Chapter 1 Introduction

Size: px
Start display at page:

Download "Chapter 1 Introduction"

Transcription

1 Chapter 1 Introduction In our planet carbon forms the basis of all organic molecules which makes it the most important element of life. It is present in over 95% of the known chemical compounds overall (Falcao and Wudl 2007). Carbon can be found in many forms (about 10 million compounds) and is a very abundant element in our lives. It s very complex behaviour has been extensively studied throughout the years. Carbon has been identified as a key component of natural compounds (such as DNA) and processes (such as photosynthesis). Carbon also takes part in reactions in the universe (collision of alpha particles on sun). Carbon is regarded as one of the most versatile elements in the periodic table forming a wide variety of structures. Carbon is unique in possessing allotropes of each possible dimensionality, 3D diamond, 3D graphite, 2D graphene, 1D nanotube and 0D fullerenes. The carbon allotropes i.e. those materials which consist entirely of carbon atoms, can be divided into three classes according to the type of bonds linking the atoms together. This type of bonding depends upon hybridization of carbon atomic orbitals which is usually sp 2 or sp 3. When the carbon atoms have sp 3 hybridization diamond structure is formed. In case of sp 2 hybridization one of graphitic material is formed (i.e. fullerenes, nanotube, graphene or graphite). Diamond is the strongest of all bulk materials and has the highest thermal conductivity ever measured. Graphite, a three dimensional (3D) allotrope of carbon, became widely known after the invention of pencil in 1564 (Petroski 1989). Its usefulness as an instrument for writing comes from the fact that graphite is made out of stacks of graphene layers. Fullerenes (Andreoni 2000) are molecules where carbon atoms are arranged spherically. Fullerenes can be obtained from graphene with the introduction of pentagons and hence fullerenes can be thought as wrapped-up graphene. Carbon nanotubes (Saito Dresselhaus and Dresselhaus 1998, Charlier et al. 2007) are obtained by rolling graphene along a given direction and reconnecting the carbon bonds. The last one, graphene, forms the basis of all these other graphitic allotropes (see figure 1.1).

2 Figure 1.1 Graphene from graphite. Graphite is a basic material found in nature. When taken apart graphite sheets become graphene. A rolled up layer of graphene forms a carbon nanotube, folded up it becomes a small football, fullerene (The Nobel Prize In Physics 2010, The Royal Swedish Academy Of Sciences, Graphene Graphene is a single layer of graphite. It has been used and studied as building block for carbon based materials for decades. This 2D configuration consists of a real atomic monolayer of carbon atoms organized into a honey comb lattice. More than seventy five years ego, Landau (Landau 1937) and Peierls (Peierls 1935) argued that 2D crystals could not exist. Mermin further developed this theory which was supported by some experimental results (Venables et al. 1984). These experimental observations of a decreasing melting temperature for thin films with a decreasing thickness seemed to provide strong support for this theory. Indeed, the melting temperature of thin films rapidly decreases with decreasing thickness, and the films become unstable (segregate into islands or decompose) at a thickness of, typically, dozens of atomic layers. For this reason, atomic monolayers have so far been

3 known only as an integral part of larger 3D structures, usually grown epitaxially on top of monocrystals with matching crystal lattices. Without such a 3D base, 2D materials were presumed not to exist. But it was a surprise in 2004 when several 2D materials were observed by Geim et al.at in Manchester University (Novosolov et al. 2004). Among these 2D materials were graphene, the structurally similar boron nitride, and others, but only graphene has been intensively studied till now. There has been a long debate on the cause of the apparent stability of graphene monolayers but there seems to have emerged a consensus that the 2D crystals become intrinsically stable by a soft crumpling in the third dimension (Meyer et al., Nelson et al. 2004). Figure 1.2 Graphene. The almost perfect web is only one atom thick. It consists of carbon atoms joined together in a hexagonal pattern similar to chicken wire. (Meyer 2009). This 3D warping (observed on a lateral scale of 10 nm) (Meyer et al. 2009) leads to a gain in elastic energy but suppresses thermal vibrations (anomalously large in 2D), which above a certain temperature can minimize the total free energy (Nelson et al. 2004). Today it is the thinnest and most attractive nanomaterial in the universe and the strongest ever measured (Geim 2009). It has excellent electrical, thermal and optical properties (Abergel et al. 2010).

4 1.2 Functionalized Graphene The chemical modification of graphene can herald another avenue for making new materials with novel properties. Sofo et al. (Sofo et al. 2007) predicted through firstprinciple total energy calculations that graphene could be fully hydrogenated to form a stable two dimensional hydrocarbon. They called the new hydrocarbon as graphane and proposed it to have potential applications in hydrogen storage and nanoelectronics. This theoretical prediction has been very quickly translated into reality through the co-operative research efforts of Geim s (Elias et al. 2009) group at Manchester University with scientists at Cambridge University, UK and Radboud University, The Netherlands. Geim s group has experimentally demonstrated for the first time that a single layer of graphene can be hydrogenated to graphane. Figure 1.3 Graphene hydrogenation (A) A graphene layer, where delocalized electrons are free to move between carbon atoms, is exposed to a beam of hydrogen atoms. (B) In non-conductive graphane, the hydrogen atoms bond their electrons with electrons of carbon atoms and pull the atoms out of the plane. (Savchenko 2009). The experimental work also showed that the process of hydrogenation is reversible, making graphane a potential candidate for hydrogen storage systems. Since upon hydrogenation, graphene, a semi-metal turns into an insulator, it is a good candidate for investigating the nature of metal insulator transition (MIT). Graphane has the same honeycomb structure as graphene, except that it is "spray-painted" with hydrogen atoms that attach themselves to carbon (see figure 1.3). Graphane is

5 thermodynamically stable as comparable to hydrocarbons, more stable than metal hydrides and more stable than graphene by ~ 0.15 ev (Elias et al. 2009). It has large hydrogen storage capacity 7.7 wt% which exceeds the Department of Energy (DOE) 2010 target of 6%, thus it is a promising candidate for hydrogen storage. 1.3 Motivation Due to low mobility of charge carriers the silicon technology is not suitable for nano scale devices. Alternatively to replace silicon by elements of group III and other group V elements the fabrication of such A III B V based devices is very expensive additionally silicon and A III B V technologies have poor compatibility in integrated circuits (Berashevich and Chakraborty 2010). However, after the discovery of graphene, carbon electronics with a possibility of ballistic transport has emerged as a more promising technology for fabrication of nano scale devices. In the last few years, graphene has been considered as one of the most sensational materials for its many exotic properties and it is an excellent candidate for future electronics due to the extraordinarily high mobility of its charge carriers. The absence of a band gap hinders its applications in microelectronic devices, but the suitable band gap can be introduced by chemical functionalization of graphene which results into the tuning of electronic and magnetic properties for vast applications in microelectronics. The few other aspects like, (a) potential use of graphene for hydrogen storage (Sofo et. al 2007, Boukhvalov et. al 2008, Deng et.al 2004, Rojas and Leiva 2007, Ataca et. al 2008, Lin et. al 2008 and Chan et. al 2008) (b) to make graphene magnetic for potential use in spintronics (Boukhvalov et. al 2008, Boukhvalov et. al 2008a, Roman et. al 2006, Roman et. al 2007, Yazyey and Helm 2007 and Wu, Liu and Jiang 2008) (c) low reflectance, high carrier mobility & high absorption to fabricate optoelectronic devices (Berashevich and Chakraborty 2010) and (d) to create electrochemical & biosensors (Liang and Zhi 2009) are also motivations to study chemical functionalization of graphene. The hydrocarbon compound Graphane, is an emerging material for applications in electronic and photonics. Graphane has opened up increasingly fertile possibilities in hydrogen storage and two dimensional electronics. 1.4 Aim & Objectives Graphene is a promising carbon-based material which was mechanically exfoliated from graphite in 2004, the 440 years after the invention of pencil. It represents a new

6 class of materials which are only one atom thick and it has gained attention due to unique electronic and magnetic properties. It offers new inroads into low dimensional properties and continues to provide fertile ground for many applications. Recent computational and experimental studies have shown that hydrogenation of pristine graphene results in a metal-semiconductor transition. In the present work our main aim is the study of functionalized graphene modeled in chair conformation using the method of numeric localized atomic orbitals, pseudopotentials and DFT as implemented in SIESTA code. The objectives of this study are the following: 1. Calculation of Electron Density of States for Nanostructured Functionalized Graphene. 2. Calculation of Band Structure for Nanostructured Functionalized Graphene. 3. Calculation of Magnetic Properties for Nanostructured Functionalized Graphene. 4. Calculation of Optical Properties for Nanostructured Functionalized Graphene. 5. Calculation of Transport Properties for Nanostructured Functionalized Graphene. 1.5 Outline of thesis: This thesis has been written as per format provided by Shoolini University and is divided into five chapters. In Chapter 1 we present the introduction to graphene and functionalized graphene, motivation, aim and objectives of the thesis. The review of literature on graphene and functionalized graphene, including experimental and theoretical work, is presented in Chapter 2. Chapter 3 covers the methodology used in this work. In Chapter 4 we present our results with discussion. Chapter 5 contains conclusions and future scopes. After chapter 5 we have given the list of references used in this work. In addition the thesis contains three Appendices. Appendix 1 contains the input files for the generation and testing of pseudopotentials of carbon and hydrogen. Appendix 2 contains some of the input files used during this study. Appendix 3 contains the optimized nano structures which have been investigated during this study. At the end we have given the list of publications and detail of seminars/conferences/workshops attended.

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

AB INITIO STUDY OF NANO STRUCTURED FUNCTIONALIZED GRAPHENE WITH 30C ATOMS

AB INITIO STUDY OF NANO STRUCTURED FUNCTIONALIZED GRAPHENE WITH 30C ATOMS International Journal of Science, Environment and Technology, Vol. 1, No 3, 2012, 108-112 AB INITIO STUDY OF NANO STRUCTURED FUNCTIONALIZED GRAPHENE WITH 30C ATOMS Naveen Kumar* and Jyoti Dhar Sharma Deptt.

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

Carbon 1 of 19 Boardworks Ltd 2016

Carbon 1 of 19 Boardworks Ltd 2016 Carbon 1 of 19 Boardworks Ltd 2016 Carbon 2 of 19 Boardworks Ltd 2016 The carbon atom 3 of 19 Boardworks Ltd 2016 Carbon is a non-metallic element found in group 4 of the periodic table. It has 6 electrons,

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

A BIT OF MATERIALS SCIENCE THEN PHYSICS

A BIT OF MATERIALS SCIENCE THEN PHYSICS GRAPHENE AND OTHER D ATOMIC CRYSTALS Andre Geim with many thanks to K. Novoselov, S. Morozov, D. Jiang, F. Schedin, I. Grigorieva, J. Meyer, M. Katsnelson A BIT OF MATERIALS SCIENCE THEN PHYSICS CARBON

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube Journal of Physics: Conference Series PAPER OPEN ACCESS Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube To cite this article: Jyotirmoy Deb et al 2016 J. Phys.: Conf. Ser.

More information

Graphene. L. Tetard 1,2. (Dated: April 7, 2009) 1 Oak Ridge National Laboratory, Oak Ridge, TN USA

Graphene. L. Tetard 1,2. (Dated: April 7, 2009) 1 Oak Ridge National Laboratory, Oak Ridge, TN USA Graphene L. Tetard 1,2 1 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6123 USA 2 Department of Physics, University of Tennessee, Knoxville, TN 37996, USA (Dated: April 7, 2009) 1 Diamond, graphite,

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

Physical Properties of Mono-layer of

Physical Properties of Mono-layer of Chapter 3 Physical Properties of Mono-layer of Silicene The fascinating physical properties[ 6] associated with graphene have motivated many researchers to search for new graphene-like two-dimensional

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Graphene: fundamentals

Graphene: fundamentals Graphene: fundamentals François Peeters Condensed Matter Theory group Department of Physics University of Antwerp Email: francois.peeters@uantwerpen.be https://www.uantwerpen.be/en/rg/cmt/ Chemistry Graphitic

More information

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies.

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies. Novel Nano-Engineered Semiconductors for Possible Photon Sources and Detectors NAI-CHANG YEH Department of Physics, California Institute of Technology 1. Nanotechnology & nanomaterials -- Functional nanomaterials

More information

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 Lattice: Primitive Cubic 1ReO 3 per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0, 0), (0, 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 octahedra share

More information

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli Electron Emission from Diamondoids: a DMC Study Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli October 18, 2005 1 Semiconductor Nanoparticles for Optoelectronic Devices (I) The

More information

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-15-2008 Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar 1 GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure Application of Graphene

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light? Bonding in Solids: Metals, Insulators, & CHEM 107 T. Hughbanks Delocalized bonding in Solids Think of a pure solid as a single, very large molecule. Use our bonding pictures to try to understand properties.

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

Nanostructural properties 2009/10 Mini-course on fundamental electronic and optical properties of organic semiconductors (part 1) Lorenzo Stella

Nanostructural properties 2009/10 Mini-course on fundamental electronic and optical properties of organic semiconductors (part 1) Lorenzo Stella Nanostructural properties 2009/10 Mini-course on fundamental electronic and optical properties of organic semiconductors (part 1) Lorenzo Stella Nano-bio group - ETSF lorenzo.stella@ehu.es Outline A. Introduction

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING Session V: Graphene Matteo Bruna Graphene: Material in the Flatland Graphite Graphene Properties: Thinnest imaginable material Good(and tunable) electrical conductor Strongest ever measured Stiffest known

More information

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014 Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date:13-1818 th July 2014 An electrochemical method for the synthesis of single and few layers graphene sheets for high temperature

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

4.2.1 Chemical bonds, ionic, covalent and metallic

4.2.1 Chemical bonds, ionic, covalent and metallic 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Information processing in nanoscale systems

Information processing in nanoscale systems Information processing in nanoscale systems Mark Rudner Niels Bohr International Academy Image from: www.upscale.utoronto.ca 100 years after Bohr, the basic laws and players are established 1913 2013 Image

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

ORGANIC SEMICONDUCTOR 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA)

ORGANIC SEMICONDUCTOR 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) ORGANIC SEMICONDUCTOR 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) Suvranta Tripathy Department of Physics University of Cincinnati Cincinnati, Ohio 45221 March 8, 2002 Abstract In the last decade

More information

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel Chemistry 1000 Lecture 22: Group 14 and Boron Marc R. Roussel Group 14 In this group again, we see a full range of nonmetallic to metallic behavior: C is a nonmetal. Si and Ge are metalloids. Sn and Pb

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure and... FUNCTIONS 3 Carbon-based

More information

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has?

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has? Bonding in Solids Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

There are four types of solid:

There are four types of solid: Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with very high melting

More information

reversible hydrogenation

reversible hydrogenation Strain engineering on graphene towards tunable and reversible hydrogenation Zhiping Xu 1,* and Kun Xue 2 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.3 Covalent structures

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 205-212 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Effect of Boron and Oxygen Doping to Graphene Band Structure Siti Fazlina bt

More information

Chemistry 1000 Lecture 24: Group 14 and Boron

Chemistry 1000 Lecture 24: Group 14 and Boron Chemistry 1000 Lecture 24: Group 14 and Boron Marc R. Roussel November 2, 2018 Marc R. Roussel Group 14 and Boron November 2, 2018 1 / 17 Group 14 In this group again, we see a full range of nonmetallic

More information

GRAPHENE AS A NOVEL SINGLE PHOTON COUNTING OPTICAL AND IR PHOTODETECTOR

GRAPHENE AS A NOVEL SINGLE PHOTON COUNTING OPTICAL AND IR PHOTODETECTOR GRAPHENE AS A NOVEL SINGLE PHOTON COUNTING OPTICAL AND IR PHOTODETECTOR J.O.D Williams*, J.S. Lapington*, M. Roy*, I.B. Hutchinson* *Space Research Centre, Department of Physics and Astronomy, University

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

Carbon Nanotube: Property, application and ultrafast optical spectroscopy

Carbon Nanotube: Property, application and ultrafast optical spectroscopy Carbon Nanotube: Property, application and ultrafast optical spectroscopy Yijing Fu 1, Qing Yu 1 Institute of Optics, University of Rochester Department of Electrical engineering, University of Rochester

More information

SHAPES OF MOLECULES AND IONS

SHAPES OF MOLECULES AND IONS SAPES MLECULES AND INS The shape of a molecule depends upon its electronic structure. It is the outer shell or valence shell electrons which are responsible for forming bonds and it is the arrangement

More information

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes.

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes. OCR A GCSE Chemistry Topic 2: Elements, compounds and mixtures Properties of materials Notes C2.3a recall that carbon can form four covalent bonds C2.3b explain that the vast array of natural and synthetic

More information

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS SMALLER FASTER MORE SENSETIVE MORE EFFICIENT NANO CONNECT SCANDINAVIA www.nano-connect.org Chalmers University of Technology DTU Halmstad University

More information

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry From Last Time Several important conceptual aspects of quantum mechanics Indistinguishability particles are absolutely identical Leads to Pauli exclusion principle (one Fermion / quantum state). Symmetry

More information

554 Chapter 10 Liquids and Solids

554 Chapter 10 Liquids and Solids 554 Chapter 10 Liquids and Solids above 7376 kpa, CO 2 is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

4.2 Bonding, structure, and the properties of matter

4.2 Bonding, structure, and the properties of matter 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Graphene IC Part 2_Graphene IC+Graphene Allotropes *

Graphene IC Part 2_Graphene IC+Graphene Allotropes * OpenStax-CNX module: m43815 1 Graphene IC Part 2_Graphene IC+Graphene Allotropes * Bijay_Kumar Sharma This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information

On the Possible new High Temperature Superconductors. Zhi Cheng (9 Bairong st. Baiyun District, Guangzhou, China

On the Possible new High Temperature Superconductors. Zhi Cheng (9 Bairong st. Baiyun District, Guangzhou, China On the Possible new High Temperature Superconductors Zhi Cheng (9 Bairong st. Baiyun District, Guangzhou, China. 510400. gzchengzhi@hotmail.com) Abstract: It shows that the hybrid graphene may be the high

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

Radioactivity, Radioactive Dating, Band Theory of Solids, and Quantum Electronics Devices such as LEDs

Radioactivity, Radioactive Dating, Band Theory of Solids, and Quantum Electronics Devices such as LEDs Physics 5K Lecture Friday May 11, 2012 Radioactivity, Radioactive Dating, Band Theory of Solids, and Quantum Electronics Devices such as LEDs Joel Primack Physics Department UCSC Friday, May 11, 12 Distant

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids Ch 12: Solids and Modern Materials Learning goals and key skills: Classify solids base on bonding/intermolecular forces and understand how difference in bonding relates to physical properties Know the

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

The Workshop on Recent Progress in Theoretical and Computational Studies of 2D Materials Program

The Workshop on Recent Progress in Theoretical and Computational Studies of 2D Materials Program The Workshop on Recent Progress in Theoretical and Computational Program December 26-27, 2015 Beijing, China December 26-27, 2015, Beijing, China The Workshop on Recent Progress in Theoretical and Computational

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Pedro A. S. Autreto and Douglas S. Galvao Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

physical Carbon Nanotubes Properties of Physical Properties of Carbon Nanotubes Downloaded from

physical Carbon Nanotubes Properties of Physical Properties of Carbon Nanotubes Downloaded from physical Properties of Carbon Nanotubes This page is intentionally left blank Rysical Properties of Carbon Nanotubes GDRESSELElAUS & M S DRBSELMUS MZT Imperial College Press Published by Imperial College

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

UNIT 1 CHEMISTRY. How Can the Diversity of Materials Be Explained?

UNIT 1 CHEMISTRY. How Can the Diversity of Materials Be Explained? UNIT 1 CHEMISTRY How Can the Diversity of Materials Be Explained? AoS 1: How Can the Knowledge of Elements Explain the Properties of Matter? AoS 2: How Can the Versatility of Non-Metals be Explained? AoS

More information

More Bonding. Metals

More Bonding. Metals Yet More Bonding Chemistry, Life, the Universe & Everything Cooper & Klymkowsky Shiny Conduct electricity Malleable Metals May be colored (gold, copper, etc) silver is colorless How does bonding in metals

More information

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene GCOE Symposium Tohoku University 2011 Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene Danny Haberer Leibniz Institute for Solid State and Materials Research Dresden Co-workers Supervising

More information

Nanomaterials for breakthrough innovations

Nanomaterials for breakthrough innovations Nanomaterials for breakthrough innovations G. Fiori Dipartimento di Ingegneria dell Informazione, University of Pisa Via Caruso 16, 56122, Pisa, Italy. gfiori@mercurio.iet.unipi.it http://gianlucafiori.org

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

ECE 535 Theory of Semiconductors and Semiconductor Devices Fall 2015 Homework # 5 Due Date: 11/17/2015

ECE 535 Theory of Semiconductors and Semiconductor Devices Fall 2015 Homework # 5 Due Date: 11/17/2015 ECE 535 Theory of Semiconductors and Semiconductor Devices Fall 2015 Homework # 5 Due Date: 11/17/2015 Problem # 1 Two carbon atoms and four hydrogen atoms form and ethane molecule with the chemical formula

More information

First-Hand Investigation: Modeling of Semiconductors

First-Hand Investigation: Modeling of Semiconductors perform an investigation to model the behaviour of semiconductors, including the creation of a hole or positive charge on the atom that has lost the electron and the movement of electrons and holes in

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

For more information, please contact: or +1 (302)

For more information, please contact: or +1 (302) Introduction Graphene Raman Analyzer: Carbon Nanomaterials Characterization Dawn Yang and Kristen Frano B&W Tek Carbon nanomaterials constitute a variety of carbon allotropes including graphene, graphene

More information

The Chemistry of Everything Kimberley Waldron. Chapter topics

The Chemistry of Everything Kimberley Waldron. Chapter topics The Chemistry of Everything Kimberley Waldron Chapter 3 Diamonds Carbon allotropes, covalent bonding and the structure of simple organic molecules Richard Jarman, College of DuPage 2007 Pearson Prentice

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information