14 th International Conference on Fracture (ICF14) MEGATHRUST DYNAMICS SYMPOSIUM

Size: px
Start display at page:

Download "14 th International Conference on Fracture (ICF14) MEGATHRUST DYNAMICS SYMPOSIUM"

Transcription

1 14 th International Conference on Fracture (ICF14) MEGATHRUST DYNAMICS SYMPOSIUM Rhodes Rhodes Island, Greece June 2017 Image credit: Masuti et al. (2016) This Symposium gathers experts in various aspects of faulting and earthquake mechanics to discuss diverse topics related to megathrust dynamics. The focus will be on observational and theoretical earthquake physics, including rheology, friction, the strength of the lithosphere, and more focused subjects related to tectonic geodesy, structural geology, seismology, and physical modeling of deformation. Symposium Convener and Organiser: Dr Sylvain Barbot Assistant Professor Earth Observatory of Singapore Supported by:

2 Dear Friends and Colleagues, This is my pleasure to welcome you to the Megathrust Dynamics Symposium, a special symposium organized under the auspices of the 14th International Conference on Fracture (ICF14). The physics of earthquakes and tectonics encompasses a broad spectrum of processes across a wide range of spatial and temporal scales. Nowhere else are these forces combined with more grandeur than at subduction zones, where enormous slabs are recycled to the mantle, contributing to plate tectonics, arc volcanism, and incredible landscapes. Fault dynamics is a fascinating object of study, and our progress in this field contribute to better mitigating seismic and tsunami hazards and even perhaps, saving lives. I am very thankful for your presence today, as you all come from faraway places. All of you bring a unique perspective to the subject, and I hope our interactions in the majestic Rhodes, Greece will be inspiring and will help bridge gaps between disciplines. I look forward to discovering your latest thoughts and results. I am thankful to Emmanuel Gdoutos, ICF14 Executive Chairman and ICF Senior Vice-President-Designate , for his kind invitation to join the Scientific Advisory Board of ICF14 and thereby allowing me to organize this symposium. I am also thankful to Maybel D Silva for her support during the preparation of this event. I hope you enjoy the meeting and your stay in Rhodes. Best wishes, Dr Sylvain Barbot Symposium Convener and Organiser Megathrust Dynamics Symposium 14th International Conference on Fracture (ICF14)

3 Programme - Day 1 Monday, 19 June 2017 NAME TITLE TIME Lessons from the 2015 Mw 7.8 Gorkha, Nepal Earthquake Wei Shengji / Wang Xin Source Model and Broadband Ground Shaking Simulation of the 2015 Gorkha (Nepal) Earthquake Sequence COFFEE BREAK James Daniel Paul Moore Postseismic Deformation following the 2015 Mw 7.8 Gorkha Earthquake and the Distribution of Brittle and Ductile Crustal Processes beneath Nepal Jiuxun Yin Integration of Observational and Numerical Methods to Study the 2015 Nepal and Chile Large Earthquakes Sharadha Sathiakumar Study of Earthquake Cycles in Nepal across Geological Time Scales Using Subsurface Structural Features LUNCH Reconciling Long-Term and Short-Term Tectonics John Loveless Spatiotemporal Variation in Subduction Zone Earthquake Cycle Processes on Geodetic and Geologic Time Scales Ylona van Dinther Modeling Megathrust Dynamics across the Scales COFFEE BREAK Elizabeth Madden The Role of Splay Faults in Seafloor Deformation and Tsunami Generation during the M Sumatra-Andaman Earthquake Bunichiro Shibazaki Modeling Slow Slip Events and their Interaction with Large Earthquakes along Various Subduction Zones END OF SESSION Page 1

4 Programme - Day 2 Tuesday, 20 June 2017 NAME TITLE TIME Transient Deformation, Localized and Distributed Sylvain Barbot Earthquake Cycles with Distributed Plastic Deformation Christophe Vigny What Do We Learn from Visco-Elastic Relaxation Following the 3 Largest Megathrust Earthquakes of the 21st century COFFEE BREAK Jun Muto Heterogeneous Rheology Controlled Postseismic Deformation of the 2011 Tohoku-Oki Earthquake Sagar Masuti Estimation of the Rheological Properties of the Indian Ocean Asthenosphere Using Geodetic Data Emilie Klein Impact of Visco-Elastic Relaxation Following the 2010 Maule Earthquake in Chile on Adjacent Segments of the Subduction LUNCH Spectrum of Fault Slip Nadia Lapusta Dynamic Rupture of Creeping Fault Segments and Deeper Fault Extensions Deepa Mele Veedu A Revised Model of the Period-Doubling Parkfield Tremors COFFEE BREAK From Local to Regional Scale Subduction Dynamics Abhijit Ghosh Takane Hori Slow Earthquakes - A Major Player in the Plate Boundary Fault Dynamics A Proposal of Monitoring and Forecasting System for Crustal Activity in and around Japan using A Large-Scale High-Fidelity Finite Element Simulation Codes END OF SESSION Page 2

5 Wei Shengji Assistant Professor, Asian School of the Environment and Earth Observatory of Singapore, Wei Shengji studied earthquake sources with seismic waveform and other geodetic observations, including InSAR and GPS, as a graduate student at University of Science and Technology of China. His career began with a post doctorate at the Seismological Laboratory of California s Institute of Technology, where he expanded his research interests to include strong ground motion simulation of large earthquakes and high-frequency waveform modeling. As a faculty member at the Asian School of Environment and a Principal Investigator at the Earth Observatory of Singapore, an autonomous institute of, his current studies are focused on real-time seismology, large earthquake finite fault modeling, waveform modeling of earthquakes and velocity structures, and unveiling their relations with earthquake physics and tectonics. Wang Xin Research Fellow, Earth Observatory of Singapore, Wang Xin obtained his PhD in geophysics from the Institute of Geology and Geophysics, Chinese Academy of Sciences in He then joined the Earth Observatory of Singapore as a research fellow in seismology. His research interests focus on understanding the upper mantle discontinuity and velocity anomalous of subduction zone structure, as well as earthquakes source properties, in particular, those associated with the subduction zones. James Daniel Paul Moore Research Fellow, Earth Observatory of Singapore, I am a Research Fellow at the Earth Observatory of Singapore working in the Earthquake Physics group investigating Lithosphere Dynamics across multiple timescales. Prior to my current position I was a postdoctoral researcher in the Marine Geophysics group at Oxford and completed my DPhil as a member of the COMET research group in Oxford. My research interests include viscoelastic relaxation of the crust under loading, earthquake cycle processes, and deformation driven by volcanic systems. I examine these systems using a combination of analytic and numerical methods. My current research areas include the effect of non-linear deformation mechanisms on the earthquake cycle, with rate and state friction and off fault non-linear ductile deformation, imaging material properties of the mantle and ductile regions of the lower crust, regional compensation in dynamic topography, and nascent rifting. Jiuxun Yin PhD Student, Harvard University The studies on the source process are of great scientific value to better understand the mechanism of earthquakes. My present research focuses on the energy of earthquakes such as the propagation, energy partitioning, directivity etc. With the help of the tremendous progress of global networks and seismic arrays, we are trying to develop a spectral domain method to determine the spatial-temporal distribution of the radiated energy (absolute values) using seismogram recorded by distance/azimuthvarying stations. These results will provide very important observational constraints on the source process of earthquakes. I am also very interested in the rupture dynamics as well as subduction zones. Page 3

6 Sharadha Sathiakumar PhD Student, Asian School of Environment, Sharadha Sathiakumar is a first year PhD student in ASE. Her interests include earthquake cycle modelling and fault bend fold dynamics. Before starting her PhD she was a Research Associate at EOS with expertise in developing seafloor geodesy capabilities for a marine robot. John Loveless Assistant Professor, Geosciences, Smith College Jack Loveless received his undergraduate degree from the University of New Hampshire in 2002 and PhD. from Cornell University in He completed a post-doctoral fellowship at Harvard University before starting a faculty position at Smith College in Ylona van Dinther Senior Scientist and Lecturer, Swiss Federal Institute of Technology (ETH), Zurich Ylona van Dinther studied Geophysics at Utrecht University. She received her PhD on bridging scales from geodynamics towards the seismic cycle from ETH Zurich, while working at the Swiss Seismological Service. For her post doc she joined the new Computational Seismology group at ETH, where she now as a Senior Scientist and Lecturer leads the subgroup of Earthquake Physics in which 6 PhD students are involved. She is currently applying data assimilation techniques to seismic cycles and is interested in building a comprehensive forward and inverse modeling framework to improve our physical understanding of the spatiotemporal occurrence of earthquakes. Elizabeth Madden (Betsy) Post-Doctoral Researcher, Ludwig-Maximilians-Universität München Elizabeth Madden received her PhD from Stanford University in 2013, where she studied the effects of 3D fault geometry on earthquake mechanics with a focus on the 1992 Landers, CA earthquake. Her postdoctoral research at the University of Massachusetts-Amherst focused on the energy budgets of growing faults and the development of a 2D fault propagation code, GROW. She is currently a post-doctoral fellow with the ASCETE Project at Ludwig-Maximilian University in Munich, Germany, studying the effects of subduction zone geology and fault geometry on megathrust earthquake dynamics and tsunami generation. Page 4

7 Bunichiro Shibazaki Chief Research Seismologist, Building Research Institute, Japan Bunichiro Shibazaki s main research topics are modeling earthquake generation processes, slow slip events along various subduction zones, and deformation processes of the island arc lithosphere. He received a BA from the University of Tokyo in 1988 and received a PhD in science from the University of Tokyo in From 1993 to 1995, he studied at the National Research Institute for Earth Science and Disaster Prevention. He has worked at the Building Research Institute since Sylvain Barbot Assistant Professor, Asian School of the Environment and Earth Observatory of Singapore, Sylvain Barbot studied earthquake physics and geodesy at the Institut de Physique du Globe de Paris, France, and at the Institute of Geophysics and Planetary Physics at the Scripps Institution of Oceanography. As a graduate, his research focused on transient lithospheric deformation following earthquakes on strike-slip faults. During his post doctorate at the California Institute of Technology, he studied the dynamics of earthquake cycles using rate-and-state friction. Today, as a faculty member at the Earth Observatory of Singapore, his research focus is to understand the physics of crustal and lithosphere dynamics across many temporal and spatial scales. His main interests are to understand the role of geometry and chemistry, and the distribution of on-fault and off-fault deformation in the generation of earthquakes. Christophe Vigny Professor, Directeur du Laboratoire de Géologie, École Normale Supérieure, Paris I use modern style space geodesy (GPS): I install networks of geodetic benchmarks which I survey regularly to monitor their positions and arrays of permanent cgps stations. These measurements allow us to quantify the crustal deformation before, during, and after an earthquake. My goal is to understand how tectonic plates move and deform, how major earthquakes nucleate and rupture. I apply these methods on different faults around the world where seismic hazard is high: South-East Asia (Indonesia Sumatra and Sulawesi, Malaysia, Thailand, Myanmar), Chile (from Patagonia to Atacama), Iran (Zagros, Alborz), Nepal (Himalayas), Djibouti (East African Rift), etc. Jun Muto Assistant Professor, Department of Earth Science, Tohoku University Jun Muto studied structural geology at Tohoku University. He received his PhD on field survey and microstructural analysis of deformed crustal rocks from Tohoku University. For his post doc, he joined the Tectonophycs group at Brown university with the collaboration to Jan Tullis and Greg Hirth and have conducted deformation experiments of crustal rocks such as quartz and feldspars with special emphasis on the role of fluids. He is currently working on the numerical modeling of post-seismic deformation of the 2011 Tohokuoki earthquake as well as laboratory deformation experiments of lower crustal and upper mantle rocks to improve our understanding rheological properties of dynamic earth. Page 5

8 Sagar Masuti PhD Student, Asian School of the Environment, I am a 3rd year PhD student at Nanyang Technological University studying postseismic data to infer the rheology of the oceanic asthenosphere. In particular, I am interested in the transient rheology of olivine (the most abundant mantle mineral). With the help from my advisor (Asst Prof Sylvain Barbot), I have collaborated with experimental scientists (Prof Shun-ichiro Karato) to quantify the transient rheology of olivine. Nadia Lapusta Professor, Mechanical Engineering and Geophysics, California Institute of Technology Emilie Klein Postdoctoral Scholar, Institute de Physique du Globe de Strasbourg, France Emilie Klein is currently a Postdoctoral fellow at the Institut Physique du Globe de Strasbourg. She obtained her Ph.D from the Laboratoire de Géologie of the Ecole Normale Supérieure in Paris in She will integrate in early July the Institute of Geophysics and Planetary Physics at the University of California, San Diego, as a Postdoctoral Scholar funded from a NASA federal grant. Her main research interests focus on the crustal deformation associated with the seismic cycle in subduction zones but also along transform faults. She carried out her Ph.D. on the modeling of postseismic deformation following the Maule earthquake (Mw8.8 in Chile, 2010), using GPS observations and Finite Element Models (under the supervision of C.Vigny and L. Fleitout). Her postdoctoral research is currently focused on the interseismic deformation along the North Anatolian Fault, aiming at characterizing the strain accumulation along the Marmara fault through a probabilistic bayesian approach. In the meantime, she continues working on the seismic cycle along the Chilean subduction zone, particularly after the occurrence of the 2015 Illapel earthquake. My research is directed towards a better understanding of friction and fracture phenomena on both fundamental and practical levels through analytical and numerical modeling. From the fundamental point of view, processes of fracture and friction are fascinating, nonlinear, and often dynamic, phenomena occurring on many scales. In practice, understanding friction and fracture is of vital importance to many industrial and defense applications. My special interest is in mechanics and physics of earthquakes and aseismic slip, where frictional faulting and cracking are key ingredients. Page 6

9 Deepa Mele Veedu PhD Student, Asian School of the Environment, Deepa Mele Veedu is a 3rd year Ph.D. student at the Earth Observatory of Singapore. She holds a Masters degree in Marine Geophysics from the Cochin University of Science & Technology and a Masters degree in Exploration Geosciences from the Indian Institute of Technology, Kharagpur. She is interested in the diversity of earthquake rupture styles, particularly slow ruptures preceding fast ruptures. She has used the phenomenon of slow and fast ruptures on a single fault patch to explain the mechanism behind the period-doubling tremors on the San Andreas Fault as a special case. Currently, she works on a universal model to explain the fundamental basis for a range of earthquake observations. Abhijit Ghosh Assistant Professor, University of California, Riverside Abhijit Ghosh is an earthquake seismologist. The broad goal of his research is to better understand the physics of earthquakes, the processes that control them, and their associated hazards by examining a wide spectrum of fault slip across a broad range of spatial and temporal scales. He has pioneered work on slow earthquakes a relatively new branch of earthquake science using innovative array techniques. He earned his Bachelor s Degree in Geology from the University of Calcutta, Kolkata, India, and PhD in Geophysics in 2011 from the University of Washington, Seattle, USA. Before joining the University of California, Riverside, as an Assistant Professor, he received a Postdoctoral Fellowship awarded by the National Science Foundation, USA. Takane Hori Senior Scientist, Center for Earthquake and Tsunami, Japan Agency for Marine-Earth Science and Technology Takane Hori is a Senior Scientist at JAMSTEC (Japan Agency for Marine- Earth Science and Technology) and the leader of Earthquake and Tsunami Forecasting System Research Group in R&D Center for Earthquake and Tsunami. He obtained his Dr.(Sci.) at the Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University in After graduation, he stayed there for a year as a JSPS Post- Doc. He then moved to JAMSTEC in For further information regarding the Symposium please contact: Maybel D silva Earth Observatory of Singapore maybel_dsilva@ntu.edu.sg Design credit: Yvonne Soon, Community Engagement Office, Earth Observatory of Singapore Page 7

Host researcher:bunichiro Shibazaki (International Institute of Seismology and Earthquake Engineering, Building Research Institute)

Host researcher:bunichiro Shibazaki (International Institute of Seismology and Earthquake Engineering, Building Research Institute) Invited personnel: Sylvain Barbot (Earth Observatory of Singapore, Nanyang Technological University) James D P Moore (Earth Observatory of Singapore, Nanyang Technological University) Host researcher:bunichiro

More information

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS)

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) Brittany Erickson (Portland State University) Junle Jiang (University of California, San Diego) SCEC DR-SEAS Workshop,

More information

The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting The Mechanics of Earthquakes and Faulting Christopher H. Scholz Lamont-Doherty Geological Observatory and Department of Earth and Environmental Sciences, Columbia University 2nd edition CAMBRIDGE UNIVERSITY

More information

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update 01-October-2009 Christophe Vigny Directeur de recherches at CNRS Laboratoire de Géologie Geoscience Dept. Of ENS,

More information

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:!

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! 1. List the three types of tectonic plate boundaries! 2. Describe the processes occurring

More information

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth. Global Tectonics Kearey, Philip ISBN-13: 9781405107778 Table of Contents Preface. Acknowledgments. 1. Historical perspective. 1.1 Continental drift. 1.2 Sea floor spreading and the birth of plate tectonics.

More information

Study megathrust creep to understand megathrust earthquakes

Study megathrust creep to understand megathrust earthquakes 1 Study megathrust creep to understand megathrust earthquakes Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada, kelin.wang@canada.ca Introduction Once upon a time, there was a belief that

More information

What scientists know and do not know about the big one at Cascadia

What scientists know and do not know about the big one at Cascadia What scientists know and do not know about the big one at Cascadia Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada Natural Resources Canada The Cascadia Subduction Zone M 7.3, 1946 Rupture

More information

TS Tectonics & Structural Geology Orals and PICOs Monday, 08 April

TS Tectonics & Structural Geology Orals and PICOs Monday, 08 April TS Tectonics & Structural Geology Orals and PICOs Monday, 08 April MO1, 08:30 10:00 MO2, 10:30 12:00 MOL, 12:15 13:15 MO3, 13:30 15:00 MO4, 15:30 17:00 GD3.3/GM3.3/GMPV16/TS4.7, The evolution of plate

More information

B.S., Physics with concentration in Geology, Georgia State University 2010 Advisor: Dr. Brian Thoms GPA 3.93/4.0

B.S., Physics with concentration in Geology, Georgia State University 2010 Advisor: Dr. Brian Thoms GPA 3.93/4.0 Chastity A. Aiken Institute for Geophysics University of Texas at Austin J. J. Pickle Campus PHONE: +1-404-997-2536 10100 Burnet Rd., Bldg 196 EMAIL: caiken@ig.utexas.edu Austin, TX 78758 EDUCATION Ph.D.,

More information

Deformation cycles of great subduction earthquakes in a viscoelastic Earth

Deformation cycles of great subduction earthquakes in a viscoelastic Earth Deformation cycles of great subduction earthquakes in a viscoelastic Earth Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada School of Earth and Ocean Science, University of Victoria????

More information

Toward a SCEC Community Rheology Model: TAG Kickoff and Workshop SCEC Workshop Proposal Final Report

Toward a SCEC Community Rheology Model: TAG Kickoff and Workshop SCEC Workshop Proposal Final Report Toward a SCEC Community Rheology Model: TAG Kickoff and Workshop SCEC Workshop Proposal 17206 Final Report A one-day Community Rheology Model workshop was held at the Palm Springs Hilton on the Saturday

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

Seismology, Seismic Data Analysis, Hazard Assessment and Risk Mitigation

Seismology, Seismic Data Analysis, Hazard Assessment and Risk Mitigation List of institutions and lecturers contributing to the International Training Course on "Seismology, Hazard Assessment and Risk Mitigation", September 26 to October 21, 2016 in Nay Pyi Taw, Myanmar International

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

GD3.3/GM3.3/GMPV16/TS4.7

GD3.3/GM3.3/GMPV16/TS4.7 GD Geodynamics Orals and PICOs MO1, 08:30 10:00 MO2, 10:30 12:00 MO3, 13:30 15:00 MO4, 15:30 17:00 TU1, 08:30 10:00 TU2, 10:30 12:00 TU3, 13:30 15:00 Monday, 08 April Medal Lecture) (co-organized), 08:30

More information

TS Tectonics & Structural Geology Orals Monday, 28 April

TS Tectonics & Structural Geology Orals Monday, 28 April TS Tectonics & Structural Geology Orals Monday, 28 April MO1, 08:30 10:00 MO2, 10:30 12:00 MOL, 12:15 13:15 MO3, 13:30 15:00 MO4, 15:30 17:00 GD3.2/TS9.7, Recent advances in computational geodynamics (co-organized),

More information

Earth Movement and Resultant Landforms

Earth Movement and Resultant Landforms Earth Movement and Resultant Landforms Structure of the Earth Lithosphere : earth s crust Asthenosphere : upper mantle zone where material is near its melting point & acts almost like liquid (appprox.

More information

Scientific Programme. 1. Opening Day

Scientific Programme. 1. Opening Day Scientific Programme International Training Course on Seismology, Seismic Data Analysis, Hazard Assessment and Risk Mitigation Potsdam, Germany, 12 August to 6 September, 2013 1. Opening Day Monday, Aug.

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Introduction Our proposal focuses on the San Andreas fault system in central and northern California.

More information

COMPOSITION and PHYSICAL PROPERTIES GENERAL SUBJECTS. GEODESY and GRAVITY

COMPOSITION and PHYSICAL PROPERTIES GENERAL SUBJECTS. GEODESY and GRAVITY COMPOSITION and PHYSICAL PROPERTIES Composition and structure of the continental crust Composition and structure of the core Composition and structure of the mantle Composition and structure of the oceanic

More information

News Release December 30, 2004 The Science behind the Aceh Earthquake

News Release December 30, 2004 The Science behind the Aceh Earthquake News Release December 30, 2004 The Science behind the Aceh Earthquake PASADENA, Calif. - Kerry Sieh, the Robert P. Sharp Professor of Geology at the California Institute of Technology and a member of Caltech's

More information

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University 3D Viscoelastic Earthquake Cycle Models Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere Kaj M. Johnson Indiana University In collaboration with:

More information

Syllabus and Course Description Geophysical Geodesy Fall 2013 GPH 411/611

Syllabus and Course Description Geophysical Geodesy Fall 2013 GPH 411/611 Syllabus and Course Description Geophysical Geodesy Fall 2013 GPH 411/611 Course Location: LME 422 Course Time: Tuesday & Thursday 12:00-1:15 Units: 3 Instructor Name: Bill Hammond Office Location: SEM

More information

the IRIS Consortium Collaborative, Multi-user Facilities for Research and Education Briefing NSF Business Systems Review September 9, 2008

the IRIS Consortium Collaborative, Multi-user Facilities for Research and Education Briefing NSF Business Systems Review September 9, 2008 the IRIS Consortium Collaborative, Multi-user Facilities for Research and Education Briefing NSF Business Systems Review September 9, 2008 A facilities program for collection and distribution of seismological

More information

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Lessons from the 2004 Sumatra earthquake and the Asian tsunami Lessons from the 2004 Sumatra earthquake and the Asian tsunami Kenji Satake National Institute of Advanced Industrial Science and Technology Outline 1. The largest earthquake in the last 40 years 2. Tsunami

More information

From Earthquakes to Mountains: the Earth s Crust in Motion

From Earthquakes to Mountains: the Earth s Crust in Motion Dean s Freshman Honor Seminar (SCI 110) Eric Calais Associate Professor of Geophysics Purdue University Department of Earth and Atmospheric Sciences ecalais@purdue.edu http:/www.eas.purdue.edu/~calais

More information

Megathrust Earthquakes

Megathrust Earthquakes Megathrust Earthquakes Susan Schwartz University of California Santa Cruz CIDER 2017 UC Berkeley July 5, 2017 The largest megathrust events are not uniformally distributed at all subduction zones. M>8

More information

TEGAM s Connection to the EarthScope Project

TEGAM s Connection to the EarthScope Project TEGAM s Connection to the EarthScope Project Introduction The EarthScope Project is an undertaking funded by the National Science Foundation in partnership with the United States Geological Survey and

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

Geology Topics. Unit 6 Notes

Geology Topics. Unit 6 Notes Geology Topics Unit 6 Notes Composition of the Earth Earth is layered due to density differences. Crust thin outer layer, solid, made up of continental and oceanic crust Mantle rocky layer below the crust

More information

Measurements in the Creeping Section of the Central San Andreas Fault

Measurements in the Creeping Section of the Central San Andreas Fault Measurements in the Creeping Section of the Central San Andreas Fault Introduction Duncan Agnew, Andy Michael We propose the PBO instrument, with GPS and borehole strainmeters, the creeping section of

More information

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region Regional Geodesy Shimon Wdowinski University of Miami Rowena Lohman, Kim Outerbridge, Tom Rockwell, and Gina Schmalze

More information

CURRICULUM VITAE. Fumiko Tajima. Education: University of Tokyo: (D.Sc., MS, BS) Research Interest:

CURRICULUM VITAE. Fumiko Tajima. Education: University of Tokyo: (D.Sc., MS, BS) Research Interest: CURRICULUM VITAE Name: Fumiko Tajima Education: University of Tokyo: (D.Sc., MS, BS) Research Interest: Professional Experience : Solid Earth geophysics (seismology - Earth's structure, earthquake source

More information

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 Why is there no oceanic crust older than 200 million years? SUBDUCTION If new oceanic crust is being continuously created along the earth

More information

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10 Lecture 2: Deformation in the crust and the mantle Read KK&V chapter 2.10 Tectonic plates What are the structure and composi1on of tectonic plates? Crust, mantle, and lithosphere Crust relatively light

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN Dense Ocean floor Network System for Mega Thrust Earthquakes & Tsunamis(DONET) -Towards Understanding Mega Thrust Earthquakes, the Geohazard & Disaster Mitigation- Yoshiyuki KANEDA, Katsuyoshi KAWAGUCHI,

More information

Plate Tectonics: The New Paradigm

Plate Tectonics: The New Paradigm Earth s major plates Plate Tectonics: The New Paradigm Associated with Earth's strong, rigid outer layer: Known as the lithosphere Consists of uppermost mantle and overlying crust Overlies a weaker region

More information

SM2.1/GD2.7/NH5.8/TS8.4, Large Earthquake and Tsunami Activity (co-organized), 13:30 17:00, Room B3

SM2.1/GD2.7/NH5.8/TS8.4, Large Earthquake and Tsunami Activity (co-organized), 13:30 17:00, Room B3 SM Seismology Orals and PICOs MO1, 08:30 10:00 MO2, 10:30 12:00 MOL, 12:15 13:15 MO3, 13:30 15:00 MO4, 15:30 17:00 TU1, 08:30 10:00 Monday, 08 April SM1.2/AS4.13, Research and Development in Nuclear Explosion

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Project Representative Mitsuhiro Matsu'ura Graduate School of Science, The University of Tokyo Authors Mitsuhiro

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core.

5. What is an earthquake 6. Indicate the approximate radius of the earth, inner core, and outer core. Tutorial Problems 1. Where Do Earthquakes Happen? 2. Where do over 90% of earthquakes occur? 3. Why Do Earthquakes Happen? 4. What are the formulae for P and S velocity 5. What is an earthquake 6. Indicate

More information

What is the LAB Dynamically: Lithosphere and Asthenosphere Rheology from Post-loading Deformation

What is the LAB Dynamically: Lithosphere and Asthenosphere Rheology from Post-loading Deformation What is the LAB Dynamically: Lithosphere and Asthenosphere Rheology from Post-loading Deformation Roland Bürgmann, UC Berkeley With contributions by Pascal Audet, Daula Chandrasekhar, Georg Dresen, Andy

More information

Plate Tectonics. By Destiny, Jarrek, Kaidence, and Autumn

Plate Tectonics. By Destiny, Jarrek, Kaidence, and Autumn Plate Tectonics By Destiny, Jarrek, Kaidence, and Autumn .The Denali Fault and San Andreas Fault - The San Andreas Fault is a continental transform fault that extends roughly 1300 km (810 miles) through

More information

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law

Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law Numerical simulation of seismic cycles at a subduction zone with a laboratory-derived friction law Naoyuki Kato (1), Kazuro Hirahara (2) and Mikio Iizuka (3) (1) Earthquake Research Institute, University

More information

Originally published as:

Originally published as: Originally published as: Henstock, T., McNeill, L., Dean, S., Barton, P., Tilmann, F., Rietbrock, A., Robinson, D., Gulick, S., Austin, J., Djajadihardja, Y., Natawidjaja, D., Permana, H., Bonneville,

More information

AIRCURRENTS THE TOHOKU EARTHQUAKE AND STRESS TRANSFER STRESS TRANSFER

AIRCURRENTS THE TOHOKU EARTHQUAKE AND STRESS TRANSFER STRESS TRANSFER THE TOHOKU EARTHQUAKE AND STRESS TRANSFER AIRCURRENTS 11.2011 Edited Editor s Note: The March 11th Tohoku Earthquake was unprecedented in Japan s recorded history. In April, AIR Currents described the

More information

OBJECTIVE: For each boundary type, give an example of where they occur on Earth.

OBJECTIVE: For each boundary type, give an example of where they occur on Earth. OBJECTIVE: Explain the theory of Plate Tectonics. COMPARE AND CONTRAST DIVERGENT, CONVERGENT AND TRANSFORM BOUNDARIES. ***very important. Describe what geologic features form at each of the three CONVERGENT

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

The Non-volcanic tremor observation in Northern Cascadia. Hsieh Hsin Sung 3/22

The Non-volcanic tremor observation in Northern Cascadia. Hsieh Hsin Sung 3/22 The Non-volcanic tremor observation in Northern Cascadia Hsieh Hsin Sung 3/22 Reference Kao, H., S. J. Shan, H. Dragert, and G. Rogers (2009), Northern Cascadia episodic tremor and slip: A decade of observations

More information

USArray the first five years

USArray the first five years www.earthscope.org USArray the first five years USArray A Continental-Scale Seismic By the Numbers (2003 2008) More than 600 Transportable Array sites have been occupied and more than 535 permits acquired

More information

An Introduction to the Seafloor and Plate Tectonics 1

An Introduction to the Seafloor and Plate Tectonics 1 An Introduction to the Seafloor and Plate Tectonics 1 Objectives 1) Investigate the components of the lithosphere and lithospheric plates. 2) Identify the associations among various seafloor features,

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Strong, Wen (Shih Chung Wen, 溫士忠 ) TEL: ext FAX:

Strong, Wen (Shih Chung Wen, 溫士忠 ) TEL: ext FAX: Strong, Wen (Shih Chung Wen, 溫士忠 ) TEL: +886-5-2720411 ext. 61212 FAX: +886-6-2720807 E-mail: strong@eq.ccu.edu.tw strong6212@gmail.com [Education] Ph.D., Institute of Seismology, National Chung Cheng

More information

The University of Tokyo

The University of Tokyo The University of Tokyo Our ultimate mission is to study earthquake phenomenon scientifically, and to find out the ways to prevent or mitigate the disasters caused directly/indirectly by earthquakes. Slow

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

Objectives. Vocabulary

Objectives. Vocabulary Forces Within Earth Objectives Define stress and strain as they apply to rocks. Distinguish among the three types of faults. Contrast three types of seismic waves. Vocabulary stress strain fault primary

More information

Topic 12 Review Book Earth s Dynamic Crust and Interior

Topic 12 Review Book Earth s Dynamic Crust and Interior Topic 12 Review Book Earth s Dynamic Crust and Interior Define the Vocabulary 1. asthenosphere 2. continental crust 3. Convection current 4. Convergent plate boundary 5. Divergent plate boundary 6. earthquake

More information

EXPLORE PLATE TECTONICS & MORE THROUGH GPS DATA. Shelley Olds, UNAVCO April 12, 2018 NGSS Webinar

EXPLORE PLATE TECTONICS & MORE THROUGH GPS DATA. Shelley Olds, UNAVCO April 12, 2018 NGSS Webinar EXPLORE PLATE TECTONICS & MORE THROUGH GPS DATA Shelley Olds, UNAVCO April 12, 2018 NGSS Webinar Today s Outline Central question: How do we know the tectonic plates are still moving? -- What evidence

More information

Characterizing Earthquake Rupture Models for the Prediction of Strong Ground Motion

Characterizing Earthquake Rupture Models for the Prediction of Strong Ground Motion Characterizing Earthquake Rupture Models for the Prediction of Strong Ground Motion Paul Somerville URS Corporation, 566 El Dorado Street, Pasadena, CA, 91101, USA Summary The uncertainty in estimates

More information

Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate

Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate interiors) Tectonic plates and their boundaries today -- continents

More information

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo 2012/9/24 17:20-17:35 WCEE SS24.4 Special Session: Great East Japan (Tohoku) Earthquake Earthquake Source Kazuki Koketsu Earthquake Research Institute, University of Tokyo 1 Names and features of the earthquake

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Originally published as:

Originally published as: Originally published as: Lorenzo Martín, F., Wang, R., Roth, F. (2002): The effect of input parameters on visco-elastic models of crustal deformation. - Física de la Tierra, 14, 33-54 The effect of input

More information

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of.

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of. Chapter Outline Earthquakes CHAPTER 6 Lesson 1: Earthquakes and Plate Boundaries A. What is an earthquake? 1. A(n) is the rupture and sudden movement of rocks along a fault. A fault is a fracture surface

More information

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 016 Mw 7.0 Kumamoto Earthquake Heng-Yi Su 1 *, Aitaro Kato 1 Department of Earth Sciences, National Central University, Taoyuan

More information

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip Most earthquake simulations study either one large seismic event with full inertial effects or long-term slip history

More information

General Oceanography Geology 105 Expedition 8 Plate Boundaries Beneath the Sea

General Oceanography Geology 105 Expedition 8 Plate Boundaries Beneath the Sea General Oceanography Geology 105 Expedition 8 Plate Boundaries Beneath the Sea Name Not attempting to answer questions on expeditions will result in point deductions on course workbook (two or more blank

More information

Differentiating earthquake tsunamis from other sources; how do we tell the difference?

Differentiating earthquake tsunamis from other sources; how do we tell the difference? Differentiating earthquake tsunamis from other sources; how do we tell the difference? David Tappin (1), Stephan Grilli (2), Jeffrey Harris (2), Timothy Masterlark (3), James Kirby (4), Fengyan Shi Shi

More information

The San Andreas Fault Observatory at Depth: Recent Site Characterization Studies and the 2.2-Km-Deep Pilot Hole

The San Andreas Fault Observatory at Depth: Recent Site Characterization Studies and the 2.2-Km-Deep Pilot Hole The San Andreas Fault Observatory at Depth: Recent Site Characterization Studies and the 2.2-Km-Deep Pilot Hole Steve Hickman and Bill Ellsworth (USGS) Mark Zoback (Stanford University) and the Pre-EarthScope

More information

Plate Tectonics - Demonstration

Plate Tectonics - Demonstration Name: Reference: Prof. Larry Braile - Educational Resources Copyright 2000. L. Braile. Permission granted for reproduction for non-commercial uses. http://web.ics.purdue.edu/~braile/indexlinks/educ.htm

More information

Report on Banda Aceh mega-thrust earthquake, December 26, 2004

Report on Banda Aceh mega-thrust earthquake, December 26, 2004 Report on Banda Aceh mega-thrust earthquake, December 26, 2004 Prepared January 7 th 2005 by C. Vigny, on behalf of the SEAMERGES (*) participants On the morning of December 26 th in SE Asia, 30 km below

More information

Layer Composition Thickness State of Matter

Layer Composition Thickness State of Matter Unit 4.2 Test Review Earth and Its Layers 1. Label the layers of the earth. oceanic crust continental crust lithosphere asthenosphere mantle outer core inner core 2. Complete the Following Table about

More information

Scripps News at 2014 AGU Fall Meeting

Scripps News at 2014 AGU Fall Meeting UNIVERSITY OF CALIFORNIA, SAN DIEGO SCRIPPS INSTITUTION OF OCEANOGRAPHY NEWS Scripps contact: Mario Aguilera (858-245-3175) or AGU Press Room Scripps Communications: 858-534-3624, scrippsnews@ucsd.edu

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE Skills Worksheet Directed Reading Section: The Theory of Plate Tectonics 1. The theory that explains why and how continents move is called. 2. By what time period was evidence supporting continental drift,

More information

Plate Tectonics and the cycling of Earth materials

Plate Tectonics and the cycling of Earth materials Plate Tectonics and the cycling of Earth materials Plate tectonics drives the rock cycle: the movement of rocks (and the minerals that comprise them, and the chemical elements that comprise them) from

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 3 Understanding Earthquakes and Earthquake Hazards Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information:

More information

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes... CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY Earth Formation... 1-2 Plate Tectonics... 1-2 Sources of Earthquakes... 1-3 Earth Faults... 1-4 Fault Creep... 1-5 California Faults... 1-6 Earthquake

More information

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes Earthquakes and Plate Tectonics Global Problems in Geology Distribution of Continents Mid-ocean Ridges Trenches Orogenic Belts Deformation Metamorphism Volcanism Earthquakes Development of Continental

More information

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science Date: 23 January 2018 I. Reminder: Exam #1 is scheduled for Feb 1st one week from Thursday o

More information

The influence of short wavelength variations in viscosity on subduction dynamics

The influence of short wavelength variations in viscosity on subduction dynamics 1 Introduction Deformation within the earth, driven by mantle convection due primarily to cooling and subduction of oceanic lithosphere, is expressed at every length scale in various geophysical observations.

More information

SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES

SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES School of Earth and Atmospheric Sciences 1 SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES Established in 1970 The School of Earth and Atmospheric Sciences (EAS) is an interdisciplinary program that studies Earth's

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

CHAPTER 9. Basics Of geology: earthquakes & volcanoes

CHAPTER 9. Basics Of geology: earthquakes & volcanoes 161 CHAPTER 9 Basics Of geology: earthquakes & volcanoes CHAPTER s Objectives To introduce the theory of one supercontinent To discuss the clues and proofs that support the theory of one supercontinent

More information

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7 Stanley C. Hatfield Southwestern Illinois College Continental drift: an idea before its time Alfred Wegener First proposed

More information

General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On

General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On Name Not attempting to answer questions on expeditions will result in point deductions on course workbook (two or more blank

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake? Earthquakes Building Earth s Surface, Part 2 Science 330 Summer 2005 What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all

More information

Earthquake and Volcano Deformation

Earthquake and Volcano Deformation Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c

More information

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake? 1 2 3 4 5 6 7 8 9 10 Earthquakes Earth, 9 th edition, Chapter 11 Key Concepts Earthquake basics. "" and locating earthquakes.. Destruction resulting from earthquakes. Predicting earthquakes. Earthquakes

More information

A long journey toward seismic safety and sustainability

A long journey toward seismic safety and sustainability A long journey toward seismic safety and sustainability From lithosphere dynamics and earthquake modelling through seismic hazard/ risk assessments to disaster risk reduction Alik Ismail-Zadeh Karlsruhe

More information