# C3020 Molecular Evolution. Exercises #3: Phylogenetics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from the earlier version to make computation easier) 1 ACAAACAGTT CGATCGATTT GCAGTCTGGG 2 ACAAACAGTT TCTAGCGATT GCAGTCAGGG 3 ACAGACAGTT CGATCGATTT GCAGTCTCGG 4 ACTGACAGTT CGATCGATTT GCAGTCAGAG 5 ATTGACAGTT CGATCGATTT GCAGTCAGGA O TTTGACAGTT CGATCGATTT GCAGTCAGGG 1. Make a distance matrix using raw distances (number of differences) for the five ingroup sequences

2 2. Infer the UPGMA tree for these sequences from your matrix. Label the branches with their lengths. / / / \ / \ \ \ To derive this tree, start by clustering the two species with the lowest pairwise difference -- 1 and 3 -- and apportion the distance between them equally on the two branches leading from their common ancestor to the two taxa. Treat them as a single composite taxon, with distances from this taxon to any other species equal to the mean of the distances from that species to each of the species that make up the composite (the use of arithmetic means explains why some branch lengths are fractions). Then group the next most similar pair of taxa -- here* it is 4 and 5 -- and apportion the distance equally. Repeat until you have the whole tree and its lengths. 2 is most distant from all other taxa and composite taxa, so it must be the sister to the clade of the other four taxa. * In fact there is a tie at this point, because the distance between 4 and 5 and the distance between 4 and the composite taxon (1,3) are equal (4 changes each). It is arbitrary which one you choose. If you choose to cluster 1, 3, and 4, the tree would look like this. Either answer is correct / / \ \ \ \

3 3. Using the parsimony criterion, a. Which characters are phylogenetically informative? Characters 2, 3, 4, and 27. Of the others, 14 are constant and 12 are autapomorphies (unique to one taxon). b. How many nucleotide changes (steps) does the tree rooted tree (((((1,2),3),4),5),0) require? How many homoplasious changes does it require? Mark the number of changes that occur on each branch. Total length = 17. It has one homoplasious character (#27), which must be explained by two changes -- either a reversal to the ancestral state in the branch leading to species 2 or parallel changes in the branches leading to species 1 and 3 (The tree below assumes the latter). Many changes (12, if you count them) are autapomorphies. Changes that create synapomorphies are marked with asterisks and involve, moving from the root to the tips, characters 1, 2, 3 and 4. /----1*-- / /-----1*---- \ /----1*---- \ /----1*--- \ \ \ out The way to reconstruct the number of changes is to trace each of the characters on the cladogram individually, and add up the number of steps required by each character to get the total length for all characters. You will notice that this procedure is rather irritating, given the number of characters in the matrix. It can be simplified if we look only at the four informative characters, which are the only ones that affect the relative lengths of the possible cladograms. Then we get a tree with length 5, which has the following number of changes per branch (assuming parallel changes for character 27):

4 / /----1*-- /-----1*---- \ /----1*---- \ / \ \ \ out c. How many nucleotide changes does the tree ((((1,4),(2,3)),5),0) require? How many of these are homoplasious? Including only uninformative characters, length = 7. Total length = 19. (The autapomorphies in the first tree will be autapomorphies in any tree, so the difference between lengths with uninformative characters excluded and included will always equal 12. This means you can estimate for any tree the total length with uninformative characters included by calculating its length with only informative characters included.) On this tree, three characters (3, 4,and 27) are homoplasious, requiring two changes each, so a total of 6 of the 7 changes in informative characters are homoplasious. d. Which one of these two trees is "better"? Why? The first tree is better under the parsimony criterion, because it requires fewer homoplasious changes (parallelisms/reversals). This means it explains more shared character states as the result of inheritance from a common ancestor than tree in c does. Tree 2 needs ad hoc hypotheses of parallelism/reversal to explain why unrelated taxa share identical character states. e. For what clade of taxa does an A in the third nucleotide position represent a synapomorphy? (note change in question). Clade (1,2,3). This character has the same derived state in these three taxa and only these three taxa. f. Name two nucleotide positions that contain a symplesiomorphic state for the group (1,2,3). A in position 1 and C in position 2 are both symplesiomoprhies for this group -- they are the ancestral state and give no information about relationships within the group. 4. Using neighbor-joining, a. Estimate S (the sum of branch length) on the unrooted partially

5 resolved tree in which only taxa 1 and 2 are joined as neighbors. Leave the outgroup out of the analysis. As we learned in class (see also Graur and Li p. 189), the sum of the branch lengths can be calculated for any situation like this from the pairwise distances alone. Here, S = 1/6(d13+d14+d15+d23+d24+d25) + 1/2(d12) + 1/3(d34+d35+d45) = b. On this tree, what are the branch lengths for the branches leading from the last common ancestor (LCA) of 1 and 2 to taxon 1 and to taxon 2? To calculate branch lengths, consider this a tree with three taxa: species 1, species 2, and a composite taxon of species 3, 4, and 5, which we will call X. As we saw in class, the length of the branch from the internal node on a three taxon tree to any terminal can be calculated from the pairwise distances between the taxa. Thus, the length of the branch from the internal node to species 1 = (d12 + d1x - d2x)/2; the length of the branch leading to species 2 = (d12+d2x - d1x). The distance between any species and the composite taxon X is the average of the distances between that species and each of the species that make up X. Thus, d1x = (2+4+5)/3 = 11/3, and d2x = ( )/3 = 12 Using these figures, we can calculate the length of the branches from the equation above. Length of branch leading to species 1 = ( )/2 = Length of branch leading to species 2 = ( )/2 = Note that these branch lengths add up to 9, the pairwise distance observed between species 1 and 2, which shows that this part of the tree has a good fit to the sequence data. c. Estimate S on the unrooted tree in which only taxa 1 and 3 are joined as neighbors. What are the lengths for the branches leading to 1 and to 3 from their LCA? S= 1/6( ) + 1/2(2)+ 1/3 ( ) = d. Which of these two trees is better? What do you do next with the better one? The tree with (1,2) is better. The fact that it has shorter total branch length means that the pairwise distances can be forced to fit on this tree more easily than on the tree with 1 and 3 as neighbors, because clustering taxa that are in fact more distantly related requires adding length into the internal branches to explain the observed distances. The next thing to do is to resolve the unresolved node while holding (1,2)

6 constant. To do this, try all possible pairs of neighbors on this partially resolved tree and choose the tree with the shortest length. e. Estimate S for the tree ((1,2),3),4,5) -- a possible "next step" tree from the tree in question 4a. If you draw this unrooted tree, you will see that it treats 4 and 5 as neighbors. Using the method above, we find the length of this tree S = 1/6( ) + 1/2(3) + 1/3((9+2+11)=16. f. Estimate S for the tree ((1,2),4),5,3) -- another possibility for the next step. This tree treats 5 and 3 as neighbors, so S = 1/6( ) + 1/2(5) + (1/3(9+4+12)= g. Which of these last two trees is better? The first one, ((1,2),3),4,5) is better for the reasons explained above. h. Draw the rooted tree for the tree you chose as better, assuming that the outgroup attaches to the branch leading to taxon 5 and only taxon 5. / / / \ / \ \ \ You now have 3 trees -- a UPGMA tree (problem #2), a parsimony tree (#3d), and a NJ tree (#4h). (Although you have not examined all possible phylogenies for either parsimony or NJ, assume that the best tree from question 3 is the most parsimonious tree and the best tree from question 4 is the best NJ tree. These are, in fact, the optimal tree for each method.) 1-5? a. Do the three methods agree on the phylogenetic relationships among The parsimony and NJ trees agree, but they are different from the UPGMA tree. Specifically, the former methods cluster species 1 and 2 together, but UPGMA puts 2 at a distant position, sister to the clade of species 1, 3, 4, and 5. The UPGMA tree also shows species 3 and 4 as a clade, while NJ and parsimony put 3 and 4 in a paraphyletic relationship to each other.

7 b. If there are differences, explain why one method might have given different results from the others. The likely reason is unequal rates of evolution. By clustering sequences together based on raw similarity, the UPGMA method assumes a molecular clock. But the total pairwise distances on which this method is based include unique derived characters (autapomorphies -- character states that have changed in the branch leading to a terminal taxon) that in fact tell nothing about phylogenetic relationships. If one species has more autapomorphies than others, that species will have higher distances from the other taxa and will be erroneously assumed to have diverged very anciently. This is precisely the case for these data, because species 2 has many autapomorphies (and therefore a high rate of sequence evolution in this gene), as shown by the parsimony tree. 6. Morphological data do not resolve the relationships among the mammalian orders primates, artiodactyls, and rodents. You would like to use molecular data to establish which lineage diverged first from the others. In your laboratory, your research assistant obtains sequences from a cow, a human, and a mouse for three genes: psi-n-globin (a pseudogene of globin, the oxygen-transporting protein in blood), histone A1 (one of the proteins that packs DNA in chromatin), and 18S ribosomal RNA. You use parsimony for a phylogenetic analysis. a. Which gene do you expect to be most useful for resolving the relationships among these taxa? Phylogenetic analysis requires the use of genes that provide an appropriate balance between variability and conservation of sequence for the particular taxa at hand. As we have seen, the mammalian orders split from each other on the order of million years ago. In this case, 18S is most likely to be useful. The three genes will have radically different rates of divergence. The pseudogene, subject to no selective constraints, will diverge rapidly. Over such a long period of time, it is unlikely to have any useful information for resolving these relationships; it would be appropriate for more recent divergences, such as for those between species in a genus. Histone we know is one of the most conserved proteins known -- its amino acid sequence is almost completely constant among all metazoans. The selective constraints for this protein are so strong that there is unlikely to be adequate variation to give any adequate information for resolving mammalian relationships. (There will be variation at synonymous positions, but since these are subject to virtually no selective constraints, they will behave like sites in a pseudogenes and will not be informative either). 18S is more conserved than a pseudogene but more variable than histone -- it is your best bet in this case. b. What other information do you absolutely need to resolve the relationships among these taxa? You need the sequence from at least one known outgroup to root the tree. Otherwise you can infer only an unrooted tree; in fact for three taxa there

10 The gene tree is accurate but the species tree is wrong. In all three of these cases, the solution is to get more genes and add them to your analysis. It is unlikely that a large group of genes will all have been transferred by horizontal transfer, especially if they are from different chromosomes. Because lineage sorting is a form of drift, trees for different genes will be produced with equal probability. If you use lots of genes, the genes for which lineage sorting has occurred will give equal support to competing trees, but the (presumably greater) number for which lineage sorting did not occur will all favor the correct taxonomic tree. To prevent false orthology, try to use genes that are thought to be single-copy genes rather than members of large gene families.

### 8/23/2014. Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

### Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

### Chapter 26: Phylogeny and the Tree of Life

Chapter 26: Phylogeny and the Tree of Life 1. Key Concepts Pertaining to Phylogeny 2. Determining Phylogenies 3. Evolutionary History Revealed in Genomes 1. Key Concepts Pertaining to Phylogeny PHYLOGENY

### PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

### Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

### Phylogenetic inference: from sequences to trees

W ESTFÄLISCHE W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT NIVERSITÄT WILHELMS-U ÜNSTER MM ÜNSTER VOLUTIONARY FUNCTIONAL UNCTIONAL GENOMICS ENOMICS EVOLUTIONARY Bioinformatics 1 Phylogenetic inference: from sequences

### Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008 University of California, Berkeley B.D. Mishler March 18, 2008. Phylogenetic Trees I: Reconstruction; Models, Algorithms & Assumptions

### Phylogeny. November 7, 2017

Phylogeny November 7, 2017 Phylogenetics Phylon = tribe/race, genetikos = relative to birth Phylogenetics: study of evolutionary relationships among organisms, sequences, or anything in between Related

### Phylogenetics: Building Phylogenetic Trees

1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

### Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University

Phylogenetics: Building Phylogenetic Trees COMP 571 - Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary

### Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Distance Methods COMP 571 - Spring 2015 Luay Nakhleh, Rice University Outline Evolutionary models and distance corrections Distance-based methods Evolutionary Models and Distance Correction

### Maximum Likelihood Until recently the newest method. Popularized by Joseph Felsenstein, Seattle, Washington.

Maximum Likelihood This presentation is based almost entirely on Peter G. Fosters - "The Idiot s Guide to the Zen of Likelihood in a Nutshell in Seven Days for Dummies, Unleashed. http://www.bioinf.org/molsys/data/idiots.pdf

### AP Biology Notes Outline Enduring Understanding 1.B. Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Biology Notes Outline Enduring Understanding 1.B Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.B: Organisms are linked by lines of descent from

### Phylogeny and the Tree of Life

LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 26 Phylogeny and the Tree of Life

### The Phylogenetic Reconstruction of the Grass Family (Poaceae) Using matk Gene Sequences

The Phylogenetic Reconstruction of the Grass Family (Poaceae) Using matk Gene Sequences by Hongping Liang Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University

### Is the equal branch length model a parsimony model?

Table 1: n approximation of the probability of data patterns on the tree shown in figure?? made by dropping terms that do not have the minimal exponent for p. Terms that were dropped are shown in red;

### Hominid Evolution What derived characteristics differentiate members of the Family Hominidae and how are they related?

Hominid Evolution What derived characteristics differentiate members of the Family Hominidae and how are they related? Introduction. The central idea of biological evolution is that all life on Earth shares

### Microbial Taxonomy. Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

Microbial Taxonomy Traditional taxonomy or the classification through identification and nomenclature of microbes, both "prokaryote" and eukaryote, has been in a mess we were stuck with it for traditional

### II Parsimony, character analysis, and optimization of sequence characters

II Parsimony, character analysis, and optimization of sequence characters CHAPTER 4 The logic of the data matrix in phylogenetic analysis Brent D. Mishler 4.1 Introduction The process of phylogenetic

### The Tree of Life Classification Based on Evolutionary Relationships Modern classification is based on evolutionary relationships.

CHAPTER 17 The Tree of Life GETTING READY TO LEARN Preview Key Concepts 17.1 The Linnaean System of Classification Organisms can be classified based on physical similarities. 17.2 Classification Based

### CH_15_Evolution.notebook. February 28, Cellular Evolution. Jean Baptiste de Lamarck. Endosymbiont Theory. Charles Darwin

Cellular Evolution The first cells were prokaryotic They did not need oxygen (the atmosphere did not contain oxygen until 1.8 billion years ago) Eukaryotic cells were found in the fossil record about 2

### Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Investigation 3: Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Introduction Bioinformatics is a powerful tool which can be used to determine evolutionary relationships and

### Bio 1M: The evolution of apes. 1 Example. 2 Patterns of evolution. Similarities and differences. History

Bio 1M: The evolution of apes 1 Example Humans are an example of a biological species that has evolved Possibly of interest, since many of your friends are probably humans Humans seem unique: How do they

### BLAST Database Searching. BME 110: CompBio Tools Todd Lowe April 8, 2010

BLAST Database Searching BME 110: CompBio Tools Todd Lowe April 8, 2010 Admin Reading: Read chapter 7, and the NCBI Blast Guide and tutorial http://www.ncbi.nlm.nih.gov/blast/why.shtml Read Chapter 8 for

### CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES

INTRODUCTION CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES This worksheet complements the Click and Learn developed in conjunction with the 2011 Holiday Lectures on Science, Bones, Stones, and Genes:

### Lecture 18 Molecular Evolution and Phylogenetics

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution Lecture 18 Molecular Evolution and Phylogenetics Patrick Winston s 6.034 Somewhere, something went wrong 1 Challenges in Computational

### O 3 O 4 O 5. q 3. q 4. Transition

Hidden Markov Models Hidden Markov models (HMM) were developed in the early part of the 1970 s and at that time mostly applied in the area of computerized speech recognition. They are first described in

### History of Biological Diversity. Evolution: Darwin s travel

History of Biological Diversity Evolution: Darwin s travel Developing the Theory of Evolution The Galápagos Islands Darwin noticed that the different islands all seemed to have their own, slightly different

### Genetic Variation in Finite Populations

Genetic Variation in Finite Populations The amount of genetic variation found in a population is influenced by two opposing forces: mutation and genetic drift. 1 Mutation tends to increase variation. 2

### Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16

Genome Evolution Outline 1. What: Patterns of Genome Evolution Carol Eunmi Lee Evolution 410 University of Wisconsin 2. Why? Evolution of Genome Complexity and the interaction between Natural Selection

### Chapter 17A. Table of Contents. Section 1 Categories of Biological Classification. Section 2 How Biologists Classify Organisms

Classification of Organisms Table of Contents Section 1 Categories of Biological Classification Section 1 Categories of Biological Classification Classification Section 1 Categories of Biological Classification

### Homology and Information Gathering and Domain Annotation for Proteins

Homology and Information Gathering and Domain Annotation for Proteins Outline Homology Information Gathering for Proteins Domain Annotation for Proteins Examples and exercises The concept of homology The

### If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species

Taxonomy. (Your text makes a real mess of this. Use these notes as a guide through the book.) Study of classifying and naming organisms. Founded by Linnaeus. If done properly, is based on evolutionary

### Tree-average distances on certain phylogenetic networks have their weights uniquely determined

Tree-average distances on certain phylogenetic networks have their weights uniquely determined Stephen J. Willson Department of Mathematics Iowa State University Ames, IA 50011 USA swillson@iastate.edu

### Biodiversity. The Road to the Six Kingdoms of Life

Biodiversity The Road to the Six Kingdoms of Life How the 6 kingdoms came about At first, only two kingdoms were recognized Then Haeckel proposed a third kingdom Protista (where protists had both plant

### Eukaryotic vs. Prokaryotic genes

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 18: Eukaryotic genes http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Eukaryotic vs. Prokaryotic genes Like in prokaryotes,

### Chapter 16: Evolutionary Theory

Chapter 16: Evolutionary Theory Section 1: Developing a Theory Evolution: Artificial Selection: Evolution: I. A Theory to Explain Change Over Time B. Charles Darwin C. Theory: D. Modern evolutionary theory

### PSI Biology Classification Classification

Classification Classification & Naming Classwork 1. What is the correct order of the current classification hierarchy, from most general to most specific? 2. Are two organisms in domain more or less closely

### Sequence Alignment: Scoring Schemes. COMP 571 Luay Nakhleh, Rice University

Sequence Alignment: Scoring Schemes COMP 571 Luay Nakhleh, Rice University Scoring Schemes Recall that an alignment score is aimed at providing a scale to measure the degree of similarity (or difference)

### Inferring Speciation Times under an Episodic Molecular Clock

Syst. Biol. 56(3):453 466, 2007 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150701420643 Inferring Speciation Times under an Episodic Molecular

### Lesson 1 Syllabus Reference

Lesson 1 Syllabus Reference Outcomes A student Explains how biological understanding has advanced through scientific discoveries, technological developments and the needs of society. Content The theory

### LAB 21: Evolution and Classification

LAB 21: Evolution and Classification Introduction: This lab is an adapted version of one created by Robert P. Gendron of Indiana University of Pennsylvania. Humans classify almost everything, including

### Background to Statistics

FACT SHEET Background to Statistics Introduction Statistics include a broad range of methods for manipulating, presenting and interpreting data. Professional scientists of all kinds need to be proficient

### Name: Period Study Guide 17-1 and 17-2

Name: Period Study Guide 17-1 and 17-2 17-1 The Fossil Record (pgs. 417-422) 1. What is the fossil record? 2. What evidence does the fossil record provide? 1. 2. 3. List the 2 techniques paleontologists

### Sequence analysis and comparison

The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

### 5.1 Simplifying Rational Expressions

5. Simplifying Rational Expressions Now that we have mastered the process of factoring, in this chapter, we will have to use a great deal of the factoring concepts that we just learned. We begin with the

### Compartmentalization detection

Compartmentalization detection Selene Zárate Date Viruses and compartmentalization Virus infection may establish itself in a variety of the different organs within the body and can form somewhat separate

### COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST

Big Idea 1 Evolution INVESTIGATION 3 COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

### Name Date Class. Patterns of Evolution

Concept Mapping Patterns of Evolution Complete the flowchart about patterns of evolution. These terms may be used more than once: adaptive radiation, change in response to each other, convergent evolution,

### LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial cells have a single circular chromosome,

### Testing Character Correlation using Pairwise Comparisons on a Phylogeny

J. theor. Biol. (2000) 202, 195}204 doi:10.1006/jtbi.1999.1050, available online at http://www.idealibrary.com on Testing Character Correlation using Pairwise Comparisons on a Phylogeny WAYNE P. MADDISON*

### NIH Public Access Author Manuscript Pac Symp Biocomput. Author manuscript; available in PMC 2009 October 6.

NIH Public Access Author Manuscript Published in final edited form as: Pac Symp Biocomput. 2009 ; : 162 173. SIMULTANEOUS HISTORY RECONSTRUCTION FOR COMPLEX GENE CLUSTERS IN MULTIPLE SPECIES * Yu Zhang,

### Draft document version 0.6; ClustalX version 2.1(PC), (Mac); NJplot version 2.3; 3/26/2012

Comparing DNA Sequences to Determine Evolutionary Relationships of Molluscs This activity serves as a supplement to the online activity Biodiversity and Evolutionary Trees: An Activity on Biological Classification

### Fundamentals of Mathematics I

Fundamentals of Mathematics I Kent State Department of Mathematical Sciences Fall 2008 Available at: http://www.math.kent.edu/ebooks/10031/book.pdf August 4, 2008 Contents 1 Arithmetic 2 1.1 Real Numbers......................................................

### The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time scale that is used

### UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

UNIT V Chapter 11 Evolution of Populations UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations I. Genetic Variation Within Populations (11.1) A. Genetic variation in a population increases the chance

### EVOLUTION No matter what your beliefs are, it is always better to have as much information as you can so that you can form your own, educated opinion!

EVOLUTION No matter what your beliefs are, it is always better to have as much information as you can so that you can form your own, educated opinion! Standards SB5. Students will evaluate the role of

### Evolutionary Bioinformatics

Open Access: Full open access to this and thousands of other papers at http://www.la-press.com. Evolutionary Bioinformatics TreSpEx Detection of Misleading Signal in Phylogenetic Reconstructions Based

### Campbell Essential Biology, 5e (Simon/Yeh) Chapter 1 Introduction: Biology Today. Multiple-Choice Questions

Campbell Essential Biology, 5e (Simon/Yeh) Chapter 1 Introduction: Biology Today Multiple-Choice Questions 1) In what way(s) is the science of biology influencing and changing our culture? A) by helping

### 2.1 Matter and Organic Compounds

2.1 Matter and Organic Compounds Lesson 2.1: True or False Write true if the statement is true or false if the statement is false. 1. An atom is smaller than an element. 2. Organic compounds are found

### AUTHOR COPY ONLY. Hetero: a program to simulate the evolution of DNA on a four-taxon tree

APPLICATION NOTE Hetero: a program to simulate the evolution of DNA on a four-taxon tree Lars S Jermiin, 1,2 Simon YW Ho, 1 Faisal Ababneh, 3 John Robinson, 3 Anthony WD Larkum 1,2 1 School of Biological

### C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment

C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Introduction to bioinformatics 2007 Lecture 5 Pair-wise Sequence Alignment Bioinformatics Nothing in Biology makes sense except in

### Unsupervised Learning in Spectral Genome Analysis

Unsupervised Learning in Spectral Genome Analysis Lutz Hamel 1, Neha Nahar 1, Maria S. Poptsova 2, Olga Zhaxybayeva 3, J. Peter Gogarten 2 1 Department of Computer Sciences and Statistics, University of

### Measuring phylogenetic biodiversity

CHAPTER 14 Measuring phylogenetic biodiversity Mark Vellend, William K. Cornwell, Karen Magnuson-Ford, and Arne Ø. Mooers 14.1 Introduction 14.1.1 Overview Biodiversity has been described as the biology

### Unified modeling of gene duplication, loss and coalescence using a locus tree

Unified modeling of gene duplication, loss and coalescence using a locus tree Matthew D. Rasmussen 1,2,, Manolis Kellis 1,2, 1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute

### Multiple Whole Genome Alignment

Multiple Whole Genome Alignment BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 206 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

### PHYLOGENY ESTIMATION: TRADITIONAL AND BAYESIAN APPROACHES

PHYLOGENY ESTIMATION: TRADITIONAL AND BAYESIAN APPROACHES Mark Holder and Paul O. Lewis The construction of evolutionary trees is now a standard part of exploratory sequence analysis. Bayesian methods

### 11.6. Patterns in Evolution. Evolution through natural selection is not random.

11.6 Patterns in Evolution VOCABULARY convergent evolution divergent evolution coevolution extinction punctuated equilibrium adaptive radiation > Key Concept Evolution occurs in patterns. MAIN IDEAS Evolution

### Orthologs from maxmer sequence context

Article: Methods Orthologs from maxmer sequence context Kun Gao and Jonathan Miller Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun,

### Bioinformatics. Can Keşmir Theoretical Biology/Bioinformatics, UU

Bioinformatics Can Keşmir Theoretical Biology/Bioinformatics, UU 2013 i c Utrecht University, 2013 Ebook publically available at: http://theory.bio.uu.nl/bpa/bioinf2013.pdf ii Contents 1 Introduction to

### Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B ) Theory Of Evolution, (BIO.B ) Scientific Terms

Biology Keystone (PA Core) Quiz Theory of Evolution - (BIO.B.3.2.1 ) Theory Of Evolution, (BIO.B.3.3.1 ) Scientific Terms Student Name: Teacher Name: Jared George Date: Score: 1) Evidence for evolution

### Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm. Alignment scoring schemes and theory: substitution matrices and gap models

Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm Alignment scoring schemes and theory: substitution matrices and gap models 1 Local sequence alignments Local sequence alignments are necessary

### Supporting Information

Supporting Information Hammer et al. 10.1073/pnas.1109300108 SI Materials and Methods Two-Population Model. Estimating demographic parameters. For each pair of sub-saharan African populations we consider

### Writing Circuit Equations

2 C H A P T E R Writing Circuit Equations Objectives By the end of this chapter, you should be able to do the following: 1. Find the complete solution of a circuit using the exhaustive, node, and mesh

### 11. Moving Plates 11/28/2016

11. Moving Plates 11/28/2016 EQOD : What causes the surface of the Earth to Change? Initial Thoughts: In a Level 0 Silence Voice, take 5 minutes to answer the question. If you still have time, update your

### Meiosis and Fertilization Understanding How Genes Are Inherited 1

Meiosis and Fertilization Understanding How Genes Are Inherited 1 Introduction In this activity, you will learn how you inherited two copies of each gene, one from your mother and one from your father.

### Chapter 15 Active Reading Guide Regulation of Gene Expression

Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

### Written Exam 15 December Course name: Introduction to Systems Biology Course no

Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

### A Bayesian Analysis of Metazoan Mitochondrial Genome Arrangements

A Bayesian Analysis of Metazoan Mitochondrial Genome Arrangements Bret Larget,* Donald L. Simon, Joseph B. Kadane,à and Deborah Sweet 1 *Departments of Botany and of Statistics, University of Wisconsin

### Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU)

Alignment principles and homology searching using (PSI-)BLAST Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) http://ibivu.cs.vu.nl Bioinformatics Nothing in Biology makes sense except in

### Chapter 18 Sampling Distribution Models

Chapter 18 Sampling Distribution Models The histogram above is a simulation of what we'd get if we could see all the proportions from all possible samples. The distribution has a special name. It's called

### GENETICS UNIT VOCABULARY CHART. Word Definition Word Part Visual/Mnemonic Related Words 1. adenine Nitrogen base, pairs with thymine in DNA and uracil

Word Definition Word Part Visual/Mnemonic Related Words 1. adenine Nitrogen base, pairs with thymine in DNA and uracil in RNA 2. allele One or more alternate forms of a gene Example: P = Dominant (purple);

### Biologists use a system of classification to organize information about the diversity of living things.

Section 1: Biologists use a system of classification to organize information about the diversity of living things. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are

### CHUCOA ILICIFOLIA, A SPINY ONOSERIS (ASTERACEAE, MUTISIOIDEAE: ONOSERIDEAE)

Phytologia (December 2009) 91(3) 537 CHUCOA ILICIFOLIA, A SPINY ONOSERIS (ASTERACEAE, MUTISIOIDEAE: ONOSERIDEAE) Jose L. Panero Section of Integrative Biology, 1 University Station, C0930, The University

### BIO 2 GO! 3216a The Cell Organelles and Nucleus Function

BIO 2 GO! 3216a The Cell Organelles and Nucleus Function The cell is the smallest unit of life. Each living cell has a nucleus which functions to control the actions of the rest of the cell. Upon successful

### AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species.

AP Biology Chapter 24 Guided Reading Assignment Ms. Hall Name AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species. 2. How do the patterns of speciation differ? a. anagenesis b. cladogenesis

### Linear Regression (1/1/17)

STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

### Package vhica. April 5, 2016

Type Package Package vhica April 5, 2016 Title Vertical and Horizontal Inheritance Consistence Analysis Version 0.2.4 Date 2016-04-04 Author Arnaud Le Rouzic Suggests ape, plotrix, parallel, seqinr, gtools

### The Cell Cycle. The Cell Cycle

The Cell Cycle Cells divide by Mitosis or Meiosis. Mitosis allows the organism to replace cells that have died or aren't working, and is how living things grow. It makes an exact copy of the parent cell.

### Review Article Archaea: The First Domain of Diversified Life

Hindawi Publishing Corporation Volume 2014, Article ID 590214, 26 pages http://dx.doi.org/10.1155/2014/590214 Review Article : The First Domain of Diversified Life Gustavo Caetano-Anollés, 1 Arshan Nasir,

### Take a quiz to assess your understanding of the material. Due : 29 Jan 2015 Duration : 20 min Scoring : 20 Points Earned :

Biology Core Sem 2 Activity Points % of Total Discuss 75 4% Exam 100 6% Final Exam 100 6% Journal 100 6% Lab 250 14% Practice 125 7% Quiz 740 43% Test (CST) 250 14% Total Points for the Course : 1740 Unit

### Keywords: evolution, genomics, software, data mining, sequence alignment, distance, phylogenetics, selection

Sudhir Kumar has been Director of the Center for Evolutionary Functional Genomics in The Biodesign Institute at Arizona State University since 2002. His research interests include development of software,

### Evidence for Multiple Functional Copies of the Male Sex-Determining Locus, Sry, in African Murine Rodents

J Mol Evol (1997) 45:60 65 Springer-Verlag New York Inc. 1997 Evidence for Multiple Functional Copies of the Male Sex-Determining Locus, Sry, in African Murine Rodents Barbara L. Lundrigan, Priscilla K.

### value of the sum standard units

Stat 1001 Winter 1998 Geyer Homework 7 Problem 18.1 20 and 25. Problem 18.2 (a) Average of the box. (1+3+5+7)=4=4. SD of the box. The deviations from the average are,3,,1, 1, 3. The squared deviations

### Lecture Notes: Markov chains

Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

### Science in Motion Ursinus College

Science in Motion Ursinus College NAME EVIDENCE FOR EVOLUTION LAB INTRODUCTION: Evolution is not just a historical process; it is occurring at this moment. Populations constantly adapt in response to changes