Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart


 Jeffery Robbins
 1 years ago
 Views:
Transcription
1 Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA Sandy Balkin is a graduate student in the Department f Management Science and Infrmatin Systems. y Dr. Lin is an Assciate Prfessr in the Department f Management Science and Infrmatin Systems and the Department f Statistics. He is a Senir Member f the ASQ. 1
2 Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Charts, Statistical Prcess Cntrl, Time Series. Abstract Sensitizing Rules are cmmnly applied t Shewhart Charts t increase their eectiveness in detecting shifts in the mean that may therwise g unnticed by the usual \utfcntrl" signals. Since mst cntrl chart data are cllected as time series, it is f interest t examine the perfrmance f Shewhart's x Chart using autcrrelated data. In this paper, measurements arising frm autregressive (AR), mving average (MA) and autregressive mving average (ARMA) prcesses are examined using Shewhart Cntrl charts in cnjunctin with several sensitizing rules (Western Electric Cmpany, 1956). The results indicate that the rules wrk well when there are strng autcrrelative relatinships, but are nt as eective in recgnizing small t mderate levels f crrelatin. A questin then arises whether the results are due t the fact that lnger series are mre prne t false signal ccurrences. We investigate this by examining incntrl series f varius length and applying the sensitizing rules. The results suggest that the prbability f false psitives increases with series length resulting in a high number f false psitive ccurrences. We cnclude with the recmmendatin t practitiners that they use a mre denitive measure f autcrrelatin such as the Sample Autcrrelatin Functin crrelgram t detect dependency. 2
3 Intrductin The primary gal f this study is t assess the ability f cntrl chart sensitizing rules t detect dependency, bth individually and in cmbinatins, by simulating autcrrelated data and applying the tests. A secnd part f this study invlves simulating varius lengths f incntrl r \nrmal" data and testing whether the length f the series has an eect n the false signal rate f the sensitizing rules. The standard analysis and interpretatin f a Shewhart x chart assumes that the data are nrmally and independently distributed (N ID) with mean and standard deviatin which remain cnstant ver time. It is cmmn t apply runs tests in the analysis t increase the chart's eectiveness in detecting small changes in the prcess mean. Such tests are referred t as sensitizing rules. Sme f these tests are fund in Table 1 (see als, Mntgmery (1996) r Western Electric Cmpany (1956)). ** Insert Table 1 abut here ** The sensitizing rules make use f exclusive and exhaustive znes which divide the area between the upper and lwer cntrl limits int three regins. The znes refer t the regin between the center line and the 1 sigma limits as zne C; between the 1 sigma limits and 2 sigma limits as zne B; and between the 2 and 3 sigma limits as zne A. Figure 1 displays the znes graphically. ** Insert Figure 1 abut here ** The drawback t using these rules is that while they increase the chance f detecting changes in the prcess mean, they lead t a greater Type I errr rate. Wrk n Type I errr rates when applied t NID data can be fund in Champ and Wdall (1987), Davis and Wdall (1988), Wheeler (1983), and Chang, Tia, and Chen (1988). Type I errrs rates fr the sensitizing rules applied 3
4 t varius cntrl charts by simulating NID data can be fund in Walker, Philpt, and Clement (1991). Since the data fr Shewhart's x chart are cllected as a time series, we test the ability f the sensitizing rules t identify a vilatin f the independency assumptin using linearly autcrrelated data generated frm cnventinal time series mdels. This paper will describe the autcrrelatin structures which are used in the simulatin testing f the sensitizing rules, prvide an interpretatin f the results f the simulatin fllwed by a study f the impact f series length n the prbability f false psitives. We cnclude with a discussin f the utcmes and recmmendatins practitiners. Autcrrelated Data The standard assumptins assciated with the use f cntrl charts include the data being generated by a N ID(; ) prcess with the parameters xed but unknwn (Mntgmery, 1996). This assumptin is ften invalid as time series data is frequently crrelated. When a series drifts ver time, it is said t be autcrrelated. autcrrelatin functin: and estimated using: r k = The level f autcrrelatin is measured using the k = Cv(x t; x t?k ) ; k = 0; 1; : : : V ar(x t ) P N?k t=1 (x t? x)(x t?k? x) P N t=1(x t? x) 2 ; k = 0; 1; : : : ; K where N is the length f the time series. As a general rule, the rst K N=4 sample are cmputed (Mntgmery, Jhnsn, & Gardiner, 1990). In this study, autcrrelated data are simulated using Linear Gaussian Mdels as the generating prcess. Linear Gaussian mdels are frequently used in time series analysis t explain the mvement f a series as a functin f its past perfrmance plus randm shcks. We will use the Linear Gaussian mdels described belw t induce crrelatin in the data. 4
5 The rst type f linear mdel studied will be the autregressive prcess f rder p (AR(p)) and is characterized by Y t = c + 1Y t?1 + 2Y t?2 + + p Y t?p + t The AR(p) which is a weighted average f the past perfrmance, with weights i 's and a nrmal errr term t N(0; 2 ). Such a mdel is used when the change in the series at any pint in time is linearly crrelated with previus changes. A secnd type f linear mdel will be used in the analysis is the mving average prcess f rder q (MA(q)) and is characterized by Y t = + t? 1 t?1? 2 t?2?? q t?q : The MA(q) is a weighted average (with weights i ) f randm shcks (i.e., i ) spanning q perids. Each f the i 's is assumed t fllw a nrmal distributin with mean 0 and standard deviatin 1. A mving average mdel is used when there is a linear dependence n past perfrmance. It is interesting t nte that the system has a q?perid memry meaning that a randm shck persists fr exactly q perids. Cmbining the tw mdels abve results in the mixed autregressivemving average (ARM A(p; q)) prcess characterized by Y t = c + 1Y t?1 + + p Y t?p + t? 1 t?1?? q t?q : This type f scheme is used when bth mving average and autregressive tendencies are present. Simulatin Prcedure Our gal is t evaluate the ability f the sensitizing rules t detect dependency in a series f bservatins, nt t decide n an ptimal batch size. Thus, we will nly lk at series f individual bservatins (batch size f 1). Fr each mdel specied in Table 2, a series f 100 data pints was generated with Nrmal(0, 1) errr terms. The NID case ccurs when all parameter values f 5
6 the AR, MA r ARMA mdel are set t zer and will serve as a \benchmark" fr cmparisn. Shewhart Cntrl limits are then determined using the mean f the series as the center line and the mving range f successive bservatins t determine the cntrl limits. The mving range is dened in Mntgmery (1996) as MR i = jx i? x i?1j. The mean f the mving range is used t estimate the prcess variability. The interpretatin f the chart is then similar t that f the rdinary Shewhartx cntrl chart. ** Insert Table 2 abut here ** All eight tests were then perfrmed n the cntrl chart nting when each rule was vilated. Ten thusand (10,000) sets f 100 data pints were generated via this prcess fr the dierent linear mdels. The values reprted are the fractin f generated series fund in vilatin f each rule and the percentage f series which vilated at least ne f the rules. The series were generated and tested using the sftware package Splus versin 3.3. Results and Discussin Tables 3 thrugh 6 shw the results frm the simulatins. In the fllwing sectin we study the results f each mdel simulatin, examining each rule and its perfrmance under the varius mdels. ** Insert Tables 3, 4, 5, 6 Here ** Rule 1 : A pint falls utside the 3 sigma limit Rule 1 crrespnds t having an bservatin fall relatively far frm the prcess mean. Vilatin f this rule can indicate an ut f cntrl pint r dependency f the prcess. This rule is typically vilated when the generating prcess has a large autregressive cecient in abslute value r 6
7 negatively large mving average term. Fr example, AR(1)6, AR(2)25, MA(2)1 and ARMA21 are all examples f mdels detected by this rule. Rule 2 : 8 pints in a rw in zne C r beynd n the same side f the center line Rule 2 crrespnds t a trend in the data. Vilatin f this rule is indicative f dependency in the data. This rule is typically vilated when 2 is large fr the AR schemes, when 1 and 2 are negatively large fr the MA schemes and when 1 is large and 1 is negatively large fr the ARMA scheme. Mdels AR(1)6, AR(2)20, MA(2)1 and ARMA21 are examples where this rule is eective. Rule 3 : 6 pints in a rw increasing r decreasing Rule 3 als crrespnds t a trend in the data. Vilatin f this rule is indicative f psitive autcrrelatin in the data. It is typically vilated by AR(2) schemes when bth cecients are large and psitive. Fr example, AR(2)25 and ARMA21 are schemes that cnsistently vilate this rule. Rule 4 : 14 pints in a rw alternating up and dwn Rule 4 crrespnds t a series that is mean reverting. This is characteristic f an AR(1) scheme with negative cecient. Thus, it is n surprise that this test is mst ften vilated by the AR(1) and ARMA(1, 1) schemes with largely negative autregressive cecients, by AR(2) schemes with largely negative 1 and psitive 2 and hardly ever by pure mving average schemes. Mdels AR(1)1, AR(2)5, and ARMA3 are examples where this rule is eective. Rule 5 : 2 ut f 3 pints in a rw in zne A r beynd n the same side f the center line Rule 5 is an indicatr f pssible dependency. This rule is vilated when a cuple f pints clse tgether are very large, either psitively r negatively. It is typically vilated by AR(1) schemes when is large and in AR(2) schemes when j1j and 2 are large. Fr example, AR(1)6, AR(2)25, MA(1)1, MA(2)2 and ARMA21 are schemes causing this rule t be vilated. 7
8 Rule 6 : 4 ut f 5 pints in a rw in zne B r beynd n the same side f the center line Rule 6 is similar t Rule 5 in that it states that several pints in a rw were large, either psitively r negatively. This als is indicative f dependency. This rule is typically vilated by AR(1) schemes with a large cecient and by AR(2) schemes when bth cecients are psitive. It is als frequently vilated by MA schemes with a largely negative 1 value as well as the cmbinatin f when 1 is large and 1 is negatively large fr the ARMA prcesses. This rule is vilated by mdels such as AR(1)6, AR(2)25, MA(1)1, MA(2)1 and ARMA21. Rule 7 : 15 pints in a rw in zne C Rule 7 crrespnds t the bservatins falling t clse t the center line fr an extended perid f time. This can be interpreted as an indicatin f dependency. This rule is typically vilated when 1 is largely negative and infrequently when applied t series with mving average structure. Fr example, mdels AR(1)1, AR(2)5 and ARMA3 cause this rule t be vilated. Rule 8 : 8 pints in a rw nt in zne C Rule 8 can als be used t detect dependency in the data. It is typically vilated when 2 is large fr the AR(2) schemes and smewhat less frequently when is negative fr the ARMA schemes. AR(1)6, AR(2)25 and ARMA21 are examples f schemes that cnsistently vilate this rule. Overall, it appears that high levels f autcrrelatin are eectively detected. Strng negative cecient mving average structures als tends t vilate the rules frequently. It is apparent, hwever, that series with weak t mderate dependencies slip passed the rules such as schemes AR(1)3, AR(2)7, MA(1)4, MA(2)10 and ARMA4. Prbability f False Psitives In practice, a single vilatin f any f the sensitizing rules wuld result in an investigatin int what was causing the prcess t g ut f cntrl. Walker, Philpht and Clement (1991) 8
9 experimented with series f length 20 and 30. Cnsistently, as the series gets larger, s des the prbability f btaining a false psitive. The simulatin prcess explained abve was run n dierent series lengths where the series where generated accrding t a standard nrmal prcess. Table 6 gives the series length, the prprtin ut f 10,000 each individual rule was vilated, and the percentage f times any rule was vilated. ** Insert Table 6 abut here ** It is clear that large Type I errrs are an artifact f large series lengths. In particular, rules 1, 2 and 6 appear particularly prne t falsely vilating a large series. Thus, practitiners must be careful when applying all eight rules t lng series as the prbabilities f falsely rejecting increase with series length. Recmmendatins Frm the simulatins, it is evident that the sensitizing rules are nt reliable fr determining dependency, especially as series length increase. The riginal intent fr these rules was t make it pssible fr a persn n a factry r t quickly determine if a prcess was utfcntrl r nt. Hwever, with the current level f cmputer pwer, there exist mre eective techniques fr ding this jb. A simple way t shw the crrelatin structure f a series is by its the Autcrrelatin Functin (see Mntgmery et al. (1990) Chapter 10.2 fr an explanatin f autcrrelatin functins). Figures 2 and 3 shw the theretical autcrrelatin functins fr the AR(1) and M A(1) mdels. Frm crrelgrams f bserved series, we can see hw strng the crrelatin is between time s as well as hw lng it lasts. Such plts are useful in determining what, if any, autcrrelatin is inherent in a realized series f bservatins. ** Insert Figure 2 abut here ** 9
10 ** Insert Figure 3 abut here ** Figure 4 shws sme autcrrelated series and their crrespnding Sample Autcrrelatin and Partial Autcrrelatin Functin plts as described in Sectin 2. ** Insert Figure 4 abut here ** The crrelgrams eectively shw when a series' bservatins are nt independent with signicantly large spikes at sme s. Mrever, Mntgmery et al. (1990) explains hw t use the plts t identify a particular ARMA mdel. Cnclusin Each f the rules applied has its place in detecting fr structure in a time series. N ne rule is adequate t use in determining if the series is randm r nt. Fr instance, Rule 1, the easiest t apply, is nly eective fr certain types f autcrrelatin. The rules that are eective simply lk fr characteristics f AR r MA schemes. Hence, hw well a rule des is dependent n hw strng the characteristic is. Fr example, the pattern searched fr by Rule 4 is fund in AR(1) mdels with a negative cecient. The larger the negativity, the greater the prprtin f vilatins fund. In cnclusin, the sensitizing rules were nt as eective in identifying mving average prcesses as they are fr autregressive series. This is nt cmpletely surprising as mving average prcesses are nly crrelated fr a nite number q s. Mst f the runs tests rely n a multipint pattern as a means f vilatin detectin. There is a high level f falsely classifying a series as ut f cntrl when using the sensitizing rules n lng series. A pssible alternative t the Shewhart Chart and sensitizing rules are SACF and SPACF plts which identify signicant crrelatin between ged pints f the series. These plts are easy t btain using almst any statistical package and shuld be cnsidered fr use in practice. Acknwledgement: The authrs wish t thank the Editr and tw annymus referees fr their valuable cmments which cnsiderably added t the value f this manuscript. 10
11 References Bx, G., Jenkins, G., & Reinsel, G. (1994). Time Series Analysis Frecasting and Cntrl (Third editin). Prentice Hall : Englewd Clis, New Jersey. Champ, C., & Wdall, W. (1987). Exact Results fr the Shewhart Cntrl Charts With Supplementary Runs Rules. Technmetrics, 29, 393{399. Chang, I., Tia, G., & Chen, C. (1988). Estimatin f Time Series Parameters in the Presence f Outliers. Technmetrics, 30, 193{204. Davis, R., & Wdall, W. (1988). Perfrmance f the Cntrl Chart Trend Rule Under Linear Shift. Jurnal f Quality Technlgy, 20, 260{262. Mntgmery, D. (1996). Intrductin t Statistical Quality Cntrl (Third editin). Jhn Wiley and Sns, Inc. Mntgmery, D., Jhnsn, L., & Gardiner, J. (1990). Frecasting and Time Series Analysis (Secnd editin). McGrawHill, Inc. Walker, E., Philpt, J., & Clement, J. (1991). False Signal Rates fr the Shewhart Cntrl Chart with Supplementary Runs Tests. Jurnal f Quality Technlgy, 23, 247{252. Western Electric Cmpany (1956). Statistical Quality Cntrl Handbk. Western Electric Cmpany, Indianaplis, IN. (available frm the ASQ). Wheeler, D. (1983). Detercting a Shift in the Prcess Average: Tables f the Pwer Functin fr x Charts. Jurnal f Quality Technlgy, 15, 155{
12 Standard Deviatins frm Mean Zne A Zne B Zne C Zne C Zne B Zne A Figure 1: Shewhart Chart with znes 12
13 AR(1); phi= 0.9 AR(1); phi= 0.5 AR(1); phi= 0 rh rh rh AR(1); phi= 0.1 AR(1); phi= 0.5 AR(1); phi= 0.9 rh rh rh Figure 2: Theretical ACF fr AR(1) Mdels 13
14 MA(1); theta= 0.9 MA(1); theta= 0.5 MA(1); theta= 0 rh rh rh MA(1); theta= 0.1 MA(1); theta= 0.5 MA(1); theta= 0.9 rh rh rh Figure 3: Theretical ACF fr MA(1) Mdels 14
15 Observatin Series : AR(1); phi=0.9 Series : AR(1); phi=0.9 Series : AR(1); phi=0.9 Sample Mean ACF Partial ACF Series : AR(1); phi= Series : AR(1); phi= Series : AR(1); phi=0.1 Sample Mean ACF Partial ACF Observatin Series : NID Series : NID Series : NID Sample Mean ACF Partial ACF Observatin Series : MA(1); theta= Series : MA(1); theta= Series : MA(1); theta=0.5 Sample Mean ACF Partial ACF Observatin Series : MA(1); theta= Series : MA(1); theta= Series : MA(1); theta=0.1 Sample Mean ACF Partial ACF Observatin Series : MA(1); theta= Series : MA(1); theta= Series : MA(1); theta=0.9 Sample Mean ACF Partial ACF Observatin Figure 4: Cntrl Chart with crrespnding SACF and SPACF plts 15
16 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 A pint falls utside the 3 sigma limit 8 pints in a rw in zne C r beynd n the same side f the center line 6 pints in a rw increasing r decreasing 14 pints in a rw alternating up and dwn 2 ut f 3 pints in a rw in zne A r beynd n the same side f the center line 4 ut f 5 pints in a rw in zne B r beynd n the same side f the center line 15 pints in a rw in zne C 8 pints in a rw nt in zne C Table 1: Sme Sensitizing Rules fr Shewhart Cntrl Charts 16
17 NID values: AR(1) values: AR(2) 1 values: values: MA(1) values: MA(2) 1 values: values: ARMA(1; 1) values: values: Table 2: Parameter values used in simulatins 17
18 Case 1 2 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 % Vilated NID AR(1)? AR(1)? AR(1)? AR(1)? AR(1)? AR(1)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? AR(2)? Table 3: Results f the AR simulatins. vilated. Numbers indicate the fractin f times the rule was 18
19 Case 1 2 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 % Vilated NID MA(1)? MA(1)? MA(1)? MA(1)? MA(1)? MA(1)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? MA(2)? Table 4: Results f the M A simulatins. vilated. Numbers indicate the fractin f times the rule was 19
20 Case 1 1 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 % Vilated NID ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? ARMA(1; 1)? Table 5: Results f the ARMA(1; 1) simulatins. Numbers indicate the fractin f times the rule was vilated. 20
21 Series Length Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 % Vilated Table 6: Results f Type I errr simulatins. Numbers indicate the fractin f times the rule was vilated. 21
, which yields. where z1. and z2
The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin
More informationCS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007
CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is
More informationHypothesis Tests for One Population Mean
Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be
More informationENSC Discrete Time Systems. Project Outline. Semester
ENSC 49  iscrete Time Systems Prject Outline Semester 0061. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding
More informationInternal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.
Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.
More informationModelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA
Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview
More informationSIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST. Mark C. Otto Statistics Research Division, Bureau of the Census Washington, D.C , U.S.A.
SIZE BIAS IN LINE TRANSECT SAMPLING: A FIELD TEST Mark C. Ott Statistics Research Divisin, Bureau f the Census Washingtn, D.C. 20233, U.S.A. and Kenneth H. Pllck Department f Statistics, Nrth Carlina State
More informationSUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis
SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical mdel fr micrarray data analysis David Rssell Department f Bistatistics M.D. Andersn Cancer Center, Hustn, TX 77030, USA rsselldavid@gmail.cm
More informationBootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >
Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);
More informationCHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.
MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the
More informationDifferentiation Applications 1: Related Rates
Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm
More informationLab 1 The Scientific Method
INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific
More informationCHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS
CHAPTER 4 DIAGNOSTICS FOR INFLUENTIAL OBSERVATIONS 1 Influential bservatins are bservatins whse presence in the data can have a distrting effect n the parameter estimates and pssibly the entire analysis,
More informationAP Statistics Practice Test Unit Three Exploring Relationships Between Variables. Name Period Date
AP Statistics Practice Test Unit Three Explring Relatinships Between Variables Name Perid Date True r False: 1. Crrelatin and regressin require explanatry and respnse variables. 1. 2. Every least squares
More informationAP Statistics Notes Unit Two: The Normal Distributions
AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (zscres).
More informationPipetting 101 Developed by BSU CityLab
Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr
More informationCHM112 Lab Graphing with Excel Grading Rubric
Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline
More informationCAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank
CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal
More informationWeathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science
Weathering Title: Chemical and Mechanical Weathering Grade Level: 912 Subject/Cntent: Earth and Space Science Summary f Lessn: Students will test hw chemical and mechanical weathering can affect a rck
More information4th Indian Institute of Astrophysics  PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression
4th Indian Institute f Astrphysics  PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw
More informationDepartment of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets
Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0
More informationLeast Squares Optimal Filtering with Multirate Observations
Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical
More informationExperiment #3. Graphing with Excel
Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt
More informationComparing Several Means: ANOVA. Group Means and Grand Mean
STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pentp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal
More informationA study on GPS PDOP and its impact on position error
IndianJurnalfRadi& SpacePhysics V1.26,April1997,pp. 107111 A study n GPS and its impact n psitin errr P Banerjee,AnindyaBse& B SMathur TimeandFrequencySectin,NatinalPhysicalLabratry,NewDelhi110012 Received19June
More informationBASD HIGH SCHOOL FORMAL LAB REPORT
BASD HIGH SCHOOL FORMAL LAB REPORT *WARNING: After an explanatin f what t include in each sectin, there is an example f hw the sectin might lk using a sample experiment Keep in mind, the sample lab used
More informationPSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa
There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the
More informationA Matrix Representation of Panel Data
web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins
More informationCHAPTER 3 INEQUALITIES. Copyright The Institute of Chartered Accountants of India
CHAPTER 3 INEQUALITIES Cpyright The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce
More informationResampling Methods. Chapter 5. Chapter 5 1 / 52
Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and
More informationDistributions, spatial statistics and a Bayesian perspective
Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics
More informationStandard Title: Frequency Response and Frequency Bias Setting. Andrew Dressel Holly Hawkins Maureen Long Scott Miller
Template fr Quality Review f NERC Reliability Standard BAL0031 Frequency Respnse and Frequency Bias Setting Basic Infrmatin: Prject number: 200712 Standard number: BAL0031 Prject title: Frequency
More informationA Polarimetric Survey of Radio Frequency Interference in C and XBands in the Continental United States using WindSat Radiometry
A Plarimetric Survey f Radi Frequency Interference in C and XBands in the Cntinental United States using WindSat Radimetry Steven W. Ellingsn Octber, Cntents Intrductin WindSat Methdlgy Analysis f RFI
More informationIN a recent article, Geary [1972] discussed the merit of taking first differences
The Efficiency f Taking First Differences in Regressin Analysis: A Nte J. A. TILLMAN IN a recent article, Geary [1972] discussed the merit f taking first differences t deal with the prblems that trends
More informationOn Huntsberger Type Shrinkage Estimator for the Mean of Normal Distribution ABSTRACT INTRODUCTION
Malaysian Jurnal f Mathematical Sciences 4(): 74 () On Huntsberger Type Shrinkage Estimatr fr the Mean f Nrmal Distributin Department f Mathematical and Physical Sciences, University f Nizwa, Sultanate
More informationInterference is when two (or more) sets of waves meet and combine to produce a new pattern.
Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme
More informationTHE LIFE OF AN OBJECT IT SYSTEMS
THE LIFE OF AN OBJECT IT SYSTEMS Persns, bjects, r cncepts frm the real wrld, which we mdel as bjects in the IT system, have "lives". Actually, they have tw lives; the riginal in the real wrld has a life,
More informationALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?
Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S
More informationhttps://goo.gl/eaqvfo SUMMER REV: HalfLife DUE DATE: JULY 2 nd
NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: HalfLife Why? Every radiistpe has a characteristic rate f decay measured by its halflife. Halflives can be as shrt as a fractin f a secnd r as lng
More informationMODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b
. REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but
More informationData Analysis, Statistics, Machine Learning
Data Analysis, Statistics, Machine Learning Leland Wilkinsn Adjunct Prfessr UIC Cmputer Science Chief Scien
More informationComputational modeling techniques
Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins
More informationNOTE ON A CASESTUDY IN BOXJENKINS SEASONAL FORECASTING OF TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPORT NO. 16 APRIL 1974
NTE N A CASESTUDY IN BJENKINS SEASNAL FRECASTING F TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPRT N. 16 APRIL 1974 PREPARED UNDER CNTRACT N0001467A01120030 (NR042034) FR THE FFICE F NAVAL
More informationPart 3 Introduction to statistical classification techniques
Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms
More informationMethods for Determination of Mean Speckle Size in Simulated Speckle Pattern
0.478/msr04004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy
More informationSAMPLING DYNAMICAL SYSTEMS
SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 787138029, USA (512) 8353278 (Vice) 8353259 (Fax) hinich@mail.la.utexas.edu ABSTRACT
More informationEric Klein and Ning Sa
Week 12. Statistical Appraches t Netwrks: p1 and p* Wasserman and Faust Chapter 15: Statistical Analysis f Single Relatinal Netwrks There are fur tasks in psitinal analysis: 1) Define Equivalence 2) Measure
More informationLarge Sample Hypothesis Tests for a Population Proportion
Ntes10.3a Large Sample Hypthesis Tests fr a Ppulatin Prprtin ***Cin Tss*** 1. A friend f yurs claims that when he tsses a cin he can cntrl the utcme. Yu are skeptical and want him t prve it. He tsses
More informationA New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation
IIIl III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.
More informationLecture 17: Free Energy of Multiphase Solutions at Equilibrium
Lecture 17: 11.07.05 Free Energy f Multiphase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTIPHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical
More informationTHERMALVACUUM VERSUS THERMAL ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES
PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PTTE1409 THERMALVACUUM VERSUS THERMAL ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flightlike
More informationKinetic Model Completeness
5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins
More information11. DUAL NATURE OF RADIATION AND MATTER
11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the
More informationo o IMPORTANT REMINDERS Reports will be graded largely on their ability to clearly communicate results and important conclusions.
BASD High Schl Frmal Lab Reprt GENERAL INFORMATION 12 pt Times New Rman fnt Dublespaced, if required by yur teacher 1 inch margins n all sides (tp, bttm, left, and right) Always write in third persn (avid
More information1b) =.215 1c).080/.215 =.372
Practice Exam 1  Answers 1. / \.1/ \.9 (D+) (D) / \ / \.8 / \.2.15/ \.85 (T+) (T) (T+) (T).080.020.135.765 1b).080 +.135 =.215 1c).080/.215 =.372 2. The data shwn in the scatter plt is the distance
More informationChecking the resolved resonance region in EXFOR database
Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings  Sessin JEFF Experiments Nvember 04, 017 BulgneBillancurt,
More informationAIP Logic Chapter 4 Notes
AIP Lgic Chapter 4 Ntes Sectin 4.1 Sectin 4.2 Sectin 4.3 Sectin 4.4 Sectin 4.5 Sectin 4.6 Sectin 4.7 4.1 The Cmpnents f Categrical Prpsitins There are fur types f categrical prpsitins. Prpsitin Letter
More informationSection 62: Simplex Method: Maximization with Problem Constraints of the Form ~
Sectin 62: Simplex Methd: Maximizatin with Prblem Cnstraints f the Frm ~ Nte: This methd was develped by Gerge B. Dantzig in 1947 while n assignment t the U.S. Department f the Air Frce. Definitin: Standard
More informationmaking triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=
Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents
More informationELT COMMUNICATION THEORY
ELT 41307 COMMUNICATION THEORY Matlab Exercise #2 Randm variables and randm prcesses 1 RANDOM VARIABLES 1.1 ROLLING A FAIR 6 FACED DICE (DISCRETE VALIABLE) Generate randm samples fr rlling a fair 6 faced
More informationABSORPTION OF GAMMA RAYS
6 Sep 11 Gamma.1 ABSORPTIO OF GAMMA RAYS Gamma rays is the name given t high energy electrmagnetic radiatin riginating frm nuclear energy level transitins. (Typical wavelength, frequency, and energy ranges
More informationDepartment of Electrical Engineering, University of Waterloo. Introduction
Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flipflps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd
More informationECEN 4872/5827 Lecture Notes
ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals
More informationCambridge Assessment International Education Cambridge International General Certificate of Secondary Education
Cambridge Assessment Internatinal Educatin Cambridge Internatinal General Certificate f Secndary Educatin ADDITIONAL MATHEMATICS 0606/1 Paper 1 MARK SCHEME Maximum Mark: 80 Published This mark scheme is
More informationNUMBERS, MATHEMATICS AND EQUATIONS
AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t
More informationMath 10  Exam 1 Topics
Math 10  Exam 1 Tpics Types and Levels f data Categrical, Discrete r Cntinuus Nminal, Ordinal, Interval r Rati Descriptive Statistics Stem and Leaf Graph Dt Plt (Interpret) Gruped Data Relative and Cumulative
More informationLab #3: Pendulum Period and Proportionalities
Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the
More informationAerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed a Comparison
Jurnal f Physics: Cnference Series OPEN ACCESS Aerdynamic Separability in Tip Speed Rati and Separability in Wind Speed a Cmparisn T cite this article: M L Gala Sants et al 14 J. Phys.: Cnf. Ser. 555
More informationAdmissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs
Admissibility Cnditins and Asympttic Behavir f Strngly Regular Graphs VASCO MOÇO MANO Department f Mathematics University f Prt Oprt PORTUGAL vascmcman@gmailcm LUÍS ANTÓNIO DE ALMEIDA VIEIRA Department
More informationCambridge Assessment International Education Cambridge Ordinary Level. Published
Cambridge Assessment Internatinal Educatin Cambridge Ordinary Level ADDITIONAL MATHEMATICS 4037/1 Paper 1 Octber/Nvember 017 MARK SCHEME Maximum Mark: 80 Published This mark scheme is published as an aid
More informationPerformance Bounds for Detect and Avoid Signal Sensing
Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Realime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive
More informationOn OutofSample Statistics for Financial TimeSeries
On OutfSample Statistics fr Financial TimeSeries Françis Gingras Yshua Bengi Claude Nadeau CRM2585 January 1999 Département de physique, Université de Mntréal Labratire d infrmatique des systèmes adaptatifs,
More information5.4 Measurement Sampling Rates for Daily Maximum and Minimum Temperatures
5.4 Measurement Sampling Rates fr Daily Maximum and Minimum Temperatures 1 1 2 X. Lin, K. G. Hubbard, and C. B. Baker University f Nebraska, Lincln, Nebraska 2 Natinal Climatic Data Center 1 1. INTRODUCTION
More informationGeneral Chemistry II, Unit I: Study Guide (part I)
1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure Vlume Measurements n Gases The spring f air is measured as pressure, defined as the
More informationPhysics 2B Chapter 23 Notes  Faraday s Law & Inductors Spring 2018
Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and
More informationONLINE PROCEDURE FOR TERMINATING AN ACCELERATED DEGRADATION TEST
Statistica Sinica 8(1998), 207220 ONLINE PROCEDURE FOR TERMINATING AN ACCELERATED DEGRADATION TEST HngFwu Yu and ShengTsaing Tseng Natinal Taiwan University f Science and Technlgy and Natinal TsingHua
More informationECE 545 Project Deliverables
ECE 545 Prject Deliverables Tplevel flder: _ Secndlevel flders: 1_assumptins 2_blck_diagrams 3_interface 4_ASM_charts 5_surce_cde 6_verificatin 7_timing_analysis 8_results
More informationMath Foundations 20 Work Plan
Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 13 weeks 610 Majr Learning Indicatrs Identify situatins relevant
More informationOn Boussinesq's problem
Internatinal Jurnal f Engineering Science 39 (2001) 317±322 www.elsevier.cm/lcate/ijengsci On Bussinesq's prblem A.P.S. Selvadurai * Department f Civil Engineering and Applied Mechanics, McGill University,
More informationSPH3U1 Lesson 06 Kinematics
PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.
More information2004 AP CHEMISTRY FREERESPONSE QUESTIONS
2004 AP CHEMISTRY FREERESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.
More informationWRITING THE REPORT. Organizing the report. Title Page. Table of Contents
WRITING THE REPORT Organizing the reprt Mst reprts shuld be rganized in the fllwing manner. Smetime there is a valid reasn t include extra chapters in within the bdy f the reprt. 1. Title page 2. Executive
More informationIntroduction to Smith Charts
Intrductin t Smith Charts Dr. Russell P. Jedlicka Klipsch Schl f Electrical and Cmputer Engineering New Mexic State University as Cruces, NM 88003 September 2002 EE521 ecture 3 08/22/02 Smith Chart Summary
More informationA Regression Solution to the Problem of Criterion Score Comparability
A Regressin Slutin t the Prblem f Criterin Scre Cmparability William M. Pugh Naval Health Research Center When the criterin measure in a study is the accumulatin f respnses r behavirs fr an individual
More informationInference in the MultipleRegression
Sectin 5 Mdel Inference in the MultipleRegressin Kinds f hypthesis tests in a multiple regressin There are several distinct kinds f hypthesis tests we can run in a multiple regressin. Suppse that amng
More informationEnd of Course Algebra I ~ Practice Test #2
End f Curse Algebra I ~ Practice Test #2 Name: Perid: Date: 1: Order the fllwing frm greatest t least., 3, 8.9, 8,, 9.3 A. 8, 8.9,, 9.3, 3 B., 3, 8, 8.9,, 9.3 C. 9.3, 3,,, 8.9, 8 D. 3, 9.3,,, 8.9, 8 2:
More informationBOUNDED UNCERTAINTY AND CLIMATE CHANGE ECONOMICS. Christopher Costello, Andrew Solow, Michael Neubert, and Stephen Polasky
BOUNDED UNCERTAINTY AND CLIMATE CHANGE ECONOMICS Christpher Cstell, Andrew Slw, Michael Neubert, and Stephen Plasky Intrductin The central questin in the ecnmic analysis f climate change plicy cncerns
More informationThis section is primarily focused on tools to aid us in finding roots/zeros/ intercepts of polynomials. Essentially, our focus turns to solving.
Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ intercepts f plynmials. Essentially, ur fcus
More informationMATHEMATICS SYLLABUS SECONDARY 5th YEAR
Eurpean Schls Office f the SecretaryGeneral Pedaggical Develpment Unit Ref. : 01101D8en Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE
More informationPhysics 2010 Motion with Constant Acceleration Experiment 1
. Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin
More informationMath Foundations 10 Work Plan
Math Fundatins 10 Wrk Plan Units / Tpics 10.1 Demnstrate understanding f factrs f whle numbers by: Prime factrs Greatest Cmmn Factrs (GCF) Least Cmmn Multiple (LCM) Principal square rt Cube rt Time Frame
More informationV. Balakrishnan and S. Boyd. (To Appear in Systems and Control Letters, 1992) Abstract
On Cmputing the WrstCase Peak Gain f Linear Systems V Balakrishnan and S Byd (T Appear in Systems and Cntrl Letters, 99) Abstract Based n the bunds due t Dyle and Byd, we present simple upper and lwer
More informationStatistics Statistical method Variables Value Score Type of Research Level of Measurement...
Lecture 1 Displaying data... 12 Statistics... 13 Statistical methd... 13 Variables... 13 Value... 15 Scre... 15 Type f Research... 15 Level f Measurement... 15 Numeric/Quantitative variables... 15 Ordinal/Rankrder
More informationSynchronous Motor VCurves
Synchrnus Mtr VCurves 1 Synchrnus Mtr VCurves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel
More informationDEFENSE OCCUPATIONAL AND ENVIRONMENTAL HEALTH READINESS SYSTEM (DOEHRS) ENVIRONMENTAL HEALTH SAMPLING ELECTRONIC DATA DELIVERABLE (EDD) GUIDE
DEFENSE OCCUPATIOL AND ENVIRONMENTAL HEALTH READINESS SYSTEM (DOEHRS) ENVIRONMENTAL HEALTH SAMPLING ELECTRONIC DATA DELIVERABLE (EDD) GUIDE 20 JUNE 2017 V1.0 i TABLE OF CONTENTS 1 INTRODUCTION... 1 2 CONCEPT
More information(2) Even if such a value of k was possible, the neutrons multiply
CHANGE OF REACTOR Nuclear Thery  Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,
More informationthe results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must
M.E. Aggune, M.J. Dambrg, M.A. ElSharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins
More informationPreparation work for A2 Mathematics [2018]
Preparatin wrk fr A Mathematics [018] The wrk studied in Y1 will frm the fundatins n which will build upn in Year 13. It will nly be reviewed during Year 13, it will nt be retaught. This is t allw time
More information