

1 Course Notes in Introductory Physics Jeffrey Seguritan

1 Course Notes in Introductory Physics Jeffrey Seguritan Intrductin & Kinematics I Intrductin Quickie Cncepts Units SI is standard system f units used t measure physical quantities. Base units that we use: meter (m) is standard unit f length kilgram (kg) is

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Prfessr and Chair Mechanical Engineering Department Christian Brthers University 650 East Parkway Suth Memphis, TN 38104 Office: (901) 321-3424 Rm: N-110 Fax : (901) 321-3402

More information

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d: Slutins--Ch. 6 (Energy) CHAPTER 6 -- ENERGY 6.) The f.b.d. shwn t the right has been prvided t identify all the frces acting n the bdy as it mves up the incline. a.) T determine the wrk dne by gravity

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

Introduction to Spacetime Geometry

Introduction to Spacetime Geometry Intrductin t Spacetime Gemetry Let s start with a review f a basic feature f Euclidean gemetry, the Pythagrean therem. In a twdimensinal crdinate system we can relate the length f a line segment t the

More information

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W Eample 1 rbt has a mass f 60 kg. Hw much des that rbt weigh sitting n the earth at sea level? Given: m Rbt = 60 kg ind: Rbt Relatinships: Slutin: Rbt =589 N = mg, g = 9.81 m/s Rbt = mrbt g = 60 9. 81 =

More information

CLASS XI SET A PHYSICS

CLASS XI SET A PHYSICS PHYSIS. If the acceleratin f wedge in the shwn arrangement is a twards left then at this instant acceleratin f the blck wuld be, (assume all surfaces t be frictinless) a () ( cs )a () a () cs a If the

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 0 Public Exam Questins Unit 1: Circular Mtin NAME: August 009---------------------------------------------------------------------------------------------------------------------- 1. Which describes

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 3204 Public Exam Questins Unit 1: Circular Mtin NAME: August 2009---------------------------------------------------------------------------------------------------------------------- 12. Which

More information

f = µ mg = kg 9.8m/s = 15.7N. Since this is more than the applied

f = µ mg = kg 9.8m/s = 15.7N. Since this is more than the applied Phsics 141H lutins r Hmewrk et #5 Chapter 5: Multiple chice: 8) (a) he maimum rce eerted b static rictin is µ N. ince the blck is resting n a level surace, N = mg. the maimum rictinal rce is ( ) ( ) (

More information

PHYS 314 HOMEWORK #3

PHYS 314 HOMEWORK #3 PHYS 34 HOMEWORK #3 Due : 8 Feb. 07. A unifrm chain f mass M, lenth L and density λ (measured in k/m) hans s that its bttm link is just tuchin a scale. The chain is drpped frm rest nt the scale. What des

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

Chapter 5: Force and Motion I-a

Chapter 5: Force and Motion I-a Chapter 5: rce and Mtin I-a rce is the interactin between bjects is a vectr causes acceleratin Net frce: vectr sum f all the frces n an bject. v v N v v v v v ttal net = i = + + 3 + 4 i= Envirnment respnse

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1 Phys11 First Majr-11 Zer Versin Crdinatr: Dr. A. A. Naqvi Wednesday, September 5, 1 Page: 1 Q1. Cnsider tw unifrm slid spheres A and B made f the same material and having radii r A and r B, respectively.

More information

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec U n i t 6 AdvF Date: Name: Trignmetric Functins Unit 6 Tentative TEST date Big idea/learning Gals In this unit yu will study trignmetric functins frm grade, hwever everything will be dne in radian measure.

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion. Chapter Kinematics in One Dimensin Kinematics deals with the cncepts that are needed t describe mtin. Dynamics deals with the effect that frces have n mtin. Tgether, kinematics and dynamics frm the branch

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm

Faculty of Engineering and Department of Physics Engineering Physics 131 Midterm Examination February 27, 2006; 7:00 pm 8:30 pm Faculty f Engineering and Department f Physics Engineering Physics 131 Midterm Examinatin February 27, 2006; 7:00 pm 8:30 pm N ntes r textbks allwed. Frmula sheet is n the last page (may be remved). Calculatrs

More information

Phys101 Second Major-061 Zero Version Coordinator: AbdelMonem Saturday, December 09, 2006 Page: 1

Phys101 Second Major-061 Zero Version Coordinator: AbdelMonem Saturday, December 09, 2006 Page: 1 Crdinatr: AbdelMnem Saturday, December 09, 006 Page: Q. A 6 kg crate falls frm rest frm a height f.0 m nt a spring scale with a spring cnstant f.74 0 3 N/m. Find the maximum distance the spring is cmpressed.

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Trigonometric Ratios Unit 5 Tentative TEST date

Trigonometric Ratios Unit 5 Tentative TEST date 1 U n i t 5 11U Date: Name: Trignmetric Ratis Unit 5 Tentative TEST date Big idea/learning Gals In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017

EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017 OBJECTIVES 1. Ft Pressure EXAM #1 PHYSICAL SCIENCE 103 FALLF, 2017 Determine the surface area f an bject. Given the weight and surface area, calculate the pressure. 2. Measuring Vlume & Mass Prvided a

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

= m. Suppose the speed of a wave on a string is given by v = Κ τμ

= m. Suppose the speed of a wave on a string is given by v = Κ τμ Phys101 First Majr-11 Zer Versin Sunday, Octber 07, 01 Page: 1 Q1. Find the mass f a slid cylinder f cpper with a radius f 5.00 cm and a height f 10.0 inches if the density f cpper is 8.90 g/cm 3 (1 inch

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude

. (7.1.1) This centripetal acceleration is provided by centripetal force. It is directed towards the center of the circle and has a magnitude Lecture #7-1 Dynamics f Rtatin, Trque, Static Equilirium We have already studied kinematics f rtatinal mtin We discussed unifrm as well as nnunifrm rtatin Hwever, when we mved n dynamics f rtatin, the

More information

EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016

EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016 OBJECTIVES 1. Ft Pressure EXAM #1 PHYSICAL SCIENCE 103 Spring, 2016 Determine the surface area f an bject. Given the weight and surface area, calculate the pressure. 2. Measuring Vlume & Mass Prvided a

More information

AP Physics Laboratory #4.1: Projectile Launcher

AP Physics Laboratory #4.1: Projectile Launcher AP Physics Labratry #4.1: Prjectile Launcher Name: Date: Lab Partners: EQUIPMENT NEEDED PASCO Prjectile Launcher, Timer, Phtgates, Time f Flight Accessry PURPOSE The purpse f this Labratry is t use the

More information

I understand the new topics for this unit if I can do the practice questions in the textbook/handouts

I understand the new topics for this unit if I can do the practice questions in the textbook/handouts 1 U n i t 6 11U Date: Name: Sinusidals Unit 6 Tentative TEST date Big idea/learning Gals In this unit yu will learn hw trignmetry can be used t mdel wavelike relatinships. These wavelike functins are called

More information

CHAPTER 4 Dynamics: Newton s Laws of Motion /newtlaws/newtltoc.html

CHAPTER 4 Dynamics: Newton s Laws of Motion  /newtlaws/newtltoc.html CHAPTER 4 Dynamics: Newtn s Laws f Mtin http://www.physicsclassrm.cm/class /newtlaws/newtltc.html Frce Newtn s First Law f Mtin Mass Newtn s Secnd Law f Mtin Newtn s Third Law f Mtin Weight the Frce f

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

Chapter 10. Simple Harmonic Motion and Elasticity. Example 1 A Tire Pressure Gauge

Chapter 10. Simple Harmonic Motion and Elasticity. Example 1 A Tire Pressure Gauge 0. he Ideal Spring and Simple Harmnic Mtin Chapter 0 Simple Harmnic Mtin and Elasticity F Applied x k x spring cnstant Units: N/m 0. he Ideal Spring and Simple Harmnic Mtin 0. he Ideal Spring and Simple

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

Physics 101 Math Review. Solutions

Physics 101 Math Review. Solutions Physics 0 Math eview Slutins . The fllwing are rdinary physics prblems. Place the answer in scientific ntatin when apprpriate and simplify the units (Scientific ntatin is used when it takes less time t

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

i-clicker i-clicker Newton s Laws of Motion First Exam Coming Up! Components of Equation of Motion

i-clicker i-clicker Newton s Laws of Motion First Exam Coming Up! Components of Equation of Motion First Eam Cming Up! Sunda, 1 Octber 6:10 7:30 PM. Lcatins t be psted nline. Yes this is a Sunda! There will be 17 questins n eam. If u have a legitimate cnflict, u must ask Prf. Shapir b Oct. 8 fr permissin

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

1.2.1 Vectors. 1 P age. Examples What is the reference vector angle for a vector that points 50 degrees east of south?

1.2.1 Vectors. 1 P age. Examples What is the reference vector angle for a vector that points 50 degrees east of south? 1.2.1 Vectrs Definitins Vectrs are represented n paper by arrws directin = magnitude = Examples f vectrs: Examples What is the reference vectr angle fr a vectr that pints 50 degrees east f suth? What is

More information

Hubble s Law PHYS 1301

Hubble s Law PHYS 1301 1 PHYS 1301 Hubble s Law Why: The lab will verify Hubble s law fr the expansin f the universe which is ne f the imprtant cnsequences f general relativity. What: Frm measurements f the angular size and

More information

Study Guide Physics Pre-Comp 2013

Study Guide Physics Pre-Comp 2013 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund (lb.) Time Secnds (s) Secnds (s) Vlume Liter (L) Galln (gal)

More information

1 PreCalculus AP Unit G Rotational Trig (MCR) Name:

1 PreCalculus AP Unit G Rotational Trig (MCR) Name: 1 PreCalculus AP Unit G Rtatinal Trig (MCR) Name: Big idea In this unit yu will extend yur knwledge f SOH CAH TOA t wrk with btuse and reflex angles. This extensin will invlve the unit circle which will

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers LHS Mathematics Department Hnrs Pre-alculus Final Eam nswers Part Shrt Prblems The table at the right gives the ppulatin f Massachusetts ver the past several decades Using an epnential mdel, predict the

More information

Precalculus A. Semester Exam Review

Precalculus A. Semester Exam Review Precalculus A 015-016 MCPS 015 016 1 The semester A eaminatin fr Precalculus cnsists f tw parts. Part 1 is selected respnse n which a calculatr will NOT be allwed. Part is shrt answer n which a calculatr

More information

Subject: KINEMATICS OF MACHINES Topic: VELOCITY AND ACCELERATION Session I

Subject: KINEMATICS OF MACHINES Topic: VELOCITY AND ACCELERATION Session I Subject: KINEMTIS OF MHINES Tpic: VELOITY ND ELERTION Sessin I Intrductin Kinematics deals with study f relative mtin between the varius parts f the machines. Kinematics des nt invlve study f frces. Thus

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Mathacle PSet ---- Algebra, Trigonometry Functions Level Number Name: Date:

Mathacle PSet ---- Algebra, Trigonometry Functions Level Number Name: Date: PSet ---- Algebra, Trignmetry Functins I. DEFINITIONS OF THE SIX TRIG FUNCTIONS. Find the value f the trig functin indicated 1 PSet ---- Algebra, Trignmetry Functins Find the value f each trig functin.

More information

Einstein's special relativity the essentials

Einstein's special relativity the essentials VCE Physics Unit 3: Detailed study Einstein's special relativity the essentials Key knwledge and skills (frm Study Design) describe the predictin frm Maxwell equatins that the speed f light depends nly

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

PHYSICS LAB Experiment 10 Fall 2004 ROTATIONAL DYNAMICS VARIABLE I, FIXED

PHYSICS LAB Experiment 10 Fall 2004 ROTATIONAL DYNAMICS VARIABLE I, FIXED ROTATIONAL DYNAMICS VARIABLE I, FIXED In this experiment we will test Newtn s Secnd Law r rtatinal mtin and examine hw the mment inertia depends n the prperties a rtating bject. THE THEORY There is a crrespndence

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Prcessing Prf. Mark Fwler Intrductin Nte Set #1 ading Assignment: Ch. 1 f Prakis & Manlakis 1/13 Mdern systems generally DSP Scenari get a cntinuus-time signal frm a sensr a cnt.-time

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

AP Physics. Summer Assignment 2012 Date. Name. F m = = + What is due the first day of school? a. T. b. = ( )( ) =

AP Physics. Summer Assignment 2012 Date. Name. F m = = + What is due the first day of school? a. T. b. = ( )( ) = P Physics Name Summer ssignment 0 Date I. The P curriculum is extensive!! This means we have t wrk at a fast pace. This summer hmewrk will allw us t start n new Physics subject matter immediately when

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

Pages with the symbol indicate that a student should be prepared to complete items like these with or without a calculator. tan 2.

Pages with the symbol indicate that a student should be prepared to complete items like these with or without a calculator. tan 2. Semester Eam Review The semester A eaminatin fr Hnrs Precalculus cnsists f tw parts. Part 1 is selected respnse n which a calculatr will NOT be allwed. Part is shrt answer n which a calculatr will be allwed.

More information

"1 O O O. -U -7 P fl> 1 3. jff. (t) o o 1-7- PAa s: A - o 0'»«-« "Tf O ") ftt Ti 0 -- CO -1 O. fa n. i,, I. -n F en 2.0»- 4 T2. -5 Ut.

1 O O O. -U -7 P fl> 1 3. jff. (t) o o 1-7- PAa s: A - o 0'»«-« Tf O ) ftt Ti 0 -- CO -1 O. fa n. i,, I. -n F en 2.0»- 4 T2. -5 Ut. crv/ 3 P -U -7 P fl> 1 3 (t) jff?- "1 s P 9-1-7- ~* PAa s: A - "C '»«-«in i,, I ftt Ti -- c 4 T2-5 Ut j 3 C -1 p fa n l> -n F en 2.»- "Tf ") r . x 2 "Z * "! t :.!, 21,, V\ C fn

More information

Physics 1200 Mechanics, Kinematics, Fluids, Waves

Physics 1200 Mechanics, Kinematics, Fluids, Waves Physics 100 Mechanics, Kinematics, Fluids, Waes Lecturer: Tm Humanic Cntact inf: Office: Physics Research Building, Rm. 144 Email: humanic@mps.hi-state.edu Phne: 614 47 8950 Office hurs: Tuesday 3:00 pm,

More information

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Chapter 9 Vector Differential Calculus, Grad, Div, Curl Chapter 9 Vectr Differential Calculus, Grad, Div, Curl 9.1 Vectrs in 2-Space and 3-Space 9.2 Inner Prduct (Dt Prduct) 9.3 Vectr Prduct (Crss Prduct, Outer Prduct) 9.4 Vectr and Scalar Functins and Fields

More information

PRE-CALCULUS B FINAL REVIEW NAME Work out problems in your notebook or on a separate piece of paper.

PRE-CALCULUS B FINAL REVIEW NAME Work out problems in your notebook or on a separate piece of paper. PRE-CALCULUS B FINAL REVIEW NAME Wrk ut prblems in yur ntebk r n a separate piece f paper. CHAPTER 5 Simplify each t ne trig wrd r a number: tan (1) sec sec () sin ct + 1 + cs + ( sin cs ) () sin - cs

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 2: Mdeling change. In Petre Department f IT, Åb Akademi http://users.ab.fi/ipetre/cmpmd/ Cntent f the lecture Basic paradigm f mdeling change Examples Linear dynamical

More information

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER

ES201 - Examination 2 Winter Adams and Richards NAME BOX NUMBER ES201 - Examinatin 2 Winter 2003-2004 Adams and Richards NAME BOX NUMBER Please Circle One : Richards (Perid 4) ES201-01 Adams (Perid 4) ES201-02 Adams (Perid 6) ES201-03 Prblem 1 ( 12 ) Prblem 2 ( 24

More information

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions ED- (JEE) Slutins Answer : Optin () ass f the remved part will be / I Answer : Optin () r L m (u csθ) (H) Answer : Optin () P 5 rad/s ms - because f translatin ωr ms - because f rtatin Cnsider a thin shell

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

sin θ = = y = r sin θ & cos θ = = x = r cos θ

sin θ = = y = r sin θ & cos θ = = x = r cos θ Flipping Phyic Lecture Nte: Intrductin t Circular Mtin and Arc Length Circular Mtin imply take what yu have learned befre and applie it t bject which are mving alng a circular path. Let begin with a drawing

More information

CESAR Science Case The differential rotation of the Sun and its Chromosphere. Introduction. Material that is necessary during the laboratory

CESAR Science Case The differential rotation of the Sun and its Chromosphere. Introduction. Material that is necessary during the laboratory Teacher s guide CESAR Science Case The differential rtatin f the Sun and its Chrmsphere Material that is necessary during the labratry CESAR Astrnmical wrd list CESAR Bklet CESAR Frmula sheet CESAR Student

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( )

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( ) Calculus Placement Review I. Finding dmain, intercepts, and asympttes f ratinal functins 9 Eample Cnsider the functin f ( ). Find each f the fllwing. (a) What is the dmain f f ( )? Write yur answer in

More information

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3 ME 5 - Machine Design I Fall Semester 06 Name f Student: Lab Sectin Number: Final Exam. Open bk clsed ntes. Friday, December 6th, 06 ur name lab sectin number must be included in the spaces prvided at

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution 39th Internatinal Physics Olympiad - Hani - Vietnam - 8 Theretical Prblem N. /Slutin Slutin. The structure f the mrtar.. Calculating the distance TG The vlume f water in the bucket is V = = 3 3 3 cm m.

More information