TEXT-BOOK EXAMPLES! Overview of carbon nanoforms!

Size: px
Start display at page:

Download "TEXT-BOOK EXAMPLES! Overview of carbon nanoforms!"

Transcription

1 Nanomaths 2012 TEXT-BOOK EXAMPLES! Overview of carbon nanoforms! (PART I) Irene Suarez-Martinez! Nanochemistry Research Institute, Curtin University, Perth, Western Australia!

2 every element says something to someone (something different to each) [ ] one must perhaps make an exception for carbon, because it says everything to everyone. Primo Levi in The periodic table

3 Carbon chemistry! - 1s 2, 2s 2, 2p 2 : 4 valence electrons for bonding - Possible hybridisation of s and p orbitals : sp n, n = 1, 2, 3 C C sp 3 hybridisation: tetrahedral with angle C=C sp! hybridisation: trigonal with angle 120 C!C sp hybridisation: linear with angle 180 Bond Hybridation Coordination Length (A) Energy (KJ/mol)

4 Allotropes of Carbon (bulk

5 Allotropes of Carbon! Carbon Nanoforms

6 nano 6 Carbon Nanotubes Fullerenes Graphene

7 nano 6 Carbon Nanotubes Fullerenes Graphene

8 Fullerenes! DEFINITION: Family of closed cage molecules exclusively made of carbon atoms. Fullerenes were discovered in 1985 and their discover was awarded the Nobel prize in Chemistry to Robert Curl, Harry Kroto and Richard Smalley in 1996 Fullerenes are considered as the launch of the revolution in carbon nanomaterials and the birth of a whole new area of chemistry.

9 Fullerenes! DEFINITION: Family of closed cage molecules exclusively made of carbon atoms. C 60 is the Buckminsterfullerene IUPAC name: (C 60 -I h ) [5,6] fullerene Richard Buckminster Fuller

10 R. Buckminster Fuller s patent for the geodesic dome.

11 R. Buckminster Fuller s patent for the geodesic dome.

12 The Eden Project, Cornwall, UK

13 Buckminster Fuller On the cover of Time magazine..look at his head

14 Fullerenes! DEFINITION: Family of closed cage molecules exclusively made of carbon atoms. C 60 is the Buckminsterfullerene IUPAC name: (C 60 -I h ) [5,6] fullerene 12 pentagons + variable number hexagons Leonhard Euler's theorem on the relation between the numbers of faces, vertices and edges in polyhedra. V-E+F=2 (condition for closed cage) V = vertices E = edges F = faces If only all pentagons and hexagons: 12 pentagons C60 = 12 pentagons + 20 hexagons C70 = 12 pentagons + 25 hexagons Isolated pentagon rule

15 Fullerenes! DEFINITION: Family of closed cage molecules exclusively made of carbon atoms. C 60 is the Buckminsterfullerene IUPAC name: (C 60 -I h ) [5,6] fullerene All atoms are equivalent (quasi-sp 2 ) Two types of bonds: 1) pentagon-hexagon: single-character (1.458 A) 2) hexagon-hexagon: double-character (1.401 A) Schlegel representation

16 Fullerenes! DEFINITION: Family of closed cage molecules exclusively made of carbon atoms. C 60 is the Buckminsterfullerene IUPAC name: (C 60 -I h ) [5,6] fullerene All atoms are equivalent (quasi-sp 2 ) Two types of bonds: 1) pentagon-hexagon: single-character (1.458 A) 2) hexagon-hexagon: double-character (1.401 A) Schlegel representation

17 Fullerenes! DEFINITION: Family of closed cage molecules exclusively made of carbon atoms. C 60 is the Buckminsterfullerene IUPAC name: (C 60 -I h ) [5,6] fullerene All atoms are equivalent (quasi-sp 2 ) Two types of bonds: 1) pentagon-hexagon: single-character (1.458 A) 2) hexagon-hexagon: double-character (1.401 A)

18 Fullerene Synthesis!! Arc-electric (two graphite rods, sharpened, electric spark between tips)!! Laser ablation of a graphite powder target under flowing Ar gas!! Direct formation from graphene!

19 Cuvilin et al. Nature Chemistry vol 2, Pages: (2010)

20 Applications of fullerene! Organic solar cells D. Guldi, Pure Appl. Chem. 75, 1069 (2003) Skin creams The company claims that Fullerene C-60 is 100 times more effective than Vitamin E in the same concentration for neutralizing free radicals

21 Some genuine medical ʻproʼs!! Water soluble fullerenes (functionalised) have shown promise as:!! Anti-cancer agents!! Anti-HIV agents!! Protective agents against free-radical induced liver damage!! They are good free radical scavangers and antioxidants! The exponential increase in patent filing and publications [in medicine / pharmaceuticals] indicate growing industrial interest that parallels academic interest. The discovery of fullerenes has been compared to the discovery of benzene by many researchers. T. Seema, R. Mehta, Ind. J. Pharm. Sciences, 68 (1), 13 (2006).

22 .. But, excited states! T. Seema, R. Mehta, Ind. J. Pharm. Sciences, 68 (1), 13 (2006). Bethany Halford, Chem. Eng. News 84, 13, p.47 Oct (2006)

23 Medical Summary!! Seem to have great potential in medicine!! Exposed to light or not!! Anti-oxidants in general!! Generate radicals via triplet state on light exposure!! Water soluble or not!! Tissue take-up!! Absorption in lipid bi-layers (can cause cell death, e.g. anti-bacterial)!! Clustering behaviour!! Medical use toxic or not?!! Need very specific testing for the exposure conditions.!

24 Filled Fullerenes! Filled fullerenes for MRI (magnetic resonance imaging) Sc 3 C 80 Robert Lenk, Luna nanoworks Also with scandium, yttrium, and lanthanum more effective contrast agent in MRI currently inject Gd Gd toxic, so wrapped in an organic compound toxicity not completely removed, limits dose 40x better contrast than agents currently on the market Stay in body ~1 hour Yet to go through drug trials Similar idea for X-ray contrast agents (Ho 3+ ) and Radiopharmaceuticals (Ho 3+ and Tm 2+ ) Filled fullerenes for quantum computing C 60 The electron spin in 14 N@C60 can be used as a resource for the nuclear spin qubit.

25 Fullerene based solids : Fullerites! Polymerised fullerenes give fullerites, new ultra-hard materials. Ultrahard fullerite has hardness of 310 GPa, greater than diamond (167GPa) - Fullerite tip scratch on the (111) diamond surface plastic deformation of the diamond Bulk modulus K ~ GPa measured, cf GPa for diamond Synthesis difficult HPHT (15GPa, K) Berber et al, PRB70, (2004)

26 nano 6 Carbon Nanotubes Fullerenes Graphene

27 Graphene! DEFINITION: One atom thick hexagonal layer made exclusively of carbon atoms. Graphene was first produced in 2004 and Andre Geim and Konstantin Novoselov were awarded the Nobel prize in Physics for their experiments in Graphene is the ultimate twodimensional material, it has open a new venues in physics.

28 Graphene The suffix -ene = related to fused polycyclic aromatic hydrocarbons. Graphene may be considered as the final member of this series, the largest member with quasi-infinite size. Benzene Naphthalene Anthracene Phenanthrene Graphene Graphene is an aromatic system (resonant bonds) «Ideal» graphene is not very chemically reactive F-Graphene* B.E.=0.81 ev/f DFT/LDA, 4x4x1 unitcell F2-Graphene * Single Au atom on Graphene ** B.E. = 1.10 ev/f B.E =0.66 ev *C.Bittencourt, G.Van Lier, X.Ke, I.Suarez-Martinez, A.Felten, et al ChemPhysChem 2009, 10, ** I. Suarez-Martinez, C Bittencourt, X Ke, A. Felten et al. Carbon 47 (2009)

29 Two-dimensional solid! Infinite layer of graphene: supercell 128C (8x8x1)

30 Two-dimensional solid! Infinite layer of graphene: supercell 128C (8x8x1)

31 Graphene K A. K. Geim, A. H. MacDonald, Physics Today 60 (8), 35 (2007)

32 Andrea Ferrari (2011)

33 Micromechanical Cleavage (scotch tape)! Andre Geim (2011)

34 Liquid Phase Exfoliation : Graphene Oxide (GO)!! Acid treat (e.g. HNO 3 ) graphite and sonicate!! Graphene layers become oxygen functionalised and peel off the graphite!! Good cheap way to produce graphene solutions!! Graphene Oxide (GO) is NOT graphene (e.g. non-conductive, water soluble))!! Good for composites and chemical functionalisation! Rod Ruoff (2011)

35 Graphene Oxide (GO) /Reduced Graphene Oxide (RGO)! Hydrazine Treatment RGO is NOT graphene! Functionalised graphene produced in tonne quantities Vorbeck.com M. Segal, Nature Nanotechnology 4, (2009) doi: /nnano

36 Graphene DEFINITION: One atom thick hexagonal layer made exclusively of carbon atoms. PROPERTIES! Thinnest imagineable material! Largest surface area (~2700m 2 / g)! Strongest material (Modulus ~1100 GPa, Fracture strength ~130GPa)! Low density ~2g/cm 3 (light)! Stiffest material (stiffer than diamond)! Most stretchable (up to 20% elasticity) K A. K. Geim, A. H. MacDonald, Physics Today 60 (8), 35 (2007)! Record thermal conductivity (beats diamond) ~3000W/m-K in plane, ~2 W/m-K out of plane! Highest current density at room T (10 6 x Cu)! Gas impermeable (blocks all gases when defect free)! Highest intrinsic mobility (100x Si)! Lightest charge carriers (zero rest mass!)! Longest mean free path at room T (micron range)

37 Potential applications! Watches / calendars Touch screens, Microelectronics Thin flexible light panel Composite materials Mobile phones Tablet computers Electronic payment Solar cells Royal Swedish Academy of Sciences

38 SungKyunKwan University / Samsung! S. Bae et al, Nature Nanotechnology 5, (2010)

39 Replacement for ITO?! Transparent conducting electrode Cheaper, more available source Stronger, flexible S. Bae et al, Nature Nanotechnology 5, (2010)

40 Gas Barrier!

41 Graphene related forms! Carbon Nanowalls: vertically oriented graphenes on a substrate Multiple stacked graphenes Similar growth method as for multi-walled carbon nanotube (MWCNT) growth. The walls are typically less than 10 nm and typically a micron long. This material is expected to be of interest for field emission.

42 Graphene related forms! Carbon Nanoribbons: Armchair, zigzag and (chiral) SYNTHESIS OF NANORIBBONS!! Lithography of graphenes!! Bottom-up synthesis!! Klaus Müllen and colleagues!! Possibility also for 3D structures!! Plasma opening nanotubes!

43 «Unzipping» carbon nanotubes! Materials science: Nanotubes unzipped M.Terrones, Nature 458, 845 (2009) doi: /458845a

44 C. Soldano, A. Mahmood, E. Dujardin

45 Vol July 2010 doi: /nature09211

46 Graphene nanoribbons!!"!" Ph. Wagner et al, PRB, submitted (2011)

47 Graphene nanoribbons! M. Baldoni, A. Sgamellotti, F. Mercuri, Chem. Phys. Lett. (2008), 464, 202

48 nano 6 Carbon Nanotubes Fullerenes Graphene

49 Carbon Nanotubes! DEFINITION: Tubular hollow-core sp2 bonded carbon nanostructure with no axially oriented edges, where the tube walls are approximately parallel to the tube axis at all times. Iijima first identified carbon nanotubes as a by-product ofa fullerene experiment. Transmission Electron microscopy image of a single-wall carbon nanotube They are often defined as wrapped graphene but they are not made that way! Sumio Iijima, Japan, 1991

50 Single Walled carbon nanotubes! They are often defined as wrapped graphene but they are not made that way! Hoewer, this definition helps to undestand their nomenclature CHIRAL VECTOR: Hamada indices (n,m) define the diameter and electrical properties of single-wall nanotubes!"#$%!"#$%"#$%#&%"!"#&%')*$'&+"!"&#$%!"#"%"&'()*&$'"

51 Electronic properties of SWNT When n-m is a multiple of 3 the tube is metallic Modelling capping not always easy! METALLIC Semiconducting or METALLIC

52

53 Nanotube Synthesis!! Arc-electric : two graphite rods, sharpened, electric spark between tips!! Metal catalyst for single-walled nanotube!! Laser ablation of a graphite powder target!! Chemical Vapor Deposition :from an organic molecule!

54 Nanotube Forests!

55 Bundling! SWNT are generally in bundles - size of bundles : typically 10 to 200 nanotubes - orthorhombic-like structure - inter-tube distance d vdw ~ 3.15 Å Bundle of SWNT (TEM - ONERA) Bundle of SWNT (GDPC - Montpellier) 2 Chiral SWNT (STM image - U. Illinois, Urbana, USA)

56 c) d),"-(","-("

57 «Dogbone» tubes! '()*%+),-%./0%*-12(3-45%

58 Unique properties for many potential applications - high aspect ratio length/diameter, small diameters, metallic NTC => field emission, composites with conductive behavior - very high current density (the higher! 10 9 A/cm!) => vias (interconnexion between 2 levels of transistor in a chip) field emission - balistic electronic transport => Field-effect-transistor (FET) - elastic (Young) modulus (the higher! 1 Tpa : Pa) => composites with mechanical behavior - thermal conductivity (the higher! 4000 W/m.K) => composites, components - very high surface/volume ratio, broad potential range of electrodes => sensors, supercapacity, biologic applications

59 (b) Field-emission properties and applications

60 Benefits from CNT for field-emission - High aspect ratio => smaller voltages to emit electrons - high current values (0,1-0,2 ma) => more light - stable light emission Bonard et al., Appl. Phys. A 69, 245, 1999

61 Fibres made with lots of nanotubes: ultra-strong, ultra-resistant

62 How to purify water?! VIDEO

63 nano 6 Carbon Nanotubes Fullerenes COMING UP MORE EXOTIC FORMS Graphene

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products June 17, 2015 October 31, 2014 The webinar will begin at 1pm Eastern Time Perform an audio check by going to Tools > Audio > Audio Setup Wizard Chat Box Chat Box Send

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Carbon Nanotubes. Andrea Goldoni. Elettra- Sincrotrone Trieste S.C.p.A., s.s. 14 Km 163,5 in Area Science Park, Trieste, Italy

Carbon Nanotubes. Andrea Goldoni. Elettra- Sincrotrone Trieste S.C.p.A., s.s. 14 Km 163,5 in Area Science Park, Trieste, Italy Carbon Nanotubes Andrea Goldoni Elettra- Sincrotrone Trieste S.C.p.A., s.s. 14 Km 163,5 in Area Science Park, 34012 Trieste, Italy Up to 1985 the only two allotropic form of carbon were known: graphite

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Graphene: the Route from Touch Screens to Digital Nanoelectronics

Graphene: the Route from Touch Screens to Digital Nanoelectronics Graphene: the Route from Touch Screens to Digital Nanoelectronics László Péter Biró Research Institute for Technical Physics & Materials Science, Budapest, Hungary http://www.nanotechnology.hu/ Human History

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral 7. Carbon Nanotubes 1. Overview: Global status market price 2. Types MWNT / SWNT zig-zag / armchair / chiral 3. Properties electrical others 4. Synthesis arc discharge / laser ablation / CVD 5. Applications

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

Carbon Engineering Nanocarbon Structures

Carbon Engineering Nanocarbon Structures Carbon Engineering Nanocarbon Structures Diamond Fullerenes Carbon nanotubes (CNT) multiwalled (MNT) Diamond Like Carbon (DLC) Graphene Nanospheres Allotropes of Carbon Crystalline Diamond Graphite Carbon

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 Lattice: Primitive Cubic 1ReO 3 per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0, 0), (0, 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 octahedra share

More information

Carbon Nanomaterials

Carbon Nanomaterials Carbon Nanomaterials STM Image 7 nm AFM Image Fullerenes C 60 was established by mass spectrographic analysis by Kroto and Smalley in 1985 C 60 is called a buckminsterfullerene or buckyball due to resemblance

More information

Carbon nanotubes in a nutshell

Carbon nanotubes in a nutshell Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014 Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date:13-1818 th July 2014 An electrochemical method for the synthesis of single and few layers graphene sheets for high temperature

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Graphene-reinforced elastomers for demanding environments

Graphene-reinforced elastomers for demanding environments Graphene-reinforced elastomers for demanding environments Robert J Young, Ian A. Kinloch, Dimitrios G. Papageorgiou, J. Robert Innes and Suhao Li School of Materials and National Graphene Institute The

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

Carbon Structure Simulations using Crystal Viewer Tool

Carbon Structure Simulations using Crystal Viewer Tool Carbon Structure Simulations using Crystal Viewer Tool The Crystal Viewer tool in nanohub.org can be used to build three carbon nanostructures: graphene sheets, Buckminsterfullerene, Bucky balls (C 60

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

Commercial Graphene Applications: Current Research and Future Prospects

Commercial Graphene Applications: Current Research and Future Prospects Commercial Graphene Applications: Current Research and Future Prospects Overview History and Overview of Graphene Angstron Materials and Nanotek Instruments Applications of Graphene Thermal Management

More information

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad Ali Ahmadpour Fullerenes Ali Ahmadpour Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad 2014 World of Carbon Materials 2 Fullerenes 1985 Robert F. Curl Jr. Richard

More information

PHYS-E0424 Nanophysics Lecture 5: Fullerenes, Carbon Nanotubes and Graphene

PHYS-E0424 Nanophysics Lecture 5: Fullerenes, Carbon Nanotubes and Graphene PHYS-E0424 Nanophysics Lecture 5: Fullerenes, Carbon Nanotubes and Graphene PHYS-E0424 Nanophysics Lecture 5: Carbon Nanostructures Sebastiaan van Dijken 1 SEM/TEM Recently I was operating SEM for a first

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Photophysics of Nano Carbons Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Electronic Structure of Graphene Near the K point E ( ) v F linear relation where and and 0

More information

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING Session V: Graphene Matteo Bruna Graphene: Material in the Flatland Graphite Graphene Properties: Thinnest imaginable material Good(and tunable) electrical conductor Strongest ever measured Stiffest known

More information

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilmenau.de thomas.hannappel@tu-ilmenau.de http:///nanostruk/ Organic semiconductors Small-molecular materials Rubrene Pentacene Polymers PEDOT:PSS

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 06 Tentative version of November 13, 2012 Check for the definitive version after the lecture rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton

More information

Index. C 60 buckminsterfullerene 87 C 60 buckminsterfullerene formation process

Index. C 60 buckminsterfullerene 87 C 60 buckminsterfullerene formation process Index acetone 64 aluminum 64 65 arc-discharged carbon 25 argon ion laser 43 aromaticity 2D 99 3D 89 90, 98 planar 89 spherical 90 astronomy 113, 125, 127, 131 atoms chlorine 107 108 titanium 161 162 benzene

More information

Carbon Nanotubes Activity Guide

Carbon Nanotubes Activity Guide Carbon Nanotubes Activity Guide Quick Reference Activity Guide Activity Materials chicken wire models of different nanotube types description pages for counting schemes solid models for graphite and diamond

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Nanostrukturphysik. Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik

Nanostrukturphysik. Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Nanostrukturphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902) Office: Gebäude V202, Unterpörlitzer

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Matteo Baldoni Fachbereich Chemie, Technische Universität Dresden, Germany Department of Chemistry

More information

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA Conference for Undergraduate Women in Physics at Yale January 18, 2009 Why are

More information

Nanostrukturphysik Übung 2 (Class 3&4)

Nanostrukturphysik Übung 2 (Class 3&4) Nanostrukturphysik Übung 2 (Class 3&4) Prof. Yong Lei & Dr. Yang Xu 2017.05.03 Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902)

More information

Nanoscience & Nanotechnology-II What is happening at a very, very small length scale?

Nanoscience & Nanotechnology-II What is happening at a very, very small length scale? Nanoscience & Nanotechnology-II What is happening at a very, very small length scale? Plan of the talk Fullerenes Graphene Carbon Nanotubes Properties Fullerenes The most symmetrical large molecule Discovered

More information

Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 )

Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 ) Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 ) Undergraduate project in solid state physics Supervisor: Dr. Eugene Katz Dept. of Solar Energy and Environmental Physics

More information

Carbon nanotubes and Graphene

Carbon nanotubes and Graphene 16 October, 2008 Solid State Physics Seminar Main points 1 History and discovery of Graphene and Carbon nanotubes 2 Tight-binding approximation Dynamics of electrons near the Dirac-points 3 Properties

More information

Carbon Materials for Electronic, Environmental and Biomedical Application

Carbon Materials for Electronic, Environmental and Biomedical Application Carbon Materials for Electronic, Environmental and Biomedical Application Seong-Cheol Kim School of Chemical Engineering Yeungnam University Nanomaterials for Electronics & Biomedical Uses 1. Organic Nanomaterials

More information

The World of Carbon Nanotubes

The World of Carbon Nanotubes The World of Carbon Nanotubes Carbon Nanotubes Presentation by Jan Felix Eschermann at JASS05 from March 31st to April 9th, 2005 1 Outline Introduction Physical Properties Manufacturing Techniques Applications

More information

NANOSCIENCE AND NANOTECHNOLOGY

NANOSCIENCE AND NANOTECHNOLOGY NANOSCIENCE AND NANOTECHNOLOGY Yuehe Lin WHAT IS NANOTECHNOLOGY Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel

More information

The Young s Modulus of Single-Walled Carbon Nanotubes

The Young s Modulus of Single-Walled Carbon Nanotubes The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Nano-1. Nanoscience I: Hard nanostructures. Kai Nordlund Faculty of Science Department of Physics Division of Materials Physics

Nano-1. Nanoscience I: Hard nanostructures. Kai Nordlund Faculty of Science Department of Physics Division of Materials Physics Nanoscience I: Hard nanostructures Kai Nordlund 10.10.2010 Faculty of Science Department of Physics Division of Materials Physics Contents Carbon nanostructures Background Graphene Fullerenes Nanotubes

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Exploring the Changes in the Structure of α-helical Peptides Adsorbed onto Carbon and Boron Nitride based Nanomaterials

Exploring the Changes in the Structure of α-helical Peptides Adsorbed onto Carbon and Boron Nitride based Nanomaterials Exploring the Changes in the Structure of α-helical Peptides Adsorbed onto Carbon and Boron Nitride based Nanomaterials Dr. V. Subramanian Chemical Laboratory, IPC Division CSIR-Central Leather Research

More information

SWCNTs Single Wall Carbon Nanotubes

SWCNTs Single Wall Carbon Nanotubes Carbon Nanotubes - CNTs 1 SWCNTs Single Wall Carbon Nanotubes 2 Carbon Nanotubes - Growth 3 Carbon Nanotubes Building Principles 4 Carbon Nanotubes Building Principle 5 Carbon Nanotubes Building Principle

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

In the name of Allah

In the name of Allah In the name of Allah Nano chemistry- 4 th stage Lecture No. 1 History of nanotechnology 16-10-2016 Assistance prof. Dr. Luma Majeed Ahmed lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq Nano chemistry-4

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Carbon Nanotube: The Inside Story

Carbon Nanotube: The Inside Story Krasnoyarsk: 24 th August, 2009 Carbon Nanotube: The Inside Story Review written for Journal of Nanoscience and Nanotechnology Yoshinori ANDO Dean of Faculty of Science and Technology, Meijo University

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction In our planet carbon forms the basis of all organic molecules which makes it the most important element of life. It is present in over 95% of the known chemical compounds overall

More information

Nanotechnology 5 th lecture

Nanotechnology 5 th lecture Nanotechnology 5 th lecture (c) http://www.nccr-nano.org/nccr_data/ gallery/gallery_01/gallery_01_03/pics_06/ internet/nanotube_spiral.jpg Plan for today: http://www.nccr-nano.org/nccr_data/gallery/ gallery_01/gallery_01_03/pics_04/internet/

More information

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2011) Special Session 5 6-2011 Understanding Irreducible and Reducible Oxides as Catalysts for Carbon

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel Chemistry 1000 Lecture 22: Group 14 and Boron Marc R. Roussel Group 14 In this group again, we see a full range of nonmetallic to metallic behavior: C is a nonmetal. Si and Ge are metalloids. Sn and Pb

More information

CARBON NANOTUBES: PYSICAL PROPERTIES & APPLICATIONS

CARBON NANOTUBES: PYSICAL PROPERTIES & APPLICATIONS REPORT TITLE CARBON NANOTUBES: PYSICAL PROPERTIES & APPLICATIONS COURSE NAME: 01NUWKI CHEMISTRY-PHYSICS OF MATERIALS FOR NANOTECHNOLOGY SUBMITTED TO: PROF. GARRONE EDOARDO SUBMITTED BY: NADIA PARVEEN MATRICULATION

More information

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Manipulating and determining the electronic structure of carbon nanotubes

Manipulating and determining the electronic structure of carbon nanotubes Manipulating and determining the electronic structure of carbon nanotubes (06.12.2005 NTHU, Physics Department) Po-Wen Chiu Department of Electrical Engineering, Tsing Hua University, Hsinchu, Taiwan Max-Planck

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar 1 GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure Application of Graphene

More information

2-D Layered Materials 1

2-D Layered Materials 1 2-D Layered Materials 1 Flatlands beyond Graphene Why the interest? 2D crystal with extraordinarily few defects Exotic electrical behaviors E = v F P (massless Dirac fermions) Efficient tunneling through

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

Functionalized Carbon Nanotubes a key to nanotechnology?

Functionalized Carbon Nanotubes a key to nanotechnology? 1 27th Max Born Symposium Multiscale Modeling of Real Materials Wroclaw, Sep 19, 2010 Functionalized Carbon Nanotubes a key to nanotechnology? Karolina Milowska, Magda Birowska & Jacek A. Majewski Faculty

More information

Investigation Report of Graphene

Investigation Report of Graphene Investigation Report of Graphene Reporter: Shao Xiaoru Superviser: Prof.Zhao & Dr. Hong 2014-4-14 Contents 1 Basic Knowledge 2 Synthesis Method 3 Research Progress 4 Future research directions 2 Omnipotent

More information

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n. University of Groningen Fullerenes for organic electronics Kooistra, Floris Berend IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES Weiqiao Deng, Jianwei Che, Xin Xu, Tahir Çagin, and William A Goddard, III Materials and Process Simulation Center, Beckman Institute,

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23 STM and graphene W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23 Why graphene is important: It is a new form of material (two dimensional, single

More information

Synthesis of nanotubes. Ewelina Broda

Synthesis of nanotubes. Ewelina Broda Synthesis of nanotubes Ewelina Broda Presentation Overview 1. Introduction 2. History 3. Types and structures 4. Properties 5. Synthesis 6. Applications 7. References Allotropes of Elemental Carbon History

More information

Graphene - most two-dimensional system imaginable

Graphene - most two-dimensional system imaginable Graphene - most two-dimensional system imaginable A suspended sheet of pure graphene a plane layer of C atoms bonded together in a honeycomb lattice is the most two-dimensional system imaginable. A.J.

More information

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS Vinu Unnithan and J. N. Reddy US-South American Workshop: Mechanics and Advanced Materials Research and Education

More information

CHAPTER 11 Semiconductor Theory and Devices

CHAPTER 11 Semiconductor Theory and Devices CHAPTER 11 Semiconductor Theory and Devices 11.1 Band Theory of Solids 11.2 Semiconductor Theory 11.3 Semiconductor Devices 11.4 Nanotechnology It is evident that many years of research by a great many

More information

Nanomaterials (II): Carbon Nanotubes

Nanomaterials (II): Carbon Nanotubes Nanomaterials (II): Carbon Nanotubes Carbon Nanotubes Carbon nanotubes (CNTs) belong to the fullerene family. Fullerenes are composed of covalently boded C atoms arranged to form a closed, convex cage.

More information

Part II Low dimensional carbon materials Carbon

Part II Low dimensional carbon materials Carbon Part II Low dimensional carbon materials Carbon nanotubes (CNTs) and Graphene Outline Carbon nanomaterials Types of carbon nanomaterials Graphene and CNT Introduction Synthesis Specific topics Application

More information

Processing and Applications of Carbon Nanotubes, Graphene, and Beyond

Processing and Applications of Carbon Nanotubes, Graphene, and Beyond Processing and Applications of Carbon Nanotubes, Graphene, and Beyond Professor Mark C. Hersam Department of Materials Science and Engineering Northwestern University http://www.hersam-group.northwestern.edu/

More information

A BIT OF MATERIALS SCIENCE THEN PHYSICS

A BIT OF MATERIALS SCIENCE THEN PHYSICS GRAPHENE AND OTHER D ATOMIC CRYSTALS Andre Geim with many thanks to K. Novoselov, S. Morozov, D. Jiang, F. Schedin, I. Grigorieva, J. Meyer, M. Katsnelson A BIT OF MATERIALS SCIENCE THEN PHYSICS CARBON

More information

Graphene and Quantum Hall (2+1)D Physics

Graphene and Quantum Hall (2+1)D Physics The 4 th QMMRC-IPCMS Winter School 8 Feb 2011, ECC, Seoul, Korea Outline 2 Graphene and Quantum Hall (2+1)D Physics Lecture 1. Electronic structures of graphene and bilayer graphene Lecture 2. Electrons

More information

Novel Dispersion and Self-Assembly

Novel Dispersion and Self-Assembly Novel Dispersion and Self-Assembly of Carbon Nanotubes Mohammad F. Islam 100g Department of Chemical Engineering and Department of Materials Science & Engineering Funding Agencies http://islamgroup.cheme.cmu.edu

More information

Chemistry 1000 Lecture 24: Group 14 and Boron

Chemistry 1000 Lecture 24: Group 14 and Boron Chemistry 1000 Lecture 24: Group 14 and Boron Marc R. Roussel November 2, 2018 Marc R. Roussel Group 14 and Boron November 2, 2018 1 / 17 Group 14 In this group again, we see a full range of nonmetallic

More information

Chapter 1: Introduction of Carbon Nanotubes: Properties, Synthesis, Characterization and Applications

Chapter 1: Introduction of Carbon Nanotubes: Properties, Synthesis, Characterization and Applications Chapter 1: Introduction of Carbon Nanotubes: Properties, Synthesis, Characterization and Applications 1.1. Background 1.2. Introduction of carbon and their allotropes 1.3. Carbon nanotubes (CNTs) 1.4.

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

DETECTION OF NH 3 & CO 2 USING CARBON NANOTUBES AT ROOM TEMPERATURE

DETECTION OF NH 3 & CO 2 USING CARBON NANOTUBES AT ROOM TEMPERATURE International Journal of Nanotechnology and Application (IJNA); ISSN 2277-4777 Vol. 3,Issue 1, Mar 2013, 11-18 TJPRC Pvt.Ltd. DETECTION OF NH 3 & CO 2 USING CARBON NANOTUBES AT ROOM TEMPERATURE G SUDHEER

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Nanofabrication/Nano-Characterization Calixarene and CNT Control Technology

Nanofabrication/Nano-Characterization Calixarene and CNT Control Technology Nanofabrication/Nano-Characterization Calixarene and CNT Control Technology ISHIDA Masahiko, FUJITA Junichi, NARIHIRO Mitsuru, ICHIHASHI Toshinari, NIHEY Fumiyuki, OCHIAI Yukinori Abstract The world of

More information

Carbon 1 of 19 Boardworks Ltd 2016

Carbon 1 of 19 Boardworks Ltd 2016 Carbon 1 of 19 Boardworks Ltd 2016 Carbon 2 of 19 Boardworks Ltd 2016 The carbon atom 3 of 19 Boardworks Ltd 2016 Carbon is a non-metallic element found in group 4 of the periodic table. It has 6 electrons,

More information

Graphene. L. Tetard 1,2. (Dated: April 7, 2009) 1 Oak Ridge National Laboratory, Oak Ridge, TN USA

Graphene. L. Tetard 1,2. (Dated: April 7, 2009) 1 Oak Ridge National Laboratory, Oak Ridge, TN USA Graphene L. Tetard 1,2 1 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6123 USA 2 Department of Physics, University of Tennessee, Knoxville, TN 37996, USA (Dated: April 7, 2009) 1 Diamond, graphite,

More information