Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço

Size: px
Start display at page:

Download "Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço"

Transcription

1 Molecular Phylogenetics (part 1 of 2) Computational Biology Course João André Carriço jcarrico@fm.ul.pt

2 Charles Darwin ( ) Charles Darwin s tree of life in Notebook B,

3 Ernst Haeckel ( ) German biologist, naturalist, philosopher, physician, professor, and artist

4

5

6

7

8

9 Many trees how to choose one? How to construct the tree? How to interpret the tree?

10 The Natural History of Middle-Earth

11 Sequoia sempervirens, Muir Woods National Monument

12 Molecular Phylogenetics PHYLOGENETICS phylé/phylon Tribe /Clan /Race genetikós Origin /Source /Birth

13 Bacteria : asexual reproduction Generation 0 Bacteria Genetic Material: One circular chromossome Plasmids (optional) Transposons/Insertion Sequences Phages Generation 1 Generation 2 Reproduction by Binary fission

14 Bacteria : asexual reproduction Mutation.ATGGGCGGCTACTTTAC.ATGGGCGTCTACTTTAC

15 Bacteria : asexual reproduction Indel (Insertion / Deletion).ATGGGCGGCTACTTTAC.ATGGGCG_CTACTTTTAC

16 Bacteria : asexual reproduction Recombination + =.ATGGG ACGCTCC TTTACTTCCG.ATGGG CGTCTAC TTTATCCGTA.ATGGG ACGCTCC TTTATCCGTA

17 Phylogeny recombination

18 Sexual reproduction Mendelian tree

19 What is represented by a phylogenetic tree? We start with individuals with some genotypic and phenotypic characteristics. Individuals Pedigree

20 What is represented by a phylogenetic tree? The zooming out from individuals and pedigree will let us see the the bigger picture of the whole population Individuals Population

21 What is represented by a phylogenetic tree? Populations can be isolated for some period of time, but on evolutionary timescales, migration of individuals occur among different populations. The gene flow between populations has the effect of joining the different populations into a Species Population Species

22 What is represented by a phylogenetic tree? During long times, lineages tend to split: Migration to new and isolated region - Founder effect A contiguous range can be split by geological or climatic events - Vicariance That will lead to isolation of the lineages of a species, due to barriers to genetic flow and eventually could lead to speciation. Time Phylogeny Species

23 Concepts in Phylogeny Terminal / Taxa / Leaves / external node bacteria birds marsupials Homo branch Root Node / internal node

24 Concepts in Phylogeny bacteria birds marsupials Homo Monophylectic group = Clade A Clade contains an ancestral lineage and all the descendants of that ancestor. Can be separated from the root with one single cut.

25 Concepts in Phylogeny Unrooted vs Rooted Trees C A B A C A B C B A C B B C A

26 Concepts in Phylogeny Unrooted Trees compare features of a group of organisms (example: 16S RNA in bacteria).it illustrates their relatedness without making assumptions about ancestry. Rooted trees usually use an outlier individual or species (outgroup) to root the tree. That allows for each node with descendants to represent the inferred most recent common ancestor of the descendants, and the edge lengths in some trees may be interpreted as time estimates.

27 Concepts in Phylogeny The information on patterns of evolutionary descent is the same regardless of the lengths of branches. If the branch length has some meaning it is usually represented. These trees depict equivalent relationships despite being different in style.

28 Molecular Phylogenetics trna Vs Aminoacids Isoleucine Serine Arginine Glutamic acid AUC UCA AGG GAA - Methionine- AUC UCA AUG GAA Mutation AUC UCA AGA GAA Arginine -Serine- - AUC UCG AGG GAA AUC UCA AGG AAA AUC UCA GGG GAA AUC UCA GGA GAA Lysine Glycine Glycine

29 Concepts in Phylogeny E D C B A A E D C B A B D E C All these trees are the same

30 Concepts in Phylogeny E D C B A E D C B A Bifurcating trees Multifurcating trees

31 Concepts in Phylogeny A Synapomorphy or Synapomorphic character are used to derive clade definition or confirmation A Homoplasy is a trait shared by two or more organisms but not present in the common ancestor. Can occur due to convergent evolution or due to horizontal gene transfer

32 Molecular Phylogenetics Analysis of hereditary molecular differences, mainly in DNA/RNA or Protein sequences, in order to infer the evolutionary relationships of a group of organisms

33 DNA vs Protein What to choose for an analysis? It will be dependent on the level of evolutionary relationship being investigated. When analyzing closely related individuals, DNA will be more informative. When analyzing deeper evolutionary relationships, Proteins change more slowly and therefore can reveal long term relationships

34 Sequence-based phylogenetic analysis 1) Select a sequence of interest: Whole gene, region of a gene (coding or non-coding), regulatory region of a gene, transposable elements or even a whole genome 2) Identify homologs: Search or acquire data that are homologous to the sequence of interest 3) Align the sequences: Align all the homologous regions to generate a sequence data matrix 4) Calculate the phylogeny based on the alignment

35 1) Selecting a sequence of interest It will depend on the study to be performed Any kind of sequence (coding vs non coding) can be compared Can be more than one sequence i.e. different loci (genes or part of genes) There are always issues that can hinder the choice, and no single type of sequence is perfect for all purposes. The decision should be made based on objective criteria, that could be a convenience one (easier /cheaper to clone or to sequence)

36 1) Selecting a sequence of interest Example: Use of small subunit ribossomal RNA (ss-rrna) 16S for studies of microbial evolution: Highly conserved between species: one set of primers can be used to amplify the gene from most of bacteria or archaea species Can be used to study ancient evolution(ex: archaea vs. bacteria) and more recent evolution (ex: Escherichia vs. Salmonella) Limitation : unrelated thermophiles converge on high G+C content in rrna, which lead to problems in accuracy of inferred phylogenies Limitation: different rates of evolution of rrna between species, which are different from coding genes Limitation: can t discriminate well within some genera or species

37 2) Identifying Homologs Homologous DNA Sequences (homologs): assumed to have a shared ancestry Orthologs : Result of a speciation event Paralogs: Result of a gene duplication. Example: hemoglobin genes A, A2,B and F Xenologs: Result from horizontal gene transfer Ohnologs : paralogs that originated by a process of whole genome duplication

38 2)Identifying Homologs Obtaining the Homologous sequences: Sequencing : experimental generation of data Two weeks in the lab can save you two hours in the library Database searching: online databases are available with deposited DNA, RNA and protein sequences Query target sequence to database Search typically by BLAST algorithm Matches are given a score and cut-off are set to eliminate weak matches

39 2) Identifying Homologs Database searches problems: A decision must be made among the matches as to which are true homologs and which are not. Similarity of sequence is not proof of homology! When searching large databases with short sequences, you can get some matches by chance alone. The sequence similarity could be due parallel or convergent evolution (homoplasy). Conservative approach: set a high similarity threshold to decide if they are homologs. Homology is always an inference

40 3) Sequence alignment Multiple Sequence Alignment is performed on the sequences. Remember that an alignment also represent an hypothesis! OTU= Operational Taxonomic Unit Each specific residue (amino acid or nucleotide base) will correspond to different states of a homologous trait This means that is inferred that the residues in one column have derived from a common residue in an ancestral sequence (Positional homology)

41 4) Creating the phylogeny From the alignment, for most methods, an evolutionary distance is calculated. Those distances take into account the redundancy of the genetic code, properties of amino acids, etc, and not only the percentage of identity between sequences They aim to correct the difference between a true evolutionary distance and the calculated difference in residues This is due to the fact that we sample a finite number of traits, and the finite number of possible character states found in DNA and Protein sequence

42 Models of DNA Evolution Jukes and Cantor (1969). (JC69) Simplest model of DNA evolution Assumptions: all substitutions are independent all sequence positions are equally subject to change Equal mutation rate among the four types of nucleotides no insertions or deletions have occurred Max p of 0.75! Proportion of different sites, between two sequences

43 Models of DNA Evolution Kimura (1980). (K80) (Kimura 2-parameter model Distinguishes between transitions (more frequent) and transversions Assumptions: All the bases are equally frequent p - Proportion of sites that show transitions q proportion of sites that show transversions

44 Models of DNA Evolution Some of the other available models (in order of increasing complexity): Felsenstein (1981). (F81) Extends JC69 by allowing the base frequencies to vary Hasegawa, Kishino and Yano (HKY85) Combines K80 and F81. Also known as F84 since Felsenstein also produced an equivalent model in 1984 Tamura (1992). (T92) Extends K80 with accounting for G+C-content bias (ex: Drosophila mitochondrial DNA) Tamura and Nei (1993). (TN93) distinguishes between two types of transition (rate A<->G rate C<->T

45 Models of DNA Evolution Limitations to Jukes Cantor and Kimura-2 parameter (and others) : Assume base composition or amino acid composition is uniform and stationary over time. When this is not the case, these methods can produce distance matrices that lead to incorrect tree inference. Other correction methods are available in those cases.

46 Sequence-based phylogenetic analysis 1) Select a sequence of interest: Whole gene, region of a gene (coding or non-coding), regulatory region of a gene, transposable elements or even a whole genome 2) Identify homologs: Search or acquire data that are homologous to the sequence of interest 3) Align the sequences: Align all the homologous regions to generate a sequence data matrix 4) Correct the distance using models of DNA evolution 5) Calculate the phylogeny based on the alignment

47 Algorithms for tree construction Based on the distance matrix: Hierarchical clustering methods: UPGMA, Single Linkage and Complete linkage Neighbor-joining Fitch-Margoliash method Maximum Parsimony methods Based on rules (Graphic Matroids) goeburst Maximum Likelihood methods Bayesian inference methods

48 Hierarchical clustering

49 Cluster analysis Cluster: a collection/partition of data objects (taxa) in a dataset

50 How many groups? Cluster analysis: partitioning of a dataset into clusters. Objects in the same cluster should be more similar to each other than objects from different clusters Unsupervised classification (no a priori definition of classes /clusters

51 How many groups? Four steps: 1) Choosing the characters to be measured 2) Choosing Similarity /Distance Metric (among cases/individuals/taxa) 3) Inter group distance/linkage calculation : UPGMA /Single Linkage/Complete Linkage / 4) Cutting the dendrogram at certain levels to define clusters

52 Hierarchical clustering: WPGMA Weighted Pair Group Method with Arithmetic Mean Sokal and Michener

53 Hierarchical clustering: WPGMA

54 Defining Clusters in a Dendrogram F D E B A C Clusters: F, DE, B, AC Clusters: F, DE, BAC Clusters: F, DEBAC Which is the correct cut-off: Several methods have been developed based on distances of branches to the cut Aditional data or prior knowledge can help the decision

55 Hierarchical clustering: WPGMA Assume this tree: Where the distance between taxa can be represented in the following distance matrix: A B C D E F A B 5 C 4 7 D E F Cycle 1: Shortest distance is d(ac)=4 Join AC in subtree: 2 A C Branch length = d(ac)/2 =2

56 Hierarchical clustering: WPGMA AC B 6 AC B D E F D 7 10 E F d((ac)b)=(d(ab)+d(cb))/2 = (5+7)/2=6 d((ac)d)=(d(ad)+d(cd))/2 = (7+7)/2=7 d((ac)e)=(d(ae)+d(ce))/2 = (6+6)/2=6 d((ac)f)=(d(af)+d(cf))/2 = (8+8)/2=8 Cycle 2: Shortest distance is d(de)=5 Join AC in subtree: Branch length = d(de)/2 =2.5 A 2 C D 2.5E AC B 6 AC B DE F DE F Cycle 3: d((de)b)=(d(db)+d(eb))/2 = (10+9)/2=9.5 d((de)f)=(d(df)+d(ef))/2 = (9+8)/2=8.5 d((de)(ac))=(d(d(ac))+d(e(ac))/2 = (7+6)/2=6.5 Shortest distance is d((ac)b)=6 Branch length = d((ac)b)/2= A C B D 2.5E

57 Hierarchical clustering: WPGMA ACB DE F ACB DE 8 F Cycle 4: Shortest distance is d((acb)(de))=8 Branch length = d((acb)(de))/2=4 d((acb)(f))=(d((ac)f)+d(bf))/2 = (8+11)/2=9.5 d((acb)(de))=(d((ac)(de))+d(b(de))/2 = ( )/2= A C B D 2.5E ACBDE F ACBDE F 9 Cycle 5: Shortest distance is d((acbde)f)=9 d((acbde)f)=(d((acb)f)+d((de)f)/2 = ( )/2=9 Branch length = d((acbde)f))/2= A C B D 2.5E 4.5 F

58 Hierarchical clustering: WPGMA A 1 2 C 3 B 1.5 D 2.5E 4.5 F Root assigned at mid-point The resulting UPGMA tree differs in branch order

59 Hierarchical clustering Advantages of hierarchical clustering methods: Speed (O (n 2 )) Limitations of UPGMA/WPGMA/Single Linkage/Complete Linkage: Assumption that the rates of evolutionary change are uniform in different evolutionary branches ( same molecular clock in different branches). Assumes an Ultrameric Tree, i.e., any 3 taxa {A,B,C}, D AC max(d AB,D BC )

60 Hierarchical clustering: Single and Complete Linkage Give two groups g1 and g2 Complete linkage The distance between groups is the distance between the farthest pair Pulls groups farther apart Single linkage The distance between groups is the distance between the closest pair Pulls groups closer together

61 UPGMA/Single Linkage /Complete Linkage Complete Linkage W/UPGMA Single Linkage Group average centroid

62 WPGMA vs UPGMA WPGMA UPGMA

63 See you tomorrow... Or next on the TP

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

What is Phylogenetics

What is Phylogenetics What is Phylogenetics Phylogenetics is the area of research concerned with finding the genetic connections and relationships between species. The basic idea is to compare specific characters (features)

More information

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics

POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics POPULATION GENETICS Winter 2005 Lecture 17 Molecular phylogenetics - in deriving a phylogeny our goal is simply to reconstruct the historical relationships between a group of taxa. - before we review the

More information

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other?

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Phylogeny: the evolutionary history of a species

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

How to read and make phylogenetic trees Zuzana Starostová

How to read and make phylogenetic trees Zuzana Starostová How to read and make phylogenetic trees Zuzana Starostová How to make phylogenetic trees? Workflow: obtain DNA sequence quality check sequence alignment calculating genetic distances phylogeny estimation

More information

Phylogene)cs. IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, Joyce Nzioki

Phylogene)cs. IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, Joyce Nzioki Phylogene)cs IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, 2016 Joyce Nzioki Phylogenetics The study of evolutionary relatedness of organisms. Derived from two Greek words:» Phle/Phylon: Tribe/Race» Genetikos:

More information

A (short) introduction to phylogenetics

A (short) introduction to phylogenetics A (short) introduction to phylogenetics Thibaut Jombart, Marie-Pauline Beugin MRC Centre for Outbreak Analysis and Modelling Imperial College London Genetic data analysis with PR Statistics, Millport Field

More information

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics

Bioinformatics 1. Sepp Hochreiter. Biology, Sequences, Phylogenetics Part 4. Bioinformatics 1: Biology, Sequences, Phylogenetics Bioinformatics 1 Biology, Sequences, Phylogenetics Part 4 Sepp Hochreiter Klausur Mo. 30.01.2011 Zeit: 15:30 17:00 Raum: HS14 Anmeldung Kusss Contents Methods and Bootstrapping of Maximum Methods Methods

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of Computer Science San José State University San José, California, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Distance Methods Character Methods

More information

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center

Phylogenetic Analysis. Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Phylogenetic Analysis Han Liang, Ph.D. Assistant Professor of Bioinformatics and Computational Biology UT MD Anderson Cancer Center Outline Basic Concepts Tree Construction Methods Distance-based methods

More information

Phylogenetics: Building Phylogenetic Trees

Phylogenetics: Building Phylogenetic Trees 1 Phylogenetics: Building Phylogenetic Trees COMP 571 Luay Nakhleh, Rice University 2 Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary model should

More information

Phylogenetic inference

Phylogenetic inference Phylogenetic inference Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, March 7 th 016 After this lecture, you can discuss (dis-) advantages of different information types

More information

Evolutionary Tree Analysis. Overview

Evolutionary Tree Analysis. Overview CSI/BINF 5330 Evolutionary Tree Analysis Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Backgrounds Distance-Based Evolutionary Tree Reconstruction Character-Based

More information

CHAPTERS 24-25: Evidence for Evolution and Phylogeny

CHAPTERS 24-25: Evidence for Evolution and Phylogeny CHAPTERS 24-25: Evidence for Evolution and Phylogeny 1. For each of the following, indicate how it is used as evidence of evolution by natural selection or shown as an evolutionary trend: a. Paleontology

More information

Intraspecific gene genealogies: trees grafting into networks

Intraspecific gene genealogies: trees grafting into networks Intraspecific gene genealogies: trees grafting into networks by David Posada & Keith A. Crandall Kessy Abarenkov Tartu, 2004 Article describes: Population genetics principles Intraspecific genetic variation

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: istance-based methods Ultrametric Additive: UPGMA Transformed istance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University

Phylogenetics: Building Phylogenetic Trees. COMP Fall 2010 Luay Nakhleh, Rice University Phylogenetics: Building Phylogenetic Trees COMP 571 - Fall 2010 Luay Nakhleh, Rice University Four Questions Need to be Answered What data should we use? Which method should we use? Which evolutionary

More information

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5.

Phylogenetic Trees. Phylogenetic Trees Five. Phylogeny: Inference Tool. Phylogeny Terminology. Picture of Last Quagga. Importance of Phylogeny 5. Five Sami Khuri Department of Computer Science San José State University San José, California, USA sami.khuri@sjsu.edu v Distance Methods v Character Methods v Molecular Clock v UPGMA v Maximum Parsimony

More information

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree)

9/30/11. Evolution theory. Phylogenetic Tree Reconstruction. Phylogenetic trees (binary trees) Phylogeny (phylogenetic tree) I9 Introduction to Bioinformatics, 0 Phylogenetic ree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & omputing, IUB Evolution theory Speciation Evolution of new organisms is driven by

More information

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information

Phylogenetic trees 07/10/13

Phylogenetic trees 07/10/13 Phylogenetic trees 07/10/13 A tree is the only figure to occur in On the Origin of Species by Charles Darwin. It is a graphical representation of the evolutionary relationships among entities that share

More information

Phylogenetics. BIOL 7711 Computational Bioscience

Phylogenetics. BIOL 7711 Computational Bioscience Consortium for Comparative Genomics! University of Colorado School of Medicine Phylogenetics BIOL 7711 Computational Bioscience Biochemistry and Molecular Genetics Computational Bioscience Program Consortium

More information

Phylogenetics. Applications of phylogenetics. Unrooted networks vs. rooted trees. Outline

Phylogenetics. Applications of phylogenetics. Unrooted networks vs. rooted trees. Outline Phylogenetics Todd Vision iology 522 March 26, 2007 pplications of phylogenetics Studying organismal or biogeographic history Systematics ating events in the fossil record onservation biology Studying

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

Phylogeny. November 7, 2017

Phylogeny. November 7, 2017 Phylogeny November 7, 2017 Phylogenetics Phylon = tribe/race, genetikos = relative to birth Phylogenetics: study of evolutionary relationships among organisms, sequences, or anything in between Related

More information

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University

Phylogenetics: Distance Methods. COMP Spring 2015 Luay Nakhleh, Rice University Phylogenetics: Distance Methods COMP 571 - Spring 2015 Luay Nakhleh, Rice University Outline Evolutionary models and distance corrections Distance-based methods Evolutionary Models and Distance Correction

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016

Molecular phylogeny - Using molecular sequences to infer evolutionary relationships. Tore Samuelsson Feb 2016 Molecular phylogeny - Using molecular sequences to infer evolutionary relationships Tore Samuelsson Feb 2016 Molecular phylogeny is being used in the identification and characterization of new pathogens,

More information

Biology 211 (2) Week 1 KEY!

Biology 211 (2) Week 1 KEY! Biology 211 (2) Week 1 KEY Chapter 1 KEY FIGURES: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 VOCABULARY: Adaptation: a trait that increases the fitness Cells: a developed, system bound with a thin outer layer made of

More information

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz

Phylogenetic Trees. What They Are Why We Do It & How To Do It. Presented by Amy Harris Dr Brad Morantz Phylogenetic Trees What They Are Why We Do It & How To Do It Presented by Amy Harris Dr Brad Morantz Overview What is a phylogenetic tree Why do we do it How do we do it Methods and programs Parallels

More information

How should we organize the diversity of animal life?

How should we organize the diversity of animal life? How should we organize the diversity of animal life? The difference between Taxonomy Linneaus, and Cladistics Darwin What are phylogenies? How do we read them? How do we estimate them? Classification (Taxonomy)

More information

Lecture 11 Friday, October 21, 2011

Lecture 11 Friday, October 21, 2011 Lecture 11 Friday, October 21, 2011 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean system

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

Lecture 6 Phylogenetic Inference

Lecture 6 Phylogenetic Inference Lecture 6 Phylogenetic Inference From Darwin s notebook in 1837 Charles Darwin Willi Hennig From The Origin in 1859 Cladistics Phylogenetic inference Willi Hennig, Cladistics 1. Clade, Monophyletic group,

More information

Phylogenetic Analysis

Phylogenetic Analysis Phylogenetic Analysis Aristotle Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus Swedish botanist (1700s)

More information

Phylogenetic Analysis

Phylogenetic Analysis Phylogenetic Analysis Aristotle Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus Swedish botanist (1700s)

More information

Phylogenetic Analysis

Phylogenetic Analysis Phylogenetic Analysis Aristotle Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus Swedish botanist (1700s)

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

C.DARWIN ( )

C.DARWIN ( ) C.DARWIN (1809-1882) LAMARCK Each evolutionary lineage has evolved, transforming itself, from a ancestor appeared by spontaneous generation DARWIN All organisms are historically interconnected. Their relationships

More information

Inferring phylogeny. Constructing phylogenetic trees. Tõnu Margus. Bioinformatics MTAT

Inferring phylogeny. Constructing phylogenetic trees. Tõnu Margus. Bioinformatics MTAT Inferring phylogeny Constructing phylogenetic trees Tõnu Margus Contents What is phylogeny? How/why it is possible to infer it? Representing evolutionary relationships on trees What type questions questions

More information

Cladistics and Bioinformatics Questions 2013

Cladistics and Bioinformatics Questions 2013 AP Biology Name Cladistics and Bioinformatics Questions 2013 1. The following table shows the percentage similarity in sequences of nucleotides from a homologous gene derived from five different species

More information

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics)

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogeny? - Systematics? The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogenetic systematics? Connection between phylogeny and classification. - Phylogenetic systematics informs the

More information

Chapter 26: Phylogeny and the Tree of Life

Chapter 26: Phylogeny and the Tree of Life Chapter 26: Phylogeny and the Tree of Life 1. Key Concepts Pertaining to Phylogeny 2. Determining Phylogenies 3. Evolutionary History Revealed in Genomes 1. Key Concepts Pertaining to Phylogeny PHYLOGENY

More information

Theory of Evolution Charles Darwin

Theory of Evolution Charles Darwin Theory of Evolution Charles arwin 858-59: Origin of Species 5 year voyage of H.M.S. eagle (83-36) Populations have variations. Natural Selection & Survival of the fittest: nature selects best adapted varieties

More information

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses Anatomy of a tree outgroup: an early branching relative of the interest groups sister taxa: taxa derived from the same recent ancestor polytomy: >2 taxa emerge from a node Anatomy of a tree clade is group

More information

A Phylogenetic Network Construction due to Constrained Recombination

A Phylogenetic Network Construction due to Constrained Recombination A Phylogenetic Network Construction due to Constrained Recombination Mohd. Abdul Hai Zahid Research Scholar Research Supervisors: Dr. R.C. Joshi Dr. Ankush Mittal Department of Electronics and Computer

More information

PHYLOGENY & THE TREE OF LIFE

PHYLOGENY & THE TREE OF LIFE PHYLOGENY & THE TREE OF LIFE PREFACE In this powerpoint we learn how biologists distinguish and categorize the millions of species on earth. Early we looked at the process of evolution here we look at

More information

Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them?

Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them? Phylogenies & Classifying species (AKA Cladistics & Taxonomy) What are phylogenies & cladograms? How do we read them? How do we estimate them? Carolus Linneaus:Systema Naturae (1735) Swedish botanist &

More information

Letter to the Editor. Department of Biology, Arizona State University

Letter to the Editor. Department of Biology, Arizona State University Letter to the Editor Traditional Phylogenetic Reconstruction Methods Reconstruct Shallow and Deep Evolutionary Relationships Equally Well Michael S. Rosenberg and Sudhir Kumar Department of Biology, Arizona

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

Constructing Evolutionary/Phylogenetic Trees

Constructing Evolutionary/Phylogenetic Trees Constructing Evolutionary/Phylogenetic Trees 2 broad categories: Distance-based methods Ultrametric Additive: UPGMA Transformed Distance Neighbor-Joining Character-based Maximum Parsimony Maximum Likelihood

More information

Macroevolution Part I: Phylogenies

Macroevolution Part I: Phylogenies Macroevolution Part I: Phylogenies Taxonomy Classification originated with Carolus Linnaeus in the 18 th century. Based on structural (outward and inward) similarities Hierarchal scheme, the largest most

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 2009 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

CS5263 Bioinformatics. Guest Lecture Part II Phylogenetics

CS5263 Bioinformatics. Guest Lecture Part II Phylogenetics CS5263 Bioinformatics Guest Lecture Part II Phylogenetics Up to now we have focused on finding similarities, now we start focusing on differences (dissimilarities leading to distance measures). Identifying

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 200 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

Introduction to Bioinformatics Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Dr. rer. nat. Gong Jing Cancer Research Center Medicine School of Shandong University 2012.11.09 1 Chapter 4 Phylogenetic Tree 2 Phylogeny Evidence from morphological ( 形态学的 ), biochemical, and gene sequence

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Chapter focus Shifting from the process of how evolution works to the pattern evolution produces over time. Phylogeny Phylon = tribe, geny = genesis or origin

More information

Chapter 27: Evolutionary Genetics

Chapter 27: Evolutionary Genetics Chapter 27: Evolutionary Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand what the term species means to biology. 2. Recognize the various patterns

More information

Chapter 19: Taxonomy, Systematics, and Phylogeny

Chapter 19: Taxonomy, Systematics, and Phylogeny Chapter 19: Taxonomy, Systematics, and Phylogeny AP Curriculum Alignment Chapter 19 expands on the topics of phylogenies and cladograms, which are important to Big Idea 1. In order for students to understand

More information

Introduction to characters and parsimony analysis

Introduction to characters and parsimony analysis Introduction to characters and parsimony analysis Genetic Relationships Genetic relationships exist between individuals within populations These include ancestordescendent relationships and more indirect

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2007

Bio 1B Lecture Outline (please print and bring along) Fall, 2007 Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #5 -- Molecular genetics and molecular evolution

More information

Evolutionary Analysis of Viral Genomes

Evolutionary Analysis of Viral Genomes University of Oxford, Department of Zoology Evolutionary Biology Group Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS, U.K. Fax: +44 1865 271249 Evolutionary Analysis of Viral

More information

Phylogeny: building the tree of life

Phylogeny: building the tree of life Phylogeny: building the tree of life Dr. Fayyaz ul Amir Afsar Minhas Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan

More information

Microbial Taxonomy and the Evolution of Diversity

Microbial Taxonomy and the Evolution of Diversity 19 Microbial Taxonomy and the Evolution of Diversity Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 Taxonomy Introduction to Microbial Taxonomy

More information

Classification, Phylogeny yand Evolutionary History

Classification, Phylogeny yand Evolutionary History Classification, Phylogeny yand Evolutionary History The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 26 Phylogeny and the Tree of Life

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

Consensus Methods. * You are only responsible for the first two

Consensus Methods. * You are only responsible for the first two Consensus Trees * consensus trees reconcile clades from different trees * consensus is a conservative estimate of phylogeny that emphasizes points of agreement * philosophy: agreement among data sets is

More information

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony

Bioinformatics 1 -- lecture 9. Phylogenetic trees Distance-based tree building Parsimony ioinformatics -- lecture 9 Phylogenetic trees istance-based tree building Parsimony (,(,(,))) rees can be represented in "parenthesis notation". Each set of parentheses represents a branch-point (bifurcation),

More information

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057

Estimating Phylogenies (Evolutionary Trees) II. Biol4230 Thurs, March 2, 2017 Bill Pearson Jordan 6-057 Estimating Phylogenies (Evolutionary Trees) II Biol4230 Thurs, March 2, 2017 Bill Pearson wrp@virginia.edu 4-2818 Jordan 6-057 Tree estimation strategies: Parsimony?no model, simply count minimum number

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity it of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

Phylogeny and the Tree of Life

Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

How Molecules Evolve. Advantages of Molecular Data for Tree Building. Advantages of Molecular Data for Tree Building

How Molecules Evolve. Advantages of Molecular Data for Tree Building. Advantages of Molecular Data for Tree Building How Molecules Evolve Guest Lecture: Principles and Methods of Systematic Biology 11 November 2013 Chris Simon Approaching phylogenetics from the point of view of the data Understanding how sequences evolve

More information

1 ATGGGTCTC 2 ATGAGTCTC

1 ATGGGTCTC 2 ATGAGTCTC We need an optimality criterion to choose a best estimate (tree) Other optimality criteria used to choose a best estimate (tree) Parsimony: begins with the assumption that the simplest hypothesis that

More information

Chapter 16: Reconstructing and Using Phylogenies

Chapter 16: Reconstructing and Using Phylogenies Chapter Review 1. Use the phylogenetic tree shown at the right to complete the following. a. Explain how many clades are indicated: Three: (1) chimpanzee/human, (2) chimpanzee/ human/gorilla, and (3)chimpanzee/human/

More information

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task.

METHODS FOR DETERMINING PHYLOGENY. In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Chapter 12 (Strikberger) Molecular Phylogenies and Evolution METHODS FOR DETERMINING PHYLOGENY In Chapter 11, we discovered that classifying organisms into groups was, and still is, a difficult task. Modern

More information

BIOLOGY 432 Midterm I - 30 April PART I. Multiple choice questions (3 points each, 42 points total). Single best answer.

BIOLOGY 432 Midterm I - 30 April PART I. Multiple choice questions (3 points each, 42 points total). Single best answer. BIOLOGY 432 Midterm I - 30 April 2012 Name PART I. Multiple choice questions (3 points each, 42 points total). Single best answer. 1. Over time even the most highly conserved gene sequence will fix mutations.

More information

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF EVOLUTION Evolution is a process through which variation in individuals makes it more likely for them to survive and reproduce There are principles to the theory

More information

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004,

Algorithmic Methods Well-defined methodology Tree reconstruction those that are well-defined enough to be carried out by a computer. Felsenstein 2004, Tracing the Evolution of Numerical Phylogenetics: History, Philosophy, and Significance Adam W. Ferguson Phylogenetic Systematics 26 January 2009 Inferring Phylogenies Historical endeavor Darwin- 1837

More information

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM)

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Bioinformatics II Probability and Statistics Universität Zürich and ETH Zürich Spring Semester 2009 Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Dr Fraser Daly adapted from

More information

A. Incorrect! In the binomial naming convention the Kingdom is not part of the name.

A. Incorrect! In the binomial naming convention the Kingdom is not part of the name. Microbiology Problem Drill 08: Classification of Microorganisms No. 1 of 10 1. In the binomial system of naming which term is always written in lowercase? (A) Kingdom (B) Domain (C) Genus (D) Specific

More information

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution

Inferring phylogeny. Today s topics. Milestones of molecular evolution studies Contributions to molecular evolution Today s topics Inferring phylogeny Introduction! Distance methods! Parsimony method!"#$%&'(!)* +,-.'/01!23454(6!7!2845*0&4'9#6!:&454(6 ;?@AB=C?DEF Overview of phylogenetic inferences Methodology Methods

More information

Molecular Evolution & Phylogenetics Traits, phylogenies, evolutionary models and divergence time between sequences

Molecular Evolution & Phylogenetics Traits, phylogenies, evolutionary models and divergence time between sequences Molecular Evolution & Phylogenetics Traits, phylogenies, evolutionary models and divergence time between sequences Basic Bioinformatics Workshop, ILRI Addis Ababa, 12 December 2017 1 Learning Objectives

More information

Phylogeny and Evolution. Gina Cannarozzi ETH Zurich Institute of Computational Science

Phylogeny and Evolution. Gina Cannarozzi ETH Zurich Institute of Computational Science Phylogeny and Evolution Gina Cannarozzi ETH Zurich Institute of Computational Science History Aristotle (384-322 BC) classified animals. He found that dolphins do not belong to the fish but to the mammals.

More information

Bioinformatics tools for phylogeny and visualization. Yanbin Yin

Bioinformatics tools for phylogeny and visualization. Yanbin Yin Bioinformatics tools for phylogeny and visualization Yanbin Yin 1 Homework assignment 5 1. Take the MAFFT alignment http://cys.bios.niu.edu/yyin/teach/pbb/purdue.cellwall.list.lignin.f a.aln as input and

More information

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature,

More information

Reconstructing the history of lineages

Reconstructing the history of lineages Reconstructing the history of lineages Class outline Systematics Phylogenetic systematics Phylogenetic trees and maps Class outline Definitions Systematics Phylogenetic systematics/cladistics Systematics

More information

Evolutionary Theory and Principles of Phylogenetics. Lucy Skrabanek ICB, WMC March 19, 2008

Evolutionary Theory and Principles of Phylogenetics. Lucy Skrabanek ICB, WMC March 19, 2008 Evolutionary Theory and Principles of Phylogenetics Lucy Skrabanek ICB, WMC March 19, 2008 Theory of evolution Evolution: process of change over time 2 competing models Phyletic gradualism Punctuated equilibrium

More information

Chapter 26 Phylogeny and the Tree of Life

Chapter 26 Phylogeny and the Tree of Life Chapter 26 Phylogeny and the Tree of Life Biologists estimate that there are about 5 to 100 million species of organisms living on Earth today. Evidence from morphological, biochemical, and gene sequence

More information

Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26

Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) p.1/26 Lecture 27. Phylogeny methods, part 4 (Models of DNA and protein change) Joe Felsenstein Department of Genome Sciences and Department of Biology Lecture 27. Phylogeny methods, part 4 (Models of DNA and

More information

Microbial Diversity and Assessment (II) Spring, 2007 Guangyi Wang, Ph.D. POST103B

Microbial Diversity and Assessment (II) Spring, 2007 Guangyi Wang, Ph.D. POST103B Microbial Diversity and Assessment (II) Spring, 007 Guangyi Wang, Ph.D. POST03B guangyi@hawaii.edu http://www.soest.hawaii.edu/marinefungi/ocn403webpage.htm General introduction and overview Taxonomy [Greek

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information