CSCI1950 Z Computa4onal Methods for Biology Lecture 5

Size: px
Start display at page:

Download "CSCI1950 Z Computa4onal Methods for Biology Lecture 5"

Transcription

1 CSCI1950 Z Computa4onal Methods for Biology Lecture 5 Ben Raphael February 6, 2009 hip://cs.brown.edu/courses/csci1950 z/ Alignment vs. Distance Matrix Mouse: ACAGTGACGCCACACACGT Gorilla: CCTGCGACGTAACAAACGC Chimpanzee: CCTGCCAGTTAGCAAACGC Human: CCTGCCAGTTAGCACACGA Sequence a gene of length m in n species n x m alignment matrix. Reverse transforma4on not possible due to loss of informa4on. Transform into n x n distance matrix 1

2 Distances in Trees Given a tree T with a posi4ve weight w(e) on each edge, we define the tree distance d T on the set L of leaves by: d T (i, j) = sum of weights of edges on unique path from i to j. j i d T (1,4) = = 69 Addi4vity and Four Point Condi4on Theorem : If an n x n matrix D is addi4ve* then there exists a unique (up to isomorphism) phylogene4c tree T such that d T (i, j) = D(i,j). *iff the four point condi4on holds for every quartet 1 i,j,k,l n: D ij + D kl D ik + D jl = D il + D jk i λ 1 λ 4 k λ 3 j λ 2 λ 5 l 2

3 Fibng an Addi4ve Distance Matrix (Finding T) Addi4vePhylogeny Algorithm (see last lecture) Clustering methods UPGMA: produces ultrametric tree Neighbor joining: today. UPGMA Algorithm Ini-aliza-on: Assign each x i to its own cluster C i Define one leaf per sequence, each at height 0 Itera-on: Find two clusters C i and C j such that d ij is min Let C k = C i C j Add a vertex connec4ng C i, C j and place it at height d ij /2 Delete C i and C j Termina-on: When a single cluster remains

4 UPGMA Example From Felsenstein, Inferring Phylogenies UPGMA Example 4

5 UPGMA Example UPGMA Example 5

6 UPGMA Example From Felsenstein, Inferring Phylogenies Trees from UPGMA UPGMA produces an ultrametric tree; distance from the root to any leaf is the same The Molecular Clock: The evolu4onary distance between species x and y is twice the Earth 4me to reach the nearest common ancestor That is, the molecular clock has constant rate in all species years The molecular clock results in ultrametric distances 6

7 Ultrametrics D ij is an ultrametric provided for all species i, j, k (dis4nct leaves of tree) two of the distances D ij, D jk and D ik are equal and the third. Ex. d(i,k) = d(j, k) d(i, j) i j λ 1 λ 1 λ 2 λ k 1 + λ 2 2 λ 1 Thus λ 2 λ 1 Proposi-on: If d is ultrametric, then d is addi4ve. Ultrametrics Both addi4ve distance phylogeny and perfect phylogeny can be reduced to the ultrametric phylogeny problem. Let v = row of D containing largest entry m v. Define D ij = m v + (D ij D vi D vj ) / 2 i = m v λ 3 λ 1 λ 3 v Theorem: D is addi4ve if and only if D is ultrametric. (See Gusfield, Ch. 17) j λ 2 7

8 Addi4ve vs. Ultrametric Trees From Felsenstein, Inferring Phylogenies Neighbor Joining Algorithm (Saitou and Nei 1987) Constructs binary phylogene4c trees. Recall: leaves a and b are neighbors provided that they have a common parent. (Note: In graph theory there is a different usage of neighbor.) Recall: closest leaves are not necessarily neighbors. Pair of leaves that are close to each other but far from other leaves are neighbors. Key Advantages Reproduces correct tree for addi4ve matrix. Gives good approxima4on of correct tree for non addi4ve matrix. Does not rely on molecular clock assump4on like UPGMA. 8

9 Neighbor Joining as a Pair Group Method Itera4vely combine leaves/groups minimizing selec4on criteria into larger groups. 1 4 C { {1},, {n} } While C > 2 do [Select pair of clusters.] s(c x, C y ) = min s(c i, C j ). C k C x C y [Replace C x and C y by C k.] C (C \ C x \ C y ) C k NJ Selec4on Criterion Let C = {1,, n} be current clusters/leaves. Define: u i = k D(i, k). 1 Intui4vely, u i measures separa4on of i from other leaves. 0.1 Goal: Minimize D(i, j) and maximize u i + u j Solu-on: Find pair (i, j) that minimizes: S D (i, j) = (n 2) D(i, j) u i u j Claim: Given addi4ve matrix D. S D (x, y) = mins D (i, j) if and only if x and y are neighbors in tree T with d T = D

10 Algorithm: Neighbor joining Ini4aliza4on: For n clusters, one for each leaf node Define T to be the set of leaf nodes, one per sequence Itera4on: Pick i, j such that S D (i, j) = (n 2) D(i, j) u i u j is minimal. Merge i and j into new node (ij) in T. Assign length ½ (D(i, j) + 1/(n 2) (u i u j )) to edge (i, (ij) ) Assign length ½ ( D(i, j) + 1/(n 2) (u j u i )) to edge (j, (ij) ) Remove rows and columns from D corresponding to i and j. Add row and column to D for new vertex ij. D( (ij), m) = ½ [ D(i, m) + D(j, m) D(i,j)] Termina4on: When only one cluster Neighbor Joining Tree From Felsenstein, Inferring Phylogenies 10

11 Neighbor Joining vs. UPGMA Tree From Felsenstein, Inferring Phylogenies NJ Selec4on Criterion Let C = {1,, n} be current clusters/leaves. Define: u i = k D(i, k). Goal: Minimize D(i, j) and maximize u i + u j. Solu-on: Find pair (i, j) that minimizes: S D (i, j) = (n 2) D(i, j) u i u j Claim: Given addi4ve matrix D. S D (x, y) = mins D (i, j) if and only if x and y are neighbors in tree T with d T = D. Proof

12 Why Neighbor joining? If D is addi4ve then neighbor joining produces the unique* phylogene4c tree T such that d T = D. (Consistency) *up to isomorphism If D is non addi4ve, then neighbor joining performs well. Why Neighbor joining? For a distance matrices D and D define error (l norm) by D D = max D ij D ij. Input: A non addi4ve matrix D. Output: Tree S that is closest to D in the sense that D S D is minimized. 12

13 Why Neighbor joining? For a distance matrices D and D define error (l norm) by D D = max D ij D ij. Suppose there is a true tree T with addi4ve matrix D = d T. We measure a perturbed matrix D and run NJ on D obtaining a tree T. How different can D and D be and s4ll obtain T = T? Theorem (AIeson 1999) If D D ½ (shortest edge in T), then NJ applied to D reconstructs T. Compact Addi4ve Trees Compact Addi-ve Tree Problem Given an n x n distance matrix, determine if there is an addi4ve tree for D with exactly n ver4ces? Note: Not a usual phylogene4c problem, since we are given data about ancestors. 13

14 Compact Addi4ve Trees Compact Addi-ve Tree Problem Given an n x n distance matrix, determine if there is an addi4ve tree for D with exactly n ver4ces? Let G(D) be the complete graph with edge weights w( (i,j) ) = D ij. Theorem: If there is a compact addi4ve tree for D, then T must be the unique minimum spanning tree of G(D). Recall: A spanning tree is a tree containing all ver4ces. Minimum spanning tree has the least total weight. Algorithm Summary Distance based Parsimony Probabilis4c Method Input Output Neighbor Joining Distance matrix D T (addi4ve), B UPGMA Distance matrix D T (ultrametric), B Sankoff s & Fitch s Alg. Characters, T A, B Perfect Phylogeny Characters A, B, T Felsenstein Characters, T, B A T = tree topology B = branch lengths A = ancestral states 14

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary

CSCI1950 Z Computa4onal Methods for Biology Lecture 4 Ben Raphael February 2, 2009 hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary Parsimony Probabilis4c Method Input Output Sankoff s & Fitch

Evolutionary Tree Analysis. Overview

CSI/BINF 5330 Evolutionary Tree Analysis Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Backgrounds Distance-Based Evolutionary Tree Reconstruction Character-Based

Molecular Evolution and Phylogenetic Tree Reconstruction

1 4 Molecular Evolution and Phylogenetic Tree Reconstruction 3 2 5 1 4 2 3 5 Orthology, Paralogy, Inparalogs, Outparalogs Phylogenetic Trees Nodes: species Edges: time of independent evolution Edge length

Phylogenetic trees 07/10/13

Phylogenetic trees 07/10/13 A tree is the only figure to occur in On the Origin of Species by Charles Darwin. It is a graphical representation of the evolutionary relationships among entities that share

CS5238 Combinatorial methods in bioinformatics 2003/2004 Semester 1. Lecture 8: Phylogenetic Tree Reconstruction: Distance Based - October 10, 2003

CS5238 Combinatorial methods in bioinformatics 2003/2004 Semester 1 Lecture 8: Phylogenetic Tree Reconstruction: Distance Based - October 10, 2003 Lecturer: Wing-Kin Sung Scribe: Ning K., Shan T., Xiang

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

Algorithms in Bioinformatics

Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Distance Methods Character Methods

BINF6201/8201. Molecular phylogenetic methods

BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

Theory of Evolution Charles Darwin

Theory of Evolution Charles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (83-36) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

Additive distances. w(e), where P ij is the path in T from i to j. Then the matrix [D ij ] is said to be additive.

Additive distances Let T be a tree on leaf set S and let w : E R + be an edge-weighting of T, and assume T has no nodes of degree two. Let D ij = e P ij w(e), where P ij is the path in T from i to j. Then

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

Phylogenetic Tree Reconstruction

I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

Phylogeny: traditional and Bayesian approaches

Phylogeny: traditional and Bayesian approaches 5-Feb-2014 DEKM book Notes from Dr. B. John Holder and Lewis, Nature Reviews Genetics 4, 275-284, 2003 1 Phylogeny A graph depicting the ancestor-descendent

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs

CSCI1950 Z Computa3onal Methods for Biology Lecture 24 Ben Raphael April 29, 2009 hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs Subnetworks with more occurrences than expected by chance. How to

Page 1. Evolutionary Trees. Why build evolutionary tree? Outline

Page Evolutionary Trees Russ. ltman MI S 7 Outline. Why build evolutionary trees?. istance-based vs. character-based methods. istance-based: Ultrametric Trees dditive Trees. haracter-based: Perfect phylogeny

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Distance Methods COMP 571 - Spring 2015 Luay Nakhleh, Rice University Outline Evolutionary models and distance corrections Distance-based methods Evolutionary Models and Distance Correction

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5.

Five Sami Khuri Department of Computer Science San José State University San José, California, USA sami.khuri@sjsu.edu v Distance Methods v Character Methods v Molecular Clock v UPGMA v Maximum Parsimony

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees 2 broad categories: istance-based methods Ultrametric Additive: UPGMA Transformed istance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

Theory of Evolution. Charles Darwin

Theory of Evolution harles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (8-6) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

Phylogeny: building the tree of life

Phylogeny: building the tree of life Dr. Fayyaz ul Amir Afsar Minhas Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan

Phylogeny Tree Algorithms

Phylogeny Tree lgorithms Jianlin heng, PhD School of Electrical Engineering and omputer Science University of entral Florida 2006 Free for academic use. opyright @ Jianlin heng & original sources for some

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree)

I9 Introduction to Bioinformatics, 0 Phylogenetic ree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & omputing, IUB Evolution theory Speciation Evolution of new organisms is driven by

Plan: Evolutionary trees, characters. Perfect phylogeny Methods: NJ, parsimony, max likelihood, Quartet method

Phylogeny 1 Plan: Phylogeny is an important subject. We have 2.5 hours. So I will teach all the concepts via one example of a chain letter evolution. The concepts we will discuss include: Evolutionary

NJMerge: A generic technique for scaling phylogeny estimation methods and its application to species trees

NJMerge: A generic technique for scaling phylogeny estimation methods and its application to species trees Erin Molloy and Tandy Warnow {emolloy2, warnow}@illinois.edu University of Illinois at Urbana

Neighbor Joining Algorithms for Inferring Phylogenies via LCA-Distances

Neighbor Joining Algorithms for Inferring Phylogenies via LCA-Distances Ilan Gronau Shlomo Moran September 6, 2006 Abstract Reconstructing phylogenetic trees efficiently and accurately from distance estimates

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center

Phylogenetic Analysis Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Outline Basic Concepts Tree Construction Methods Distance-based methods

Phylogene)cs. IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, Joyce Nzioki

Phylogene)cs IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, 2016 Joyce Nzioki Phylogenetics The study of evolutionary relatedness of organisms. Derived from two Greek words:» Phle/Phylon: Tribe/Race» Genetikos:

Consistency Index (CI)

Consistency Index (CI) minimum number of changes divided by the number required on the tree. CI=1 if there is no homoplasy negatively correlated with the number of species sampled Retention Index (RI)

MOLECULAR EVOLUTION AND PHYLOGENETICS SERGEI L KOSAKOVSKY POND CSE/BIMM/BENG 181 MAY 27, 2011

MOLECULAR EVOLUTION AND PHYLOGENETICS If we could observe evolution: speciation, mutation, natural selection and fixation, we might see something like this: AGTAGC GGTGAC AGTAGA CGTAGA AGTAGA A G G C AGTAGA

Evolutionary trees. Describe the relationship between objects, e.g. species or genes

Evolutionary trees Bonobo Chimpanzee Human Neanderthal Gorilla Orangutan Describe the relationship between objects, e.g. species or genes Early evolutionary studies The evolutionary relationships between

Constructing Evolutionary Trees

Constructing Evolutionary Trees 0-0 HIV Evolutionary Tree SIVs (monkeys)! HIV (human)! human infection! human HIV/M human HIV/M chimpanzee SIV chimpanzee SIV human HIV/N human HIV/N chimpanzee SIV chimpanzee

Reconstructing Trees from Subtree Weights

Reconstructing Trees from Subtree Weights Lior Pachter David E Speyer October 7, 2003 Abstract The tree-metric theorem provides a necessary and sufficient condition for a dissimilarity matrix to be a tree

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

Inferring Phylogenetic Trees. Distance Approaches. Representing distances. in rooted and unrooted trees. The distance approach to phylogenies

Inferring Phylogenetic Trees Distance Approaches Representing distances in rooted and unrooted trees The distance approach to phylogenies given: an n n matrix M where M ij is the distance between taxa

Let S be a set of n species. A phylogeny is a rooted tree with n leaves, each of which is uniquely

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 8, Number 1, 2001 Mary Ann Liebert, Inc. Pp. 69 78 Perfect Phylogenetic Networks with Recombination LUSHENG WANG, 1 KAIZHONG ZHANG, 2 and LOUXIN ZHANG 3 ABSTRACT

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4 Sepp Hochreiter Klausur Mo. 30.01.2011 Zeit: 15:30 17:00 Raum: HS14 Anmeldung Kusss Contents Methods and Bootstrapping of Maximum Methods Methods

Phylogenetic inference

Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

CSCI1950 Z Computa3onal Methods for Biology* (*Working Title) Lecture 1. Ben Raphael January 21, Course Par3culars

CSCI1950 Z Computa3onal Methods for Biology* (*Working Title) Lecture 1 Ben Raphael January 21, 2009 Course Par3culars Three major topics 1. Phylogeny: ~50% lectures 2. Func3onal Genomics: ~25% lectures

Phylogeny Jan 5, 2016

גנומיקה חישובית Computational Genomics Phylogeny Jan 5, 2016 Slides: Adi Akavia Nir Friedman s slides at HUJI (based on ALGMB 98) Anders Gorm Pedersen,Technical University of Denmark Sources: Joe Felsenstein

A Phylogenetic Network Construction due to Constrained Recombination

A Phylogenetic Network Construction due to Constrained Recombination Mohd. Abdul Hai Zahid Research Scholar Research Supervisors: Dr. R.C. Joshi Dr. Ankush Mittal Department of Electronics and Computer

Math 239: Discrete Mathematics for the Life Sciences Spring Lecture 14 March 11. Scribe/ Editor: Maria Angelica Cueto/ C.E.

Math 239: Discrete Mathematics for the Life Sciences Spring 2008 Lecture 14 March 11 Lecturer: Lior Pachter Scribe/ Editor: Maria Angelica Cueto/ C.E. Csar 14.1 Introduction The goal of today s lecture

BIOINFORMATICS GABRIEL VALIENTE ALGORITHMS, BIOINFORMATICS, COMPLEXITY AND FORMAL METHODS RESEARCH GROUP, TECHNICAL UNIVERSITY OF CATALONIA

BIOINFORMATICS GABRIEL VALIENTE ALGORITHMS, BIOINFORMATICS, COMPLEXITY AND FORMAL METHODS RESEARCH GROUP, TECHNICAL UNIVERSITY OF CATALONIA 2005 2006 Gabriel Valiente (ALBCOM) Bioinformatics 2005 2006

Evolutionary trees. Describe the relationship between objects, e.g. species or genes

Evolutionary trees Bonobo Chimpanzee Human Neanderthal Gorilla Orangutan Describe the relationship between objects, e.g. species or genes Early evolutionary studies Anatomical features were the dominant

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057

Estimating Phylogenies (Evolutionary Trees) II Biol4230 Thurs, March 2, 2017 Bill Pearson wrp@virginia.edu 4-2818 Jordan 6-057 Tree estimation strategies: Parsimony?no model, simply count minimum number

Week 5: Distance methods, DNA and protein models

Week 5: Distance methods, DNA and protein models Genome 570 February, 2016 Week 5: Distance methods, DNA and protein models p.1/69 A tree and the expected distances it predicts E A 0.08 0.05 0.06 0.03

Hierarchical Clustering

Hierarchical Clustering Some slides by Serafim Batzoglou 1 From expression profiles to distances From the Raw Data matrix we compute the similarity matrix S. S ij reflects the similarity of the expression

Clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein. Some slides adapted from Jacques van Helden

Clustering Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Some slides adapted from Jacques van Helden Small vs. large parsimony A quick review Fitch s algorithm:

Minimum Edit Distance. Defini'on of Minimum Edit Distance

Minimum Edit Distance Defini'on of Minimum Edit Distance How similar are two strings? Spell correc'on The user typed graffe Which is closest? graf gra@ grail giraffe Computa'onal Biology Align two sequences

RECOVERING NORMAL NETWORKS FROM SHORTEST INTER-TAXA DISTANCE INFORMATION

RECOVERING NORMAL NETWORKS FROM SHORTEST INTER-TAXA DISTANCE INFORMATION MAGNUS BORDEWICH, KATHARINA T. HUBER, VINCENT MOULTON, AND CHARLES SEMPLE Abstract. Phylogenetic networks are a type of leaf-labelled,

Phylogeny. November 7, 2017

Phylogeny November 7, 2017 Phylogenetics Phylon = tribe/race, genetikos = relative to birth Phylogenetics: study of evolutionary relationships among organisms, sequences, or anything in between Related

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

Building Phylogenetic Trees UPGMA & NJ

uilding Phylogenetic Trees UPGM & NJ UPGM UPGM Unweighted Pair-Group Method with rithmetic mean Unweighted = all pairwise distances contribute equally. Pair-Group = groups are combined in pairs. rithmetic

DNA Phylogeny. Signals and Systems in Biology Kushal EE, IIT Delhi

DNA Phylogeny Signals and Systems in Biology Kushal Shah @ EE, IIT Delhi Phylogenetics Grouping and Division of organisms Keeps changing with time Splitting, hybridization and termination Cladistics :

A (short) introduction to phylogenetics

A (short) introduction to phylogenetics Thibaut Jombart, Marie-Pauline Beugin MRC Centre for Outbreak Analysis and Modelling Imperial College London Genetic data analysis with PR Statistics, Millport Field

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony

ioinformatics -- lecture 9 Phylogenetic trees istance-based tree building Parsimony (,(,(,))) rees can be represented in "parenthesis notation". Each set of parentheses represents a branch-point (bifurcation),

Phylogeny and Evolution. Gina Cannarozzi ETH Zurich Institute of Computational Science

Phylogeny and Evolution Gina Cannarozzi ETH Zurich Institute of Computational Science History Aristotle (384-322 BC) classified animals. He found that dolphins do not belong to the fish but to the mammals.

Phylogenetics: Building Phylogenetic Trees

1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

The Generalized Neighbor Joining method

The Generalized Neighbor Joining method Ruriko Yoshida Dept. of Mathematics Duke University Joint work with Dan Levy and Lior Pachter www.math.duke.edu/ ruriko data mining 1 Challenge We would like to

A few logs suce to build (almost) all trees: Part II

Theoretical Computer Science 221 (1999) 77 118 www.elsevier.com/locate/tcs A few logs suce to build (almost) all trees: Part II Peter L. Erdős a;, Michael A. Steel b,laszlo A.Szekely c, Tandy J. Warnow

Gel Electrophoresis. 10/28/0310/21/2003 CAP/CGS 5991 Lecture 10Lecture 9 1

Gel Electrophoresis Used to measure the lengths of DNA fragments. When voltage is applied to DNA, different size fragments migrate to different distances (smaller ones travel farther). 10/28/0310/21/2003

Chapter 3: Phylogenetics

Chapter 3: Phylogenetics 3. Computing Phylogeny Prof. Yechiam Yemini (YY) Computer Science epartment Columbia niversity Overview Computing trees istance-based techniques Maximal Parsimony (MP) techniques

Lecture 10: Phylogeny

Computational Genomics Prof. Ron Shamir & Prof. Roded Sharan School of Computer Science, Tel Aviv University גנומיקה חישובית פרופ' רון שמיר ופרופ' רודד שרן ביה"ס למדעי המחשב,אוניברסיטת תל אביב Lecture

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University

Phylogenetics: Building Phylogenetic Trees COMP 571 - Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary

Algebraic Statistics Tutorial I

Algebraic Statistics Tutorial I Seth Sullivant North Carolina State University June 9, 2012 Seth Sullivant (NCSU) Algebraic Statistics June 9, 2012 1 / 34 Introduction to Algebraic Geometry Let R[p] =

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

Phylogenetic Networks, Trees, and Clusters

Phylogenetic Networks, Trees, and Clusters Luay Nakhleh 1 and Li-San Wang 2 1 Department of Computer Science Rice University Houston, TX 77005, USA nakhleh@cs.rice.edu 2 Department of Biology University

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 2009 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

Application of new distance matrix to phylogenetic tree construction

Application of new distance matrix to phylogenetic tree construction P.V.Lakshmi Computer Science & Engg Dept GITAM Institute of Technology GITAM University Andhra Pradesh India Allam Appa Rao Jawaharlal

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution

Today s topics Inferring phylogeny Introduction! Distance methods! Parsimony method!"#\$%&'(!)* +,-.'/01!23454(6!7!2845*0&4'9#6!:&454(6 ;?@AB=C?DEF Overview of phylogenetic inferences Methodology Methods

CS281A/Stat241A Lecture 19

CS281A/Stat241A Lecture 19 p. 1/4 CS281A/Stat241A Lecture 19 Junction Tree Algorithm Peter Bartlett CS281A/Stat241A Lecture 19 p. 2/4 Announcements My office hours: Tuesday Nov 3 (today), 1-2pm, in 723

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 200 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

Minimum evolution using ordinary least-squares is less robust than neighbor-joining

Minimum evolution using ordinary least-squares is less robust than neighbor-joining Stephen J. Willson Department of Mathematics Iowa State University Ames, IA 50011 USA email: swillson@iastate.edu November

Phylogenetic analyses. Kirsi Kostamo

Phylogenetic analyses Kirsi Kostamo The aim: To construct a visual representation (a tree) to describe the assumed evolution occurring between and among different groups (individuals, populations, species,

Mul\$ple Sequence Alignment Methods. Tandy Warnow Departments of Bioengineering and Computer Science h?p://tandy.cs.illinois.edu

Mul\$ple Sequence Alignment Methods Tandy Warnow Departments of Bioengineering and Computer Science h?p://tandy.cs.illinois.edu Species Tree Orangutan Gorilla Chimpanzee Human From the Tree of the Life

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

Phylogenetic Algebraic Geometry

Phylogenetic Algebraic Geometry Seth Sullivant North Carolina State University January 4, 2012 Seth Sullivant (NCSU) Phylogenetic Algebraic Geometry January 4, 2012 1 / 28 Phylogenetics Problem Given a

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

Supplementary Information

Supplementary Information For the article"comparable system-level organization of Archaea and ukaryotes" by J. Podani, Z. N. Oltvai, H. Jeong, B. Tombor, A.-L. Barabási, and. Szathmáry (reference numbers

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

ALGORITHMS FOR RECONSTRUCTING PHYLOGENETIC TREES FROM DISSIMILARITY MAPS

ALGORITHMS FOR RECONSTRUCTING PHYLOGENETIC TREES FROM DISSIMILARITY MAPS DAN LEVY, FRANCIS EDWARD SU, AND RURIKO YOSHIDA Manuscript, December 15, 2003 Abstract. In this paper we improve on an algorithm

Bioinformatics course

Bioinformatics course Phylogeny and Comparative genomics 10/23/13 1 Contents-phylogeny Introduction-biology, life classificationtaxonomy Phylogenetic-tree of life, tree representation Why study phylogeny?

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

Dr. Amira A. AL-Hosary

Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

Phylogeny and Molecular Evolution. Introduction

Phylogeny and Molecular Evolution Introduction 1 2/62 3/62 Credit Serafim Batzoglou (UPGMA slides) http://www.stanford.edu/class/cs262/slides Notes by Nir Friedman, Dan Geiger, Shlomo Moran, Ron Shamir,

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9

Lecture 5 Alignment I. Introduction. For sequence data, the process of generating an alignment establishes positional homologies; that is, alignment provides the identification of homologous phylogenetic

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004,

Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin- 1837

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

(Stevens 1991) 1. morphological characters should be assumed to be quantitative unless demonstrated otherwise

Bot 421/521 PHYLOGENETIC ANALYSIS I. Origins A. Hennig 1950 (German edition) Phylogenetic Systematics 1966 B. Zimmerman (Germany, 1930 s) C. Wagner (Michigan, 1920-2000) II. Characters and character states

arxiv: v1 [q-bio.pe] 3 May 2016

PHYLOGENETIC TREES AND EUCLIDEAN EMBEDDINGS MARK LAYER AND JOHN A. RHODES arxiv:1605.01039v1 [q-bio.pe] 3 May 2016 Abstract. It was recently observed by de Vienne et al. that a simple square root transformation

Metric learning for phylogenetic invariants

Metric learning for phylogenetic invariants Nicholas Eriksson nke@stanford.edu Department of Statistics, Stanford University, Stanford, CA 94305-4065 Yuan Yao yuany@math.stanford.edu Department of Mathematics,

Zhongyi Xiao. Correlation. In probability theory and statistics, correlation indicates the

Character Correlation Zhongyi Xiao Correlation In probability theory and statistics, correlation indicates the strength and direction of a linear relationship between two random variables. In general statistical

Graphical Models. Lecture 10: Variable Elimina:on, con:nued. Andrew McCallum

Graphical Models Lecture 10: Variable Elimina:on, con:nued Andrew McCallum mccallum@cs.umass.edu Thanks to Noah Smith and Carlos Guestrin for some slide materials. 1 Last Time Probabilis:c inference is

Graph fundamentals. Matrices associated with a graph

Graph fundamentals Matrices associated with a graph Drawing a picture of a graph is one way to represent it. Another type of representation is via a matrix. Let G be a graph with V (G) ={v 1,v,...,v n

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms

1. Computability, Complexity and Algorithms Part a: You are given a graph G = (V,E) with edge weights w(e) > 0 for e E. You are also given a minimum cost spanning tree (MST) T. For one particular edge

X X (2) X Pr(X = x θ) (3)

Notes for 848 lecture 6: A ML basis for compatibility and parsimony Notation θ Θ (1) Θ is the space of all possible trees (and model parameters) θ is a point in the parameter space = a particular tree

Phylogenetics. BIOL 7711 Computational Bioscience

Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium