MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy

Size: px
Start display at page:

Download "MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS. Vinu Unnithan and J. N. Reddy"

Transcription

1 MECHANICS OF CARBON NANOTUBE BASED COMPOSITES WITH MOLECULAR DYNAMICS AND MORI TANAKA METHODS Vinu Unnithan and J. N. Reddy US-South American Workshop: Mechanics and Advanced Materials Research and Education August 2-6, 2004

2 Carbon Nanotube CNTs can span 23,000 miles without failing due to its own weight. CNTs are claimed to be 100 times stronger than steel. Many times stiffer than any known material Conducts heat better than diamond Can be a conductor or insulator without any doping. Lighter than feather.

3 Carbon nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. CNT is equivalent to a two dimensional graphene sheet rolled into a tube. Carbon Nanotubes CNT exhibits extraordinary mechanical properties Young s modulus over 1 Tera Pascal (as stiff as diamond) tensile strength ~ 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

4 Polymer Composites Based on CNTs To make use of these extraordinary properties, CNTs are used as reinforcements in polymer based composites CNTs can be in the form Single wall nanotubes Multi-wall nanotubes Powders films paste Matrix can be Polypropylene PMMA Polycarbonate Polystyrene poly(3-octylthiophene) (P3OT)

5 Polymer Composites Based on CNTs What are the critical issues? Structural and thermal properties Bridging the scales Load transfer and mechanical properties Manufacturing

6 CONTENTS Molecular Dynamics of CNTs Internal Stress Tensor: Cauchy vs Virial Stress Molecular Dynamics of CNT based Nanocomposite Modeling MD simulation Micromechanics of CNT based composite Homogenization principle using Mori-Tanaka Method Two phase and three phase model Conclusions

7 NANOMECHANICS Nanotechnology is the science and technology of precisely controlling the structure of matter at the molecular level. Carbon Nanotubes have very high modulus and are extremely light weight; hence, they find application in a variety of engineering scenarios. Single Walled Carbon Nanotube Multiple Walled Carbon Nanotube Carbon Nanorope

8 Nomenclature of Carbon Nanotube (CNT) Chiral vector is defined on the hexagonal lattice as Ch = nâ 1 + mâ 2, where â 1 and â 2 are unit vectors, n and m are integers.

9 Molecular Dynamics Simulations MD simulations involve the determination of classical trajectories of atomic nuclei by integrating the Newton s second law of motion (F = ma) of a system. Simulations are carried out on an N particle system Components of the Interatomic Interactions A common molecular dynamics force field has a form where the total potential energy is given by the sum of the following contributions: { vdw + ( U S + U B UT ) E = U + NonBonded potential Valenceinteractions

10 Lennard-Jones (LJ) Potential (Non Bonded Potential) U vdw ( r ) = r 4k r 0 12 r r 0 6 r r c k r U s = K 1,2 Pairs s ( r r r = r i j = 0 r ) 2 is a parameter characterizing the interaction strength r0 defines a molecular length scale. r is the cutoff distance, and c r K s spring constant of bond stretching

11 Stress Tensor Concept of stress extended to atomistic level, i.e., to every individual atom, we have the potential W = N αβ = 1 i, j α f r β ε αβ W ε αβ = σ αβ = 1 V Ω i i σ αβ i F = E(r ) Virial Stress σ αβ i ( t) N N N α β = miv iv i + r * V 2 i i j= i+ 1 f εαβ Applied strain on the atomic bond α,β Cartesian component of the stress in an atom i, Ω i is the volume of the Voronoi Cell of atom i, V * is the total volume of the system

12 Virial Stress is not Cauchy Stress The first term in the virial stress denotes the thermodynamic pressure exerted by the atoms. The second term arises from inter atomic forces. The KE term is small compared to the inter atomic forces for solids. The interatomic force alone and fully constitutes the Cauchy stress σ Na 1 Na i() t = r f i j=+ i 1 Thus using the energy equivalence and the balance of linear momentum we can define an equivalent continuum representing a discrete particle system. 1 V *

13 Elastic Properties of Carbon Nanotube by Molecular Dynamic Simulation Y Z ε zz ε zz X E = ( U vdw ) + ( U S ) 123 NonBonded potential U = Valence { bonded U bond stretch interactio ns U ( r ) = r 4k r 0 12 r r 0 6 U bon stretch = K 1,2 Pairs s ( r r 0 ) 2

14 Molecular Dynamics Modeling Unified Atom Model of Poly Ethylene Polyethylene chain & CNT Amorphous Matrix (450 Random Units) Crystalline Matrix

15 Elastic Properties of Carbon Nanotube by Molecular Dynamics Simulation 3.5E+12 3E E Carbon (10,10) Axial Modulus (Pa) 2E E+12 1E+12 5E+11 C(10,10) C (10,10) + PE Strain Effect of Polyethylene Matrix on the Elastic Property of CNT

16 MICROMECHANICS OF CNT BASED COMPOSITES RVE VOLUME AVERAGE PROPERTIES For a atomic ensemble the volume average of the discrete stress and the discrete strain is given by σ αβ 1 N i σαβ i= 1 = εαβ = εαβ σ = Cε N 1 N i N i= 1 The volume average of the continuum stress and the continuum strain over the entire section 1 1 σαβ = σαβ dv V εαβ = εαβ dv V σ = C Ω Ω ε

17 MICROMECHANICS OF CNT BASED COMPOSITES Mori-Tanaka Method Assume the composite is composed of N phases. Three Phase Dispersed Model σ 0 ε 0 Uniform Stress Uniform Strain. Denotes a volume averaged quantity Dilute strain concentration factor dil Ar k C S Effective modulus of the composite Eshelby Tensor for an ellipsoidal inclusion

18 MICROMECHANICS OF CNT BASED COMPOSITES ε r = A dil k ε 0 N 1 dil k m k m k n n n n 1 dil [ ] C S + C C C A v S A = Ι k = Ι C k = m N 1 1 v k A dil k ( k, n) = { f, g,... N 1} Mean Field elastic constitutive relations k k k C ε tot tot σ =

19 MICROMECHANICS OF CNT BASED COMPOSITES Effective property of two phase model of nanocomposite Modulus of Matrix = 8Gpa

20 MICROMECHANICS OF CNT BASED COMPOSITES CNT Interphase Bulk Matrix Modulus of Matrix = 8Gpa Effective property of three phase model of nanocomposite

21 CONCLUSIONS Modeling and simulation to find the effective properties of CNT reinforced PE nanocomposite using MD simulations are carried out. Surrounding matrix molecules are found to affect the overall stiffness of the CNT. MT method has been used to ascertain the effective property of the nanocomposite RVE using two phase and three phase interphase models. The variation of the effective properties of the composite has been obtained for various volume fractions of the CNT.

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method

Prediction of Young s Modulus of Graphene Sheets by the Finite Element Method American Journal of Mechanical Engineering, 15, Vol. 3, No. 6, 5-9 Available online at http://pubs.sciepub.com/ajme/3/6/14 Science and Education Publishing DOI:1.1691/ajme-3-6-14 Prediction of Young s

More information

Composite materials: mechanical properties

Composite materials: mechanical properties Composite materials: mechanical properties A computational lattice model describing scale effects @ nano-scale Luciano Colombo In collaboration with: Pier Luca Palla and Stefano Giordano Department of

More information

EFFECT OF VACANCY DEFECTS ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBE REINFORCED POLYPROPYLENE

EFFECT OF VACANCY DEFECTS ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBE REINFORCED POLYPROPYLENE International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 1370 1375, Article ID: IJMET_08_07_148 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

Nanomechanics of carbon nanotubes and composites

Nanomechanics of carbon nanotubes and composites Nanomechanics of carbon nanotubes and composites Deepak Srivastava and Chenyu Wei Computational Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035-1000; deepak@nas.nasa.gov Kyeongjae

More information

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical

More information

Nanoscale Mechanics: A Quantum-Continuum Approach

Nanoscale Mechanics: A Quantum-Continuum Approach Nanoscale Mechanics: A Quantum-Continuum Approach V.Venkatasubramanian a and S.Bharath b a Department of Mechanical Engineering, IIT Madras b Department of Chemical Engineering, IIT Madras 1. Introduction

More information

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Supplemental Information Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations Endian Wang and Fernando A. Escobedo Table S1 Lennard-Jones

More information

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

, to obtain a way to calculate stress from the energy function U(r).

, to obtain a way to calculate stress from the energy function U(r). BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

More information

Mechanical Properties of Fiber Reinforced Composites Using Buckminster Fullerene Reinforcement

Mechanical Properties of Fiber Reinforced Composites Using Buckminster Fullerene Reinforcement IJRMET Vo l. 4, Is s u e Sp l - 1, No v 2013- Ap r i l 2014 ISSN : 2249-5762 (Online ISSN : 2249-5770 (Print Mechanical Properties of Fiber Reinforced Composites Using Buckminster Fullerene Reinforcement

More information

Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems. G. M. Odegard, V. M. Harik, K. E. Wise, and T. S. Gates

Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems. G. M. Odegard, V. M. Harik, K. E. Wise, and T. S. Gates Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems G. M. Odegard, V. M. Harik, K. E. Wise, and T. S. Gates ABSTRACT In this study, a technique has been proposed for developing constitutive

More information

CHARACTERIZING MECHANICAL PROPERTIES OF GRAPHITE USING MOLECULAR DYNAMICS SIMULATION

CHARACTERIZING MECHANICAL PROPERTIES OF GRAPHITE USING MOLECULAR DYNAMICS SIMULATION CHARACTERIZING MECHANICAL PROPERTIES OF GRAPHITE USING MOLECULAR DYNAMICS SIMULATION Jia-Lin Tsai and Jie-Feng Tu Department of Mechanical Engineering, National Chiao Tung University 1001 University Road,

More information

CHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES

CHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES CHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES 4. Introduction Fillers added to polymer matrices as additives are generally intended for decreasing the cost (by increase in bulk) of

More information

EFFECT OF INTERPHASE CHARACTERISTIC AND PROPERTY ON AXIAL MODULUS OF CARBON NANOTUBE BASED COMPOSITES

EFFECT OF INTERPHASE CHARACTERISTIC AND PROPERTY ON AXIAL MODULUS OF CARBON NANOTUBE BASED COMPOSITES 15 EFFECT OF INTERPHASE CHARACTERISTIC AND PROPERTY ON AXIAL MODULUS OF CARBON NANOTUBE BASED COMPOSITES Md. Abdulla Al Masud and A.K.M. Masud * Department of Industrial and Production Engineering, Bangladesh

More information

The Young s Modulus of Single-Walled Carbon Nanotubes

The Young s Modulus of Single-Walled Carbon Nanotubes The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating

More information

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES

MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES ECCM16-16 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 214 MOLECULAR SIMULATION FOR PREDICTING MECHANICAL STRENGTH OF 3-D JUNCTIONED CARBON NANOSTRUCTURES S. Sihn a,b*, V.

More information

SIMPLE MICROMECHANICAL MODEL OF PROTEIN CRYSTALS FOR THEIR MECHANICAL CHARACTERIZATIONS

SIMPLE MICROMECHANICAL MODEL OF PROTEIN CRYSTALS FOR THEIR MECHANICAL CHARACTERIZATIONS EPJ Web of Conferences 6, 6 51 (21) DOI:1.151/epjconf/21651 Owned by the authors, published by EDP Sciences, 21 SIMPLE MICROMECHANICAL MODEL OF PROTEIN CRYSTALS FOR THEIR MECHANICAL CHARACTERIZATIONS Gwonchan

More information

Archetype-Blending Multiscale Continuum Method

Archetype-Blending Multiscale Continuum Method Archetype-Blending Multiscale Continuum Method John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering 3/27/2014 1 1 Outline Background and Motivation Archetype-Blending Continuum

More information

Sean Carey Tafe No Lab Report: Hounsfield Tension Test

Sean Carey Tafe No Lab Report: Hounsfield Tension Test Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small test-piece. It is mostly used for tensile

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

13 Solid materials Exam practice questions

13 Solid materials Exam practice questions Pages 206-209 Exam practice questions 1 a) The toughest material has the largest area beneath the curve the answer is C. b) The strongest material has the greatest breaking stress the answer is B. c) A

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Multiscale constitutive modeling of polymer materials

Multiscale constitutive modeling of polymer materials Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports - Open Dissertations, Master's Theses and Master's Reports 2008 Multiscale constitutive

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Micromechanics modeling for the stiffness and strength properties of glass fibers/cnts/epoxy composites

Micromechanics modeling for the stiffness and strength properties of glass fibers/cnts/epoxy composites High Performance Structures and Materials V 279 Micromechanics modeling for the stiffness and strength properties of glass fibers/cnts/epoxy composites M. Kim, F. A. Mirza & J. I. Song School of Mechatronics

More information

Thermo-Mechanical Vibration Analysis of Micro-Nano Scale Circular Plate Resting on an Elastic Medium

Thermo-Mechanical Vibration Analysis of Micro-Nano Scale Circular Plate Resting on an Elastic Medium Journal of Nanoscience and Nanoengineering Vol. 1, No. 2, 2015, pp. 49-55 http://www.aiscience.org/journal/jnn Thermo-Mechanical Vibration Analysis of Micro-Nano Scale Circular Plate Resting on an Titikshya

More information

FE modelling of multi-walled carbon nanotubes

FE modelling of multi-walled carbon nanotubes Estonian Journal of Engineering, 2009, 15, 2, 77 86 doi: 10.3176/eng.2009.2.01 FE modelling of multi-walled carbon nanotubes Marino Brcic, Marko Canadija, Josip Brnic, Domagoj Lanc, Sanjin Krscanski and

More information

HOSSEINMAMANPUSH a, HOSSEIN GOLESTANIAN b,c1

HOSSEINMAMANPUSH a, HOSSEIN GOLESTANIAN b,c1 ISSN : 2250-0138 (Online) ISSN: 0976-2876(Print) VALUATION OF FFCTIV MATRIAL PROPRTIS OF RANDOMLY DISTRIBUTD CARBON NANOTUB COMPOSITS CONSIDRING INTRFAC FFCT HOSSINMAMANPUSH a, HOSSIN GOLSTANIAN b,c1 a

More information

Molecular Dynamics Simulations of Mechanical Properties of Boron-Nitride Nanotubes Embedded in Si-B-N Ceramics

Molecular Dynamics Simulations of Mechanical Properties of Boron-Nitride Nanotubes Embedded in Si-B-N Ceramics Molecular Dynamics Simulations of Mechanical Properties of Boron-Nitride Nanotubes Embedded in Si-B-N Ceramics Michael Griebel and Jan Hamaekers Department of Numerical Simulation, University of Bonn,

More information

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Cameron F. Abrams Department of Chemical and Biological Engineering Drexel University Philadelphia, PA USA 9 June

More information

Predicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics

Predicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics Predicting Elastic Properties of Unidirectional SU8/ZnO Nanocomposites using COMSOL Multiphysics Neelam Mishra 1, and Kaushik Das *1 1 School of Minerals Metallurgical and Materials Engineering, Indian

More information

Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams?

Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams? NASA/CR-2001-211013 ICASE Report No. 2001-16 Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams? Vasyl Michael Harik ICASE, Hampton,

More information

T R Anantharaman Education and Research Foundation Elastic modulus. Basics and significance

T R Anantharaman Education and Research Foundation  Elastic modulus. Basics and significance T R Anantharaman Education and Research Foundation www.tra-erf.org Elastic modulus Basics and significance P Rama Rao and V Chandrasekaran ARCI, Hyderabad We claim no originality for the material presented.

More information

A MOLECULAR DYNAMICS STUDY OF POLYMER/GRAPHENE NANOCOMPOSITES

A MOLECULAR DYNAMICS STUDY OF POLYMER/GRAPHENE NANOCOMPOSITES A MOLECULAR DYNAMICS STUDY OF POLYMER/GRAPHENE NANOCOMPOSITES Anastassia N. Rissanou b,c*, Vagelis Harmandaris a,b,c* a Department of Applied Mathematics, University of Crete, GR-79, Heraklion, Crete,

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE

VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS VIBRATION CHARACTERISTICS OF EMBEDDED DOUBLE WALLED CARBON NANOTUBES SUBJECTED TO AN AXIAL PRESSURE X. W. Lei 1, T. Natsuki 2, J. X. Shi 1, Q. Q. Ni

More information

Computer Simulations of Carbon Nanostructures under Pressure

Computer Simulations of Carbon Nanostructures under Pressure Fullerenes, Nanotubes, and Carbon Nanostructures, 13: 13 20, 2005 Copyright # Taylor & Francis, Inc. ISSN 1536-383X print/1536-4046 online DOI: 10.1081/FST-200039164 Computer Simulations of Carbon Nanostructures

More information

1.050 Engineering Mechanics. Lecture 22: Isotropic elasticity

1.050 Engineering Mechanics. Lecture 22: Isotropic elasticity 1.050 Engineering Mechanics Lecture 22: Isotropic elasticity 1.050 Content overview I. Dimensional analysis 1. On monsters, mice and mushrooms 2. Similarity relations: Important engineering tools II. Stresses

More information

The New Boundary Condition Effect on The Free Vibration Analysis of Micro-beams Based on The Modified Couple Stress Theory

The New Boundary Condition Effect on The Free Vibration Analysis of Micro-beams Based on The Modified Couple Stress Theory International Research Journal of Applied and Basic Sciences 2015 Available online at www.irjabs.com ISSN 2251-838X / Vol, 9 (3): 274-279 Science Explorer Publications The New Boundary Condition Effect

More information

Mechanical properties of carbon nanotube reinforced polymer nanocomposites: a coarsegrained

Mechanical properties of carbon nanotube reinforced polymer nanocomposites: a coarsegrained Mechanical properties of carbon nanotube reinforced polymer nanocomposites: a coarsegrained model Behrouz Arash 1, *, Harold S. Park 2, Timon Rabczuk 1 1 Institute of Structural Mechanics, Bauhaus Universität-Weimar,

More information

Postbuckling behaviour of graphene-reinforced plate with interfacial effect

Postbuckling behaviour of graphene-reinforced plate with interfacial effect Arch. Mech., 70, 1, pp. 3 36, Warszawa 2018 SEVENTY YEARS OF THE ARCHIVES OF MECHANICS Postbuckling behaviour of graphene-reinforced plate with interfacial effect A. KUMAR SRIVASTAVA 1), D. KUMAR 2) 1)

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

Nonlinear Mechanics of Monolayer Graphene Rui Huang

Nonlinear Mechanics of Monolayer Graphene Rui Huang Nonlinear Mechanics of Monolayer Graphene Rui Huang Center for Mechanics of Solids, Structures and Materials Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

More information

Effects of Free Edges and Vacancy Defects on the Mechanical Properties of Graphene

Effects of Free Edges and Vacancy Defects on the Mechanical Properties of Graphene Proceedings of the 14th IEEE International Conference on Nanotechnology Toronto, Canada, August 18-21, 214 Effects of Free Edges and Vacancy Defects on the Mechanical Properties of Graphene M. A. N. Dewapriya

More information

An Atomistic-based Cohesive Zone Model for Quasi-continua

An Atomistic-based Cohesive Zone Model for Quasi-continua An Atomistic-based Cohesive Zone Model for Quasi-continua By Xiaowei Zeng and Shaofan Li Department of Civil and Environmental Engineering, University of California, Berkeley, CA94720, USA Extended Abstract

More information

Chapter 2. Rubber Elasticity:

Chapter 2. Rubber Elasticity: Chapter. Rubber Elasticity: The mechanical behavior of a rubber band, at first glance, might appear to be Hookean in that strain is close to 100% recoverable. However, the stress strain curve for a rubber

More information

On Stress-Strain Responses and Young s Moduli of Single Alkane Molecules, A Molecular Mechanics Study Using the Modified Embedded-Atom Method

On Stress-Strain Responses and Young s Moduli of Single Alkane Molecules, A Molecular Mechanics Study Using the Modified Embedded-Atom Method On Stress-Strain Responses and Young s Moduli of Single Alkane Molecules, A Molecular Mechanics Study Using the Modified Embedded-Atom Method Sasan Nouranian, *a Steven R. Gwaltney, b Michael I. Baskes,

More information

CNT-reinforced polymer nanocomposite by molecular dynamics simulations

CNT-reinforced polymer nanocomposite by molecular dynamics simulations Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations Fall 2014 CNT-reinforced polymer nanocomposite by molecular dynamics simulations Yaeji Kim Purdue University Follow this

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

FREE VIBRATION ANALYSIS OF DOUBLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM USING DTM (DIFFERENTIAL TRANSFORMATION METHOD)

FREE VIBRATION ANALYSIS OF DOUBLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM USING DTM (DIFFERENTIAL TRANSFORMATION METHOD) Journal of Engineering Science and Technology Vol. 1, No. 10 (017) 700-710 School of Engineering, Taylor s University FREE VIBRATION ANALYSIS OF DOUBLE-WALLED CARBON NANOTUBES EMBEDDED IN AN ELASTIC MEDIUM

More information

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets

Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets Copyright 21 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 1, 1 5, 21 Molecular Dynamics Study of the Effect

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

SSNEMS Internal Report

SSNEMS Internal Report E.3. Nanotube Reinforced Piezoelectric Polymeric Composites Subjected to Electro-Thermo- Mechanical Loadings Understanding the stress transfer between nanotube reinforcements and surrounding matrix is

More information

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene

Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Shear Properties and Wrinkling Behaviors of Finite Sized Graphene Kyoungmin Min, Namjung Kim and Ravi Bhadauria May 10, 2010 Abstract In this project, we investigate the shear properties of finite sized

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Flitched Beams. Strain Compatibility. Architecture 544 Wood Structures. Strain Compatibility Transformed Sections Flitched Beams

Flitched Beams. Strain Compatibility. Architecture 544 Wood Structures. Strain Compatibility Transformed Sections Flitched Beams Architecture 544 Wood Structures Flitched Beams Strain Compatibility Transformed Sections Flitched Beams University of Michigan, TCAUP Structures II Slide 1/27 Strain Compatibility With two materials bonded

More information

A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites

A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites Composites Science and Technology 67 (27) 348 356 COMPOSITES SCIENCE AND TECHNOLOGY www.elsevier.com/locate/compscitech A molecular dynamics simulation study to investigate the effect of filler size on

More information

Modeling Materials. Continuum, Atomistic and Multiscale Techniques. gg CAMBRIDGE ^0 TADMOR ELLAD B. HHHHM. University of Minnesota, USA

Modeling Materials. Continuum, Atomistic and Multiscale Techniques. gg CAMBRIDGE ^0 TADMOR ELLAD B. HHHHM. University of Minnesota, USA HHHHM Modeling Materials Continuum, Atomistic and Multiscale Techniques ELLAD B. TADMOR University of Minnesota, USA RONALD E. MILLER Carleton University, Canada gg CAMBRIDGE ^0 UNIVERSITY PRESS Preface

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 1 David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Time/s Multi-Scale Modeling Based on SDSC Blue Horizon (SP3) 1.728 Tflops

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity

Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity J. S. Bergström and M. C. Boyce Department of Mechanical

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Johns Hopkins University What is Engineering? M. Karweit MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

More information

Hysteretic equivalent continuum model of nanocomposites with interfacial stick-slip

Hysteretic equivalent continuum model of nanocomposites with interfacial stick-slip Hysteretic equivalent continuum model of nanocomposites with interfacial stick-slip Giovanni Formica 1, Michela Talò, Walter Lacarbonara 1 Dipartimento di Architettura, Università degli Studi Roma Tre

More information

Mathematical Modelling in Nanotechnology

Mathematical Modelling in Nanotechnology NMG Mathematical Modelling in Nanotechnology Dr Ngamta (Natalie) Thamwattana Nanomechanics Group, University of Wollongong Nanomechanics Group Supported by the Discovery Project scheme of the Australian

More information

Solutions for Homework 4

Solutions for Homework 4 Solutions for Homework 4 October 6, 2006 1 Kittel 3.8 - Young s modulus and Poison ratio As shown in the figure stretching a cubic crystal in the x direction with a stress Xx causes a strain e xx = δl/l

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Two-step multiscale homogenization of polymer nanocomposites for large size RVEs embodying many nanoparticles

Two-step multiscale homogenization of polymer nanocomposites for large size RVEs embodying many nanoparticles Two-step multiscale homogenization of polymer nanocomposites for large size RVEs embodying many nanoparticles *Kyungmin Baek 1), Hyunseong Shin 2), Jin-Gyu Han 3) and Maenghyo Cho 4) 1), 2), 3), 4) Department

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

Basic 8 Micro-Nano Materials Science. and engineering

Basic 8 Micro-Nano Materials Science. and engineering Basic 8 Micro-Nano Materials Science and Analysis Atomistic simulations in materials science and engineering Assistant Prof. Y. Kinoshita and Prof. N. Ohno Dept. of Comp. Sci. Eng. and Dept. of Mech. Sci.

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives

Materials and Shape. Part 1: Materials for efficient structure. A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka. Learning Objectives MME445: Lecture 27 Materials and Shape Part 1: Materials for efficient structure A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Learning Objectives Knowledge & Understanding Understand the

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 3 (1 47 6 Contents lists available at SciVerse ScienceDirect Mechanics of Materials journal homepage: www.elsevier.com/locate/mechmat Effective properties of a novel composite reinforced

More information

ELASTIC MODULI OF CARBON NANOTUBES WITH NEW GEOMETRY BASEDONFEM

ELASTIC MODULI OF CARBON NANOTUBES WITH NEW GEOMETRY BASEDONFEM JOURNAL OF THEORETICAL AND APPLIED MECHANICS 52, 1, pp. 235-245, Warsaw 2014 ELASTIC MODULI OF CARBON NANOTUBES WITH NEW GEOMETRY BASEDONFEM Abdolhossein Fereidoon Semnan University, Faculty of Mechanical

More information

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and

More information

MASTER THESIS. Effects of imperfections on the elastic properties of carbon nanotubes. Ignacio Valero Palacín SUPERVISED BY. Ferhun C.

MASTER THESIS. Effects of imperfections on the elastic properties of carbon nanotubes. Ignacio Valero Palacín SUPERVISED BY. Ferhun C. MASTER THESIS Effects of imperfections on the elastic properties of carbon nanotubes Ignacio Valero Palacín SUPERVISED BY Ferhun C. Caner Universitat Politècnica de Catalunya Master in Aerospace Science

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Research Article Effects of CNT Diameter on the Uniaxial Stress-Strain Behavior of CNT/Epoxy Composites

Research Article Effects of CNT Diameter on the Uniaxial Stress-Strain Behavior of CNT/Epoxy Composites Nanomaterials Volume 28, Article ID 834248, 6 pages doi:1.11/28/834248 Research Article Effects of CNT Diameter on the Uniaxial Stress-Strain Behavior of CNT/Epoxy Composites N. Yu and Y. W. Chang Department

More information

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet Copyright 05 Tech Science Press CMC, vol.8, no., pp.03-7, 05 Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet G. Q. Xie, J. P. Wang, Q. L. Zhang Abstract: Small-scale effect on the

More information

Finite Element Modelling of the Mechanical Behaviour of Graphene Nanocomposites

Finite Element Modelling of the Mechanical Behaviour of Graphene Nanocomposites Finite Element Modelling of the Mechanical Behaviour of Graphene Nanocomposites Jorge M. G. Araújo jorge.araujo@tecnico.ulisboa.pt Instituto Superior Técnico, Universidade de Lisboa, Portugal December

More information

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Calculation of single chain cellulose elasticity using fully atomistic modeling

Calculation of single chain cellulose elasticity using fully atomistic modeling PEER-REVIEWED MOLECULAR MODELING Calculation of single chain cellulose elasticity using fully atomistic modeling XIAWA WU, ROBERT J. MOON, AND ASHLIE MARTINI ABSTRACT: Cellulose nanocrystals, a potential

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

3.22 Mechanical Properties of Materials Spring 2008

3.22 Mechanical Properties of Materials Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem Set

More information

Strain Direct Mapping by Using Carbon Nanotube Strain Sensor

Strain Direct Mapping by Using Carbon Nanotube Strain Sensor TOMODACHI STEM @ Rice University FinalPresentation (March 18, 016) Strain Direct Mapping by Using Carbon Nanotube Strain Sensor Shuhei Yoshida (University of Tokyo) Supervisor: Professor Bruce Weisman

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Effect of different crosslink densities on the thermomechanical properties of polymer nanocomposites

Effect of different crosslink densities on the thermomechanical properties of polymer nanocomposites Effect of different crosslink densities on the thermomechanical properties of polymer nanocomposites *Byungjo Kim 1), Joonmyung Choi 2), Suyoung Yu 3), Seunghwa Yang 4) and Maenghyo Cho 5) 1), 2), 3),

More information

MOLECULAR MODELLING OF STRESSES AND DEFORMATIONS IN NANOSTRUCTURED MATERIALS

MOLECULAR MODELLING OF STRESSES AND DEFORMATIONS IN NANOSTRUCTURED MATERIALS Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 4, 541 548 MOLECULAR MODELLING OF STRESSES AND DEFORMATIONS IN NANOSTRUCTURED MATERIALS GWIDON SZEFER Institute of Structural Mechanics, AGH University

More information

Effect of Interlayers on Mechanical Properties and Interfacial Stress Transfer of 2D Layered Graphene- Polymer Nanocompsites

Effect of Interlayers on Mechanical Properties and Interfacial Stress Transfer of 2D Layered Graphene- Polymer Nanocompsites University of Kentucky UKnowledge Theses and Dissertations--Mechanical Engineering Mechanical Engineering 2017 Effect of Interlayers on Mechanical Properties and Interfacial Stress Transfer of 2D Layered

More information

Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality Journal of Physics: Conference Series PAPER OPEN ACCESS Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality To cite this article: V S Zarubin and

More information

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

More information

Modeling and Estimating the Effective Elastic Properties of Carbon Nanotube Reinforced Composites by Finite Element Method

Modeling and Estimating the Effective Elastic Properties of Carbon Nanotube Reinforced Composites by Finite Element Method J. Eng. Technol. Educ. (2014) 11(2): 145-158 June 2014 Modeling and Estimating the Effective Elastic Properties of Carbon Nanotube Reinforced Composites by Finite Element Method Minh-Tai Le, Shyh-Chour

More information

DIGIMAT for NANO-COMPOSITES

DIGIMAT for NANO-COMPOSITES DIGIMAT for NANO-COMPOSITES Document Version 2.0.1, February 2010 info@e-xstream.com www.e-xstream.com Materials: Engineering Plastics, Reinforced Plastics, Mineral and Clay fillers. e-xstream Technology:

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information