EVOLUTIONARY DISTANCES

Size: px
Start display at page:

Download "EVOLUTIONARY DISTANCES"

Transcription

1 EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Trieste, 14 th November 2007

2 OUTLINE 1 STRINGS: DISTANCES AND EVOLUTION 2 EVOLUTIONARY MODELS Examples 3 INFERRING PHYLOGENIES

3 OUTLINE 1 STRINGS: DISTANCES AND EVOLUTION 2 EVOLUTIONARY MODELS Examples 3 INFERRING PHYLOGENIES

4 DIGITAL MOLECULES DNA DNA can be considered as a very long string over an alphabet of 4 bases (A, C, G, T ). This encyclopedia stores genetic information in volumes (chromosomes), with interesting chapters (genes), reading instructions (regulatory elements) and less interesting material (junk DNA).

5 GENES ENCODE PROTEINS The same gene can be present in different organisms, but with variations: the same chapter can be written in French, in Italian, in English,... HOW CAN WE MEASURE THE DISTANCE BETWEEN TWO GENES? Genes are strings of DNA: we can count the differences (Hamming distance). A C C T G T T A G C A A C T G G T A C C Actually, we should use edit distance and construct an alignment between strings.

6 GENES ENCODE PROTEINS The same gene can be present in different organisms, but with variations: the same chapter can be written in French, in Italian, in English,... HOW CAN WE MEASURE THE DISTANCE BETWEEN TWO GENES? Genes are strings of DNA: we can count the differences (Hamming distance). A C C T G T T A G C A A C T G G T A C C Actually, we should use edit distance and construct an alignment between strings.

7 HOW EVOLUTION ACTS ON DNA? EVOLUTIONARY EVENTS Evolution can modify DNA in several ways: Local pointwise mutations can substitute, delete or insert a base somewhere. Entire DNA fragments can be deleted or duplicated, possibly reversed in their order. Bigger pieces of DNA can be swapped or inverted. Entire genomes can be duplicated. MUTATIONS HAPPEN RANDOMLY!!! OUR FOCUS For simplicity, we focus simply on pointwise substitution events.

8 OUR SCENARIO The scenario is the following: consider two species (human and chimp) evolved from a common ancestor (some old primate). As the ancestor evolved to human or chimp, his DNA mutated pointwise in some positions, chosen randomly. evolutionary distance = number of mutations

9 DOES HAMMING DISTANCE COUNT THE NUMBER OF MUTATIONS? Consider the following situation: A C; A G C; A C G C The same observation A, C can corresponds to different evolutionary histories. Hamming distance ignores multiple substitutions in a site. Moreover: A G A; A C G A Hamming distance ignores back-mutation! It underestimates the number of mutations. CORRECTING DISTANCES The strategy is to develop a stochastic model of DNA evolution, and use it to correct the observed distance to account for multiple substitutions in a site.

10 OUTLINE 1 STRINGS: DISTANCES AND EVOLUTION 2 EVOLUTIONARY MODELS Examples 3 INFERRING PHYLOGENIES

11 A SIMPLE MODEL OF NUCLEOTIDE EVOLUTION HYPOTHESIS Time evolves continuously; Each site can be substituted independently; the rate of substitutions (expected frequency per unit of time) does not change in time (homogeneity); The rate of change from base i to base j does not depend on the mutation history of the site (memoryless property). CONSEQUENCES Happening time of a single mutation event is modeled by an exponential distribution. Number of mutations is modeled by a Poisson process.

12 MARKOV PROCESSES If we consider all possible mutations (from A to C, G, T and so on), we end up with a matrix of rates and with a time-homogeneous continuous time Markov Chain. FURTHER SIMPLIFYING HYPOTHESIS Frequencies are in equilibrium: π A, π C, π G, π T (stationary chain). The process is time reversible: π i P ij (t) = π j P ji (t). RATE MATRIX Under the previous hypothesis, the Q-matrix decomposes in q ij = R ij π j R is a symmetric matrix π are the stationary frequencies (solution of Qπ = 0) For nucleotide substitution models, we have 6+3 parameters to set.

13 MARKOV PROCESSES If we consider all possible mutations (from A to C, G, T and so on), we end up with a matrix of rates and with a time-homogeneous continuous time Markov Chain. FURTHER SIMPLIFYING HYPOTHESIS Frequencies are in equilibrium: π A, π C, π G, π T (stationary chain). The process is time reversible: π i P ij (t) = π j P ji (t). RATE MATRIX Under the previous hypothesis, the Q-matrix decomposes in q ij = R ij π j R is a symmetric matrix π are the stationary frequencies (solution of Qπ = 0) For nucleotide substitution models, we have 6+3 parameters to set.

14 EXPECTATIONS TOTAL RATE OF CHANGE µ = i q ii π i EXPECTED NUMBER OF CHANGES AFTER TIME t d = µt PROBABILITY OF OBSERVING A SUBSTITUTION AFTER TIME t p = 1 i π i P ii (t) p is also the expected number of observed substitutions per site.

15 CORRECTING HAMMING DISTANCE 1 Estimate p as ˆp = Hamming distance total length 2 From d = µt and p = 1 i π ip ii (t) deduce p = 1 i π i P ii ( d µ ). 3 Solve the previous formula for d and use the estimate ˆp of p to compute the estimate ˆd.

16 DIFFERENT EVOLUTIONARY MODELS There are 6 parameters to fix the rate matrix R and 3 to fix the equilibrium frequencies π.

17 THE JUKES-CANTOR MODEL The Jukes-Cantor model has been published in It is the simplest model of evolution, Q = assuming R ij = 1 and π i = 1 4. SOLUTION FOR P P(t) = 1 4 Qe t CORRECTION FOR THE DISTANCE d = 3 4 ln ( ˆp )

18 OUTLINE 1 STRINGS: DISTANCES AND EVOLUTION 2 EVOLUTIONARY MODELS Examples 3 INFERRING PHYLOGENIES

19 RECONSTRUCTING HISTORY OF LIFE WHAT MEANS PHYLOGENETIC INFERENCE? All species on Earth come from a common ancestor. If we have data from a pool of species, we wish to reconstruct the history of speciation events that lead to their emergence: We want to find the phylogenetic tree giving this information! This is an hard task, because data is often incomplete (we lack information about most of the ancestor species) and noisy.

20 METHODS TO INFER PHYLOGENY APPROACHES TO PHYLOGENY Distance-based methods Parsimony methods Likelihood methods Bayesian inference methods DISTANCE-BASED METHODS Given a matrix of pairwise distances, find the tree that explains it better. Several algorithms: UPGMA (clustering methods) Neighbor Joining Fitch-Margolias (sum of squares methods)

21 AN EXAMPLE: PRIMATES DNA FROM PRIMATES Tarsius Lemur Homo Sapiens Chimp Gorilla Pongo Hylobates Macaco Fuscata AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCT... AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCAT... AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCT... AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCT... AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCAT... AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCT... AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTT... AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTT... DISTANCE MATRIX Tarsius Lemur Homo Sapiens Chimp Gorilla Pongo Hylobates Macaco Fuscata

22 LEAST SQUARE METHOD We have our observed distance matrix D ij and a tree T with branch lengths predicting an additive distance matrix d ij. TARGET Find the tree T minimizing the error between d ij and D ij, i.e. the tree minimizing the weighted least square sum S(T ) = i,j w ij (D ij d ij ) 2 Given a tree topology, the best branch lengths for S can be computed by solving a linear system. A least square algorithms needs to search the tree space for the best tree T : this is an N P-hard problem. The search for the best tree can use branch and bound methods or heuristic state space explorations. This method gives the best explanation of the data

23 FITCH-MARGOLIAS ALGORITHM Letting w ij = 1 in S(T ) = Dij 2 i,j w ij(d ij d ij ) 2, we obtain the method of Fitch-Margoliash. Lemur M fuscata Hylobates Pongo Gorilla Pan Homo sap Tarsius M fuscata Hylobates Lemur Pongo Gorilla Pan Homo sap Tarsius

24 HEURISTIC METHODS: UPGMA HIERARCHICAL CLUSTERING Hierarchical clustering works by iteratively merging the two closest clusters (sets of elements) in the current collection of clusters. It requires a matrix of distances among singletons. Different ways of computing intercluster distances give rise to different HC-algorithms. UPGMA UPGMA (Unweighted Pair Group Method with Arithmetic mean) computes the distance between two clusters as d(a, B) = 1 A B i A,j B d ij. When two clusters A and B are merged, their union is represented by their ancestor node in the tree. The distance between A and B is evenly split between the two branches entering in A and B

25 UPGMA - II HYPOTHESIS UPGMA reconstructs correctly the tree if the input distance is an ultrametric (molecular clock). Tarsius Lemur Homo sap Pan Gorilla Pongo Hylobates M fuscata

26 HEURISTIC METHODS: NEIGHBOR-JOINING NEIGHBOR-JOINING Neighbor-Joining works similarly to UPGMA, but it merges together the two clusters minimizing D ij = d ij r i r j, where r i = 1 C 2 k d ik is the average distance of i from all other nodes. When i and j are merged, their new ancestor x has distances from another node k equal to d xk = 1 2 (d ik + d jk d ij ) The branch lengths are d ix = 1 2 (d ij + r i r j ) and d jx = 1 2 (d ij + r j r i ). NJ reconstructs the correct tree if the input distance is additive. Lemur M fuscata Hylobates Hylobates Pongo Gorilla Homo sap Pongo M fuscata Pan Gorilla Homo sap Pan Tarsius Lemur Tarsius

27 NOT ONLY DNA EVOLVE...

28 THE END Thanks for the attention!

Phylogenetic trees 07/10/13

Phylogenetic trees 07/10/13 Phylogenetic trees 07/10/13 A tree is the only figure to occur in On the Origin of Species by Charles Darwin. It is a graphical representation of the evolutionary relationships among entities that share

More information

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Distance Methods COMP 571 - Spring 2015 Luay Nakhleh, Rice University Outline Evolutionary models and distance corrections Distance-based methods Evolutionary Models and Distance Correction

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Molecular Evolution and Phylogenetic Tree Reconstruction

Molecular Evolution and Phylogenetic Tree Reconstruction 1 4 Molecular Evolution and Phylogenetic Tree Reconstruction 3 2 5 1 4 2 3 5 Orthology, Paralogy, Inparalogs, Outparalogs Phylogenetic Trees Nodes: species Edges: time of independent evolution Edge length

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Distance Methods Character Methods

More information

Evolutionary Tree Analysis. Overview

Evolutionary Tree Analysis. Overview CSI/BINF 5330 Evolutionary Tree Analysis Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Backgrounds Distance-Based Evolutionary Tree Reconstruction Character-Based

More information

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive.

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive. Additive distances Let T be a tree on leaf set S and let w : E R + be an edge-weighting of T, and assume T has no nodes of degree two. Let D ij = e P ij w(e), where P ij is the path in T from i to j. Then

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: istance-based methods Ultrametric Additive: UPGMA Transformed istance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Phylogenetic inference

Phylogenetic inference Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Phylogenetic Analysis Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Outline Basic Concepts Tree Construction Methods Distance-based methods

More information

Phylogenetics: Building Phylogenetic Trees

Phylogenetics: Building Phylogenetic Trees 1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

More information

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University Phylogenetics: Building Phylogenetic Trees COMP 571 - Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary

More information

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057 Estimating Phylogenies (Evolutionary Trees) II Biol4230 Thurs, March 2, 2017 Bill Pearson wrp@virginia.edu 4-2818 Jordan 6-057 Tree estimation strategies: Parsimony?no model, simply count minimum number

More information

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5.

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5. Five Sami Khuri Department of Computer Science San José State University San José, California, USA sami.khuri@sjsu.edu v Distance Methods v Character Methods v Molecular Clock v UPGMA v Maximum Parsimony

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Theory of Evolution Charles Darwin

Theory of Evolution Charles Darwin Theory of Evolution Charles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (83-36) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree)

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree) I9 Introduction to Bioinformatics, 0 Phylogenetic ree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & omputing, IUB Evolution theory Speciation Evolution of new organisms is driven by

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

CS5238 Combinatorial methods in bioinformatics 2003/2004 Semester 1. Lecture 8: Phylogenetic Tree Reconstruction: Distance Based - October 10, 2003

CS5238 Combinatorial methods in bioinformatics 2003/2004 Semester 1. Lecture 8: Phylogenetic Tree Reconstruction: Distance Based - October 10, 2003 CS5238 Combinatorial methods in bioinformatics 2003/2004 Semester 1 Lecture 8: Phylogenetic Tree Reconstruction: Distance Based - October 10, 2003 Lecturer: Wing-Kin Sung Scribe: Ning K., Shan T., Xiang

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies Inferring Phylogenetic Trees Distance Approaches Representing distances in rooted and unrooted trees The distance approach to phylogenies given: an n n matrix M where M ij is the distance between taxa

More information

Reading for Lecture 13 Release v10

Reading for Lecture 13 Release v10 Reading for Lecture 13 Release v10 Christopher Lee November 15, 2011 Contents 1 Evolutionary Trees i 1.1 Evolution as a Markov Process...................................... ii 1.2 Rooted vs. Unrooted Trees........................................

More information

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

Phylogeny: traditional and Bayesian approaches

Phylogeny: traditional and Bayesian approaches Phylogeny: traditional and Bayesian approaches 5-Feb-2014 DEKM book Notes from Dr. B. John Holder and Lewis, Nature Reviews Genetics 4, 275-284, 2003 1 Phylogeny A graph depicting the ancestor-descendent

More information

A (short) introduction to phylogenetics

A (short) introduction to phylogenetics A (short) introduction to phylogenetics Thibaut Jombart, Marie-Pauline Beugin MRC Centre for Outbreak Analysis and Modelling Imperial College London Genetic data analysis with PR Statistics, Millport Field

More information

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony ioinformatics -- lecture 9 Phylogenetic trees istance-based tree building Parsimony (,(,(,))) rees can be represented in "parenthesis notation". Each set of parentheses represents a branch-point (bifurcation),

More information

Week 5: Distance methods, DNA and protein models

Week 5: Distance methods, DNA and protein models Week 5: Distance methods, DNA and protein models Genome 570 February, 2016 Week 5: Distance methods, DNA and protein models p.1/69 A tree and the expected distances it predicts E A 0.08 0.05 0.06 0.03

More information

Phylogenetic analyses. Kirsi Kostamo

Phylogenetic analyses. Kirsi Kostamo Phylogenetic analyses Kirsi Kostamo The aim: To construct a visual representation (a tree) to describe the assumed evolution occurring between and among different groups (individuals, populations, species,

More information

DNA Phylogeny. Signals and Systems in Biology Kushal EE, IIT Delhi

DNA Phylogeny. Signals and Systems in Biology Kushal EE, IIT Delhi DNA Phylogeny Signals and Systems in Biology Kushal Shah @ EE, IIT Delhi Phylogenetics Grouping and Division of organisms Keeps changing with time Splitting, hybridization and termination Cladistics :

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

What is Phylogenetics

What is Phylogenetics What is Phylogenetics Phylogenetics is the area of research concerned with finding the genetic connections and relationships between species. The basic idea is to compare specific characters (features)

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4 Sepp Hochreiter Klausur Mo. 30.01.2011 Zeit: 15:30 17:00 Raum: HS14 Anmeldung Kusss Contents Methods and Bootstrapping of Maximum Methods Methods

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 5

CSCI1950 Z Computa4onal Methods for Biology Lecture 5 CSCI1950 Z Computa4onal Methods for Biology Lecture 5 Ben Raphael February 6, 2009 hip://cs.brown.edu/courses/csci1950 z/ Alignment vs. Distance Matrix Mouse: ACAGTGACGCCACACACGT Gorilla: CCTGCGACGTAACAAACGC

More information

Lecture 4 The stochastic ingredient

Lecture 4 The stochastic ingredient Lecture 4 The stochastic ingredient Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Bayesian Phylogenetic Analysis. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Bayesian Phylogenetic Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Bayes Rule P(X = x Y = y) = P(X = x, Y = y) P(Y = y) = P(X = x)p(y = y X = x) P x P(X = x 0 )P(Y = y X

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 2009 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary CSCI1950 Z Computa4onal Methods for Biology Lecture 4 Ben Raphael February 2, 2009 hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary Parsimony Probabilis4c Method Input Output Sankoff s & Fitch

More information

Evolutionary Models. Evolutionary Models

Evolutionary Models. Evolutionary Models Edit Operators In standard pairwise alignment, what are the allowed edit operators that transform one sequence into the other? Describe how each of these edit operations are represented on a sequence alignment

More information

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004,

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004, Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin- 1837

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 200 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

Phylogeny: building the tree of life

Phylogeny: building the tree of life Phylogeny: building the tree of life Dr. Fayyaz ul Amir Afsar Minhas Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan

More information

Phylogenetics. BIOL 7711 Computational Bioscience

Phylogenetics. BIOL 7711 Computational Bioscience Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium

More information

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016 Molecular phylogeny - Using molecular sequences to infer evolutionary relationships Tore Samuelsson Feb 2016 Molecular phylogeny is being used in the identification and characterization of new pathogens,

More information

Page 1. Evolutionary Trees. Why build evolutionary tree? Outline

Page 1. Evolutionary Trees. Why build evolutionary tree? Outline Page Evolutionary Trees Russ. ltman MI S 7 Outline. Why build evolutionary trees?. istance-based vs. character-based methods. istance-based: Ultrametric Trees dditive Trees. haracter-based: Perfect phylogeny

More information

C.DARWIN ( )

C.DARWIN ( ) C.DARWIN (1809-1882) LAMARCK Each evolutionary lineage has evolved, transforming itself, from a ancestor appeared by spontaneous generation DARWIN All organisms are historically interconnected. Their relationships

More information

Phylogeny and Evolution. Gina Cannarozzi ETH Zurich Institute of Computational Science

Phylogeny and Evolution. Gina Cannarozzi ETH Zurich Institute of Computational Science Phylogeny and Evolution Gina Cannarozzi ETH Zurich Institute of Computational Science History Aristotle (384-322 BC) classified animals. He found that dolphins do not belong to the fish but to the mammals.

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

Understanding relationship between homologous sequences

Understanding relationship between homologous sequences Molecular Evolution Molecular Evolution How and when were genes and proteins created? How old is a gene? How can we calculate the age of a gene? How did the gene evolve to the present form? What selective

More information

Theory of Evolution. Charles Darwin

Theory of Evolution. Charles Darwin Theory of Evolution harles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (8-6) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

Molecular evolution 2. Please sit in row K or forward

Molecular evolution 2. Please sit in row K or forward Molecular evolution 2 Please sit in row K or forward RBFD: cat, mouse, parasite Toxoplamsa gondii cyst in a mouse brain http://phenomena.nationalgeographic.com/2013/04/26/mind-bending-parasite-permanently-quells-cat-fear-in-mice/

More information

Plan: Evolutionary trees, characters. Perfect phylogeny Methods: NJ, parsimony, max likelihood, Quartet method

Plan: Evolutionary trees, characters. Perfect phylogeny Methods: NJ, parsimony, max likelihood, Quartet method Phylogeny 1 Plan: Phylogeny is an important subject. We have 2.5 hours. So I will teach all the concepts via one example of a chain letter evolution. The concepts we will discuss include: Evolutionary

More information

Seuqence Analysis '17--lecture 10. Trees types of trees Newick notation UPGMA Fitch Margoliash Distance vs Parsimony

Seuqence Analysis '17--lecture 10. Trees types of trees Newick notation UPGMA Fitch Margoliash Distance vs Parsimony Seuqence nalysis '17--lecture 10 Trees types of trees Newick notation UPGM Fitch Margoliash istance vs Parsimony Phyogenetic trees What is a phylogenetic tree? model of evolutionary relationships -- common

More information

Phylogeny Tree Algorithms

Phylogeny Tree Algorithms Phylogeny Tree lgorithms Jianlin heng, PhD School of Electrical Engineering and omputer Science University of entral Florida 2006 Free for academic use. opyright @ Jianlin heng & original sources for some

More information

Estimating Evolutionary Trees. Phylogenetic Methods

Estimating Evolutionary Trees. Phylogenetic Methods Estimating Evolutionary Trees v if the data are consistent with infinite sites then all methods should yield the same tree v it gets more complicated when there is homoplasy, i.e., parallel or convergent

More information

Consistency Index (CI)

Consistency Index (CI) Consistency Index (CI) minimum number of changes divided by the number required on the tree. CI=1 if there is no homoplasy negatively correlated with the number of species sampled Retention Index (RI)

More information

Phylogenetic Assumptions

Phylogenetic Assumptions Substitution Models and the Phylogenetic Assumptions Vivek Jayaswal Lars S. Jermiin COMMONWEALTH OF AUSTRALIA Copyright htregulation WARNING This material has been reproduced and communicated to you by

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

Concepts and Methods in Molecular Divergence Time Estimation

Concepts and Methods in Molecular Divergence Time Estimation Concepts and Methods in Molecular Divergence Time Estimation 26 November 2012 Prashant P. Sharma American Museum of Natural History Overview 1. Why do we date trees? 2. The molecular clock 3. Local clocks

More information

Phylogenetic inference: from sequences to trees

Phylogenetic inference: from sequences to trees W ESTFÄLISCHE W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT NIVERSITÄT WILHELMS-U ÜNSTER MM ÜNSTER VOLUTIONARY FUNCTIONAL UNCTIONAL GENOMICS ENOMICS EVOLUTIONARY Bioinformatics 1 Phylogenetic inference: from sequences

More information

MULTIPLE SEQUENCE ALIGNMENT FOR CONSTRUCTION OF PHYLOGENETIC TREE

MULTIPLE SEQUENCE ALIGNMENT FOR CONSTRUCTION OF PHYLOGENETIC TREE MULTIPLE SEQUENCE ALIGNMENT FOR CONSTRUCTION OF PHYLOGENETIC TREE Manmeet Kaur 1, Navneet Kaur Bawa 2 1 M-tech research scholar (CSE Dept) ACET, Manawala,Asr 2 Associate Professor (CSE Dept) ACET, Manawala,Asr

More information

Lecture Notes: Markov chains

Lecture Notes: Markov chains Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

More information

molecular evolution and phylogenetics

molecular evolution and phylogenetics molecular evolution and phylogenetics Charlotte Darby Computational Genomics: Applied Comparative Genomics 2.13.18 https://www.thinglink.com/scene/762084640000311296 Internal node Root TIME Branch Leaves

More information

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution Today s topics Inferring phylogeny Introduction! Distance methods! Parsimony method!"#$%&'(!)* +,-.'/01!23454(6!7!2845*0&4'9#6!:&454(6 ;?@AB=C?DEF Overview of phylogenetic inferences Methodology Methods

More information

Evolutionary trees. Describe the relationship between objects, e.g. species or genes

Evolutionary trees. Describe the relationship between objects, e.g. species or genes Evolutionary trees Bonobo Chimpanzee Human Neanderthal Gorilla Orangutan Describe the relationship between objects, e.g. species or genes Early evolutionary studies The evolutionary relationships between

More information

Modeling Noise in Genetic Sequences

Modeling Noise in Genetic Sequences Modeling Noise in Genetic Sequences M. Radavičius 1 and T. Rekašius 2 1 Institute of Mathematics and Informatics, Vilnius, Lithuania 2 Vilnius Gediminas Technical University, Vilnius, Lithuania 1. Introduction:

More information

Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço

Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço jcarrico@fm.ul.pt Charles Darwin (1809-1882) Charles Darwin s tree of life in Notebook B, 1837-1838 Ernst Haeckel (1934-1919)

More information

Introduction to Bioinformatics Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Dr. rer. nat. Gong Jing Cancer Research Center Medicine School of Shandong University 2012.11.09 1 Chapter 4 Phylogenetic Tree 2 Phylogeny Evidence from morphological ( 形态学的 ), biochemical, and gene sequence

More information

Sequence Analysis '17- lecture 8. Multiple sequence alignment

Sequence Analysis '17- lecture 8. Multiple sequence alignment Sequence Analysis '17- lecture 8 Multiple sequence alignment Ex5 explanation How many random database search scores have e-values 10? (Answer: 10!) Why? e-value of x = m*p(s x), where m is the database

More information

Phylogeny. November 7, 2017

Phylogeny. November 7, 2017 Phylogeny November 7, 2017 Phylogenetics Phylon = tribe/race, genetikos = relative to birth Phylogenetics: study of evolutionary relationships among organisms, sequences, or anything in between Related

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Molecular Evolution, course # Final Exam, May 3, 2006

Molecular Evolution, course # Final Exam, May 3, 2006 Molecular Evolution, course #27615 Final Exam, May 3, 2006 This exam includes a total of 12 problems on 7 pages (including this cover page). The maximum number of points obtainable is 150, and at least

More information

Phylogenetic Tree Generation using Different Scoring Methods

Phylogenetic Tree Generation using Different Scoring Methods International Journal of Computer Applications (975 8887) Phylogenetic Tree Generation using Different Scoring Methods Rajbir Singh Associate Prof. & Head Department of IT LLRIET, Moga Sinapreet Kaur Student

More information

RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG

RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG RELATING PHYSICOCHEMMICAL PROPERTIES OF AMINO ACIDS TO VARIABLE NUCLEOTIDE SUBSTITUTION PATTERNS AMONG SITES ZIHENG YANG Department of Biology (Galton Laboratory), University College London, 4 Stephenson

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Reconstruire le passé biologique modèles, méthodes, performances, limites

Reconstruire le passé biologique modèles, méthodes, performances, limites Reconstruire le passé biologique modèles, méthodes, performances, limites Olivier Gascuel Centre de Bioinformatique, Biostatistique et Biologie Intégrative C3BI USR 3756 Institut Pasteur & CNRS Reconstruire

More information

Phylogeny Jan 5, 2016

Phylogeny Jan 5, 2016 גנומיקה חישובית Computational Genomics Phylogeny Jan 5, 2016 Slides: Adi Akavia Nir Friedman s slides at HUJI (based on ALGMB 98) Anders Gorm Pedersen,Technical University of Denmark Sources: Joe Felsenstein

More information

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies

Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies Bayesian Inference using Markov Chain Monte Carlo in Phylogenetic Studies 1 What is phylogeny? Essay written for the course in Markov Chains 2004 Torbjörn Karfunkel Phylogeny is the evolutionary development

More information

BMI/CS 776 Lecture 4. Colin Dewey

BMI/CS 776 Lecture 4. Colin Dewey BMI/CS 776 Lecture 4 Colin Dewey 2007.02.01 Outline Common nucleotide substitution models Directed graphical models Ancestral sequence inference Poisson process continuous Markov process X t0 X t1 X t2

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Gel Electrophoresis. 10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9 1

Gel Electrophoresis. 10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9 1 Gel Electrophoresis Used to measure the lengths of DNA fragments. When voltage is applied to DNA, different size fragments migrate to different distances (smaller ones travel farther). 10/28/0310/21/2003

More information

Lecture 11 Friday, October 21, 2011

Lecture 11 Friday, October 21, 2011 Lecture 11 Friday, October 21, 2011 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean system

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

I. Short Answer Questions DO ALL QUESTIONS

I. Short Answer Questions DO ALL QUESTIONS EVOLUTION 313 FINAL EXAM Part 1 Saturday, 7 May 2005 page 1 I. Short Answer Questions DO ALL QUESTIONS SAQ #1. Please state and BRIEFLY explain the major objectives of this course in evolution. Recall

More information

Thanks to Paul Lewis, Jeff Thorne, and Joe Felsenstein for the use of slides

Thanks to Paul Lewis, Jeff Thorne, and Joe Felsenstein for the use of slides hanks to Paul Lewis, Jeff horne, and Joe Felsenstein for the use of slides Hennigian logic reconstructs the tree if we know polarity of characters and there is no homoplasy UPM infers a tree from a distance

More information

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks! Paul has many great tools for teaching phylogenetics at his web site: http://hydrodictyon.eeb.uconn.edu/people/plewis

More information

Effects of Gap Open and Gap Extension Penalties

Effects of Gap Open and Gap Extension Penalties Brigham Young University BYU ScholarsArchive All Faculty Publications 200-10-01 Effects of Gap Open and Gap Extension Penalties Hyrum Carroll hyrumcarroll@gmail.com Mark J. Clement clement@cs.byu.edu See

More information

HIGH PERFORMANCE, BAYESIAN BASED PHYLOGENETIC INFERENCE FRAMEWORK

HIGH PERFORMANCE, BAYESIAN BASED PHYLOGENETIC INFERENCE FRAMEWORK HIGH PERFORMANCE, BAYESIAN BASED PHYLOGENETIC INFERENCE FRAMEWORK By Xizhou Feng Bachelor of Engineering China Textile University, 1993 Master of Science Tsinghua University, 1996 Submitted in Partial

More information

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF EVOLUTION Evolution is a process through which variation in individuals makes it more likely for them to survive and reproduce There are principles to the theory

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES INTRODUCTION CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES This worksheet complements the Click and Learn developed in conjunction with the 2011 Holiday Lectures on Science, Bones, Stones, and Genes:

More information

Lecture 10: Phylogeny

Lecture 10: Phylogeny Computational Genomics Prof. Ron Shamir & Prof. Roded Sharan School of Computer Science, Tel Aviv University גנומיקה חישובית פרופ' רון שמיר ופרופ' רודד שרן ביה"ס למדעי המחשב,אוניברסיטת תל אביב Lecture

More information

Lecture 6 Phylogenetic Inference

Lecture 6 Phylogenetic Inference Lecture 6 Phylogenetic Inference From Darwin s notebook in 1837 Charles Darwin Willi Hennig From The Origin in 1859 Cladistics Phylogenetic inference Willi Hennig, Cladistics 1. Clade, Monophyletic group,

More information

Substitution = Mutation followed. by Fixation. Common Ancestor ACGATC 1:A G 2:C A GAGATC 3:G A 6:C T 5:T C 4:A C GAAATT 1:G A

Substitution = Mutation followed. by Fixation. Common Ancestor ACGATC 1:A G 2:C A GAGATC 3:G A 6:C T 5:T C 4:A C GAAATT 1:G A GAGATC 3:G A 6:C T Common Ancestor ACGATC 1:A G 2:C A Substitution = Mutation followed 5:T C by Fixation GAAATT 4:A C 1:G A AAAATT GAAATT GAGCTC ACGACC Chimp Human Gorilla Gibbon AAAATT GAAATT GAGCTC ACGACC

More information

Improving divergence time estimation in phylogenetics: more taxa vs. longer sequences

Improving divergence time estimation in phylogenetics: more taxa vs. longer sequences Mathematical Statistics Stockholm University Improving divergence time estimation in phylogenetics: more taxa vs. longer sequences Bodil Svennblad Tom Britton Research Report 2007:2 ISSN 650-0377 Postal

More information