COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES

Size: px
Start display at page:

Download "COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES"

Transcription

1 COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES Weiqiao Deng, Jianwei Che, Xin Xu, Tahir Çagin, and William A Goddard, III Materials and Process Simulation Center, Beckman Institute, , California Institute of Technology, Pasadena, California, USA ABSTRACT The discovery of lower dimensional forms of Carbon with unique mechanical and electronic properties has generated new possibilities in many areas of technology especially in nanotechnology. Recent emergence of some nanoscale device applications show how this potential is turning into a reality. Over the years, we have employed various levels of theory to study the structure and properties of carbon based materials for nanoscale applications. In this paper, we present two new theoretical studies. We present a study on the transition metal catalyzed growth of single wall carbon nanotubes. In the second study, we investigate the relation between mechanical deformation and excess charge in order to understand how introducing and controlling the charge at various locations might modify the mechanical and acoustical properties of carbon nanotubes. We demonstrate that introducing excess charges into single wall carbon nanotubes can lead mechanical deformations that do mechanical work. The results suggest a wide range for practical applications, such as NEMS, acoustic sensors and nanoactuators. INTRODUCTION The peculiar chemistry of carbon results in diverse forms of structure: the 3-dimensional network of diamond and the 2- dimensional sheets of graphite have been known through the ages. The discovery of lower dimensional forms of Carbon with unique mechanical and electronic properties has generated new possibilities in many areas of technology especially in nanotechnology. Recent emergence of some nanoscale device applications show how this potential is turning into a reality. Over the years, we have been using ab initio quantum chemistry, density functional theory and molecular dynamics methods to study the structure and properties of carbon based materials for nanoscale applications. The applications such as; a) Structural and mechanical properties of nanotubes, (refs 1-3); b) Tribological properties of carbon for NEMS applications (ref 4); c) Thermal transport properties of nanotubes and carbon based heterostructures (refs 5-6), and d) Formation of fullerenes, (ref 7) have appeared elsewhere. In this paper, we will present two new theoretical studies. Over the past several years a large number of synthetic procedures for the production of Carbon nanotubes have been developed. Since the electronic properties of carbon nanotubes depend on structure the control of growth is essential. Theoretical studies of growth mechanisms may shed some light on how to control the growth. We first present a study on the transition metal catalyzed growth of single wall carbon nanotubes. In the second application, we investigate the relation between mechanical deformation and excess charge in order to understand how introducing and controlling the charge at various locations might modify the mechanical and acoustical properties of carbon nanotubes. We demonstrate that introducing excess charges into single wall carbon nanotubes can lead mechanical deformations that do mechanical work. The results suggest a wide range for practical applications, such as NEMS, acoustic sensors and nanoactuators. MECHANISM OF TRANSITION METAL CATALYZED GROWTH OF SINGLE-WALL CARBON NANOTUBE Introduction Single-wall carbon nanotubes have been produced in the outflow of a carbon arc discharged method (ref 8) and in even with higher yield by the laser vaporization technique (refs 9-12) and more recently through chemical vapor deposition (ref 13). The transition metal catalysts such as Ni and Co are known to play important role in all of these methods. In the laser vaporization assisted growth, the concentration of metal catalyst in the graphite is very low (< 1%). The high temperatures in the experiment suggest that the catalyst may affect the growth as single atoms.

2 In 1997, Lee et al proposed a growth mechanism (ref 14). In this mechanism, the mobile Ni catalyst atoms are absorbed at the growth edge of SWCN where they prevent the formation of carbon pentagons and catalysis continues through formation of carbon hexagons. However, Froudakis group provided another mechanism (ref. 15): Ni atoms don t attach to the edge of the growth font. It actually first creates and stabilizes the defects in nanotube and then the incoming carbon atoms anneal the Ni-stabilized defects by freeing the Ni atom back to the catalytic cycle. These two mechanisms are contradicting. Besides this apparent contradiction, there still are some unsolved problems that need to be addressed. First, in the growth, what is the difference in the growth mechanisms with or without metal? Second, can the existing mechanisms explain why a metal works, while another metal does not work? Third, what is the determining step in a metal catalyzed growth of carbon nanotube? Fourth, where, at the edge or on the wall, does the metal atom locate during the growth? Theoretical model Here, we present results of a detailed theoretical study of the dynamical interaction between the Ni, Co, Pt and Cu catalysts and SWCN with a view towards an understanding of the nanotube growth mechanism and a detailed discussion on the unresolved problem above. Our calculations are based on first principle - density functional theory, as implemented in the Jaguar code, for a tube fragment with a metal atom attached. The B3LYP are used to describe exchange and correlation. We start with a (10,10) nanotube. The studied fragment is cut from a (10,10) nanotube structure and fixing the edge atoms (which are neutralized by H atom) to keep the curvature of the structure. Result and discussion First question to address is whether the role of the metal catalyst is a necessary prerequisite for the formation of single-wall nanotubes. In order to understand this issue, the mechanism of termination of nanotube in absence of metal atoms is undertaken. In Figure 1, we can see the two pathways while carbon atoms grow on the edge of nanotube. One pathway is to form a defect with two hexagons and two pentagons called 6,6,5,5 defect, consequently, after more and more defects are formed, the tip of nanotube is closed. Another pathway is that these two pentagons rearrange to form two hexagons and then the growth will proceed. The results show that for pathway 1 the energy will drop down by 81.9 kcal/mole and for pathway 2 the energy will go down by 51.7 kcal/mole. The large energy difference between these two pathways allows us to believe that in the absence of metal atoms the growth will be terminated immediately. This is in favor of Froudakis mechanism: The metal must attach on the edge of the nanotube growth front and prevents the defect formation. Second, we discuss the detailed catalytic mechanism with catalyst atoms to avoid the defect formation. First, we explore whether the Ni atom affects the growth. Our calculations show that Ni atom neither destroys the pentagon to form hexagon nor stabilizes the hexagon ring, because both are energetically unfavorable. For the former case, we started the simulation by inserting the Ni atom into a pentagon to form hexagon. This procedure is energetically unfavorable, which required energy of 12.4 kcal/mole. This means that Ni atom prefers to sit above the pentagon ring without break it. For the later case, the calculations indicate the arrangement to be energetically favorable with an energy gain of 27.2 kcal/mole without Ni catalyst and with an energy gain of 24.6 kcal/mole with Ni catalyst. The outcome of this calculation shows that the arrangement is not benefited from Ni metal atoms involve at the adjacent site. These results are in line with Lee s mechanism by concluding that Ni atoms don t prevent the pentagon formation or assist the assembly of carbon hexagons at the growing edge. Based on this, we provide a new mechanism shown in Figure 2. It says that Ni atoms block the adjacent sites of pentagon to prevent the defect formation. Ni atom can anneal the existed defects. Figure 2a shows that when carbon atoms come in, Ni atoms block both adjacent sites of the other sites so that pentagon carbon ring just is able to rearrange as hexagon ring that is energetically favorable, i.e, it reduces 24.60kcal/mole. Figure 2b indicate how a Ni atom anneals the defect. After Ni atom attaches the edge of the nanotube growth font, it will rearrange with carbon rings into several possible structures: structure 1-5 in Figure 2b. For growth, the structure (1) and (3) (4) are not helpful for annealing defect because the pentagons in the structure are not destroyed. At the other hand, structure (2) and (5) are good for anneal defects. We compare the energies of these structures and determine which structure the reaction path is trapped. For Ni metal atoms, structure (2) is the most stable one that will lead to an annealing pathway. Therefore, our mechanism successfully explains the Ni catalyst effect of nanotube growth. We also study the catalysis effect of other metals such as Co, Pt and Cu. In the table 1, we give a summary of these metals. Based on our calculation results, it shows that Co does work, Pt and Cu don t work, which is in good agreement with the experiments.

3 Conclusion Based on first principle calculation, we study the microscopic mechanism of single-wall carbon nanotubes growth by using the laser vapor deposition technology. By arguing the previous mechanism, we provide a new one here. It says that metal catalysts atom absorbed at the growth edge will block the adjacent growth site of pentagon and thus avoid the formation of defect. Metal catalysts can also anneal the existed defects. Additionally, our results show that the nanotube growth will terminate in the absence of metal catalysts and also explain why Pt and Cu are not good catalysts. Table 1 Relative energies (kcal/mole) of various metal cluster structures in figure 2b Ni Co Pt Cu (1) bad for annealing (2) good for annealing (3) bad for annealing (4) bad for annealing (5) good for annealing (a) DE 1 = kcal/mole (b) DE 1 = kcal/mole Figure 1. The nanotube grows at the absence of metal catalysts. Pathway (a) is closure pathway; Pathway (b) is continue growth pathway. The colorful carbon atoms are our cluster model. E = kcal/mole Figure 2a. The Ni atoms block adjacent site of pentagon to avoid the defect formation. The darker atoms are Ni atoms.

4 (1) (2) (4) (5) (3) Figure 2b. Metal Ni catalysts can anneal the formed defect. The darker atoms are Ni atoms. CHARGE EFFECTS ON MECHANICAL PROPERTIES OF CARBON NANOSTRUCTURES Introduction Over the past decade both theory and experiments have shown that carbon nanotubes have both unique electronic properties (e.g. it may be semiconducting or metalic depending on the charality) and extreme mechanical strength (e.g. tensile modulus ~1000 GPa). Consequently, there is considerable interest in designing and manufacturing functional devices and novel composite materials based on carbon nanotubes. In particular we consider here how introducing and controlling charges might modify the mechanical properties of carbon structures. The smaller nanostructures are moderate size molecules. To understand the systematic behavior of carbon nanotube s electronic and mechanical coupling, we started with the smallest molecule that resembled carbon nanotube structure, i.e. benzene. While the expansion of benzene molecule approaches the limit of graphene structure, we believed that the electro-mechanical coupling in graphene is in close resemblance to that in carbon nanotube. We will see this behavior later in our calculations. Results and Discussion Staring from benzene, we investigated naphthelene, pyrene, coronene, intercalated graphite, and single walled carbon nanotubes. Based on group theory, we know that the two HOMOs and two LUMOs of benzene are degenerate. In each PI MO, we can characterize the bonding between atoms by looking at the phase of their 2p orbital. When the two adjacent orbitals have opposite phase, an anti-bonding dominates the interaction between them in that specific MO. On the contrary, the same phase orbital generates bonding forces. Consequently, an electron in anti-bonding form will elongate the distance between two adjacent atoms, while an electron in bonding form will shrink the distance. The picture in the presentation clearly shows the structural change with respect to charging into different MOs. In larger molecules such as pyrene and coronene, we also observed the similar behavior. A similar system at large spatial scale is intercalated graphite. The quantum calculations for periodic systems were carried out using CASTEP. When positive charges are injected into the graphite crystal, the graphite sheets tend to shrink. On the other hand, negative charges make the graphite to expand. The structural deformation is mainly caused by the change in electronic structure rather than Coulomb interaction. In other words due to the filling of electrons in anti-bonding/conduction band or holes in bonding/valence band. Coulomb force is independent of charge signs. In addition, Coulomb interaction depends on charges in the quadratic order. For the intercalated graphite, we also found that AA stacking structure is more stable than AB stacking in agreement with experimental observations. Similar to intercalated graphite, carbon nanotubes also exhibit charge induced structural deformations. For single walled carbon nanotube, we chose (5,5) tube as an example. Although it has very small size, we believe that the results can demonstrate the essence of electro-mechanical coupling. The simulation cell consisted of two layers of

5 (5,5) unit cell. Either electrons or holes are filled into corresponding bands, and a uniform background charge is used to neutralize the total simulation box. From our calculations, we also found that positive charge tends to shrink Along Tube Peoriodicity (Angstrom) Cell Constant (Angstrom) Cell constant a Cell constant b Charge Transfer (e) Charge Transfer (e) Figure 3. Deformation as a function of charge transfer: Left deformation in the tube direction, Right deformation in the lateral directions. the tube and the tube tends to expand under negative charging. The reason is very similar to intercalated graphite. The charge injected into valence or conduction band caused the electronic structure to shift, and this shift is charge sign dependent. Intuitively, it can be viewed as new electronic structure under screened nuclear cores. In addition to the deformation along tube axis, we also saw the change in cell length in nanotube bundles. Although LDA usually does not give accurate results for nonbond interactions such as van de Waals forces, we think that the change in the lateral directions is mainly caused by the Coulomb forces. As it can be seen in electrostatic potential map, the inter tube space is mainly electronegative. When a charge variation is introduced, the inter-tube repulsion due to charge variations in positive core is on the second order, and the first order interaction is between the charge variation and the electrostatic potential. Therefore, the bundle size also shrinks or expands due to different type of charges. Figure 4. Electron density map In summary, we find that introducing excess charges into nanotubes can lead to mechanical deformations that do mechanical work in agreement with experiments by Baughman et. al. (ref 16). These results suggest a wide range of practical implications, including the design of nano-electronic-mechanical systems (NEMS) and nano-actuators.

6 REFERENCES 1. G. Gao, T. Çagin, W. A. Goddard, III: Energetics, structure, thermodynamic and mechanical properties of nanotubes, Nanotechnology, vol. 9, no. 3, (1998) G. Gao, T. Çagin, W.A. Goddard, III: Position of K atoms in doped single walled carbon nanotube crystals, Phys. Rev. Lett., 80, (1998) J. Che, T. Çagin, W. A. Goddard, III: Studies of Fullerenes and Carbon Nanotubes by an Extended Bond Order Potential, Nanotechnology vol. 10, (1999) T. Çagin, J. Che, M. N. Gardos, A. Fijany, W. A. Goddard, III: Simulation and Analysis of Experiments on Friction and Wear of Diamond: A material for MEMS and NEMS applications, Nanotechnology vol. 10, (1999) J. Che, T. Çagin, W. Deng, W. A. Goddard, III: Thermal Conductivity Studies by Molecular Dynamics Simulations," J. Chem. Phys. Vol. 113, (2000) J. Che, T. Çagin, W. A. Goddard, III: Thermal Conductivity of Carbon Nanotubes, Nanotechnology vol. 11, (2000) X. Hua, T. Çagin, J. Che, W.A. Goddard III: QM (DFT) and MD studies on formation mechanisms of C60 fullerenes, Nanotechnology vol. 11, (2000) S. Iijima, T. Ichihashi: single-shell carbon nanotubes of 1-nm diameter, Nature, vol. 363, no. 6430, Jun 1993, T. Guo, P Nikolaev, A Thess, etc.: Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., vol. 243, no.1-2, Sep. 1995, J.H. Hafner, M.J. Bronikowski, B.R. Azamian, et al.: Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. vol. 296, no. 1-2, Oct. 1998, K.B. Shelimov, R.O. Esenaliev, A.G. Rinzler, et al.: Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. vol. 282, no. 5-6, Jan. 1998, A.A. Puretzky, D.B. Geohegan, X. Fan, et al.: Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl. Phys. A, vol. 70, Jan. 2000, H.J. Dai, J. Kong, C.W. Zhou, etc.: Controlled chemical routes to nanotube architectures, physics and devices, J. Phys. Chem. B, vol. 103, no. 51, Dec. 1999, Y.H. Lee, S.G. Kim and D. Tomanek: Catalytic growth of single-wall carbon nanotubes: an ab initio study, Phys. Rev. Lett., vol.78, no. 12, Mar. 1997, A.N. Andriotis, M. Menon and G.. Froudakis: Catalytic action of Ni atoms in the formation of carbon nanotubes: A molecular dynamics study, Phys. Rev. Lett., vol. 85, no. 15, Oct. 2000, R.H. Baughman, C.X. Cui, A.A. Zakhidov, et al. Science vol. 284: no.5418 (1999)

Nonlinear optical effects and carbon nanotubes. Abstract

Nonlinear optical effects and carbon nanotubes. Abstract Nonlinear optical effects and carbon nanotubes Chiyat Ben Yau Department of Physics, University of Cincinnati, OH 45221, USA (December 3, 2001) Abstract Materials with large second or third order optical

More information

Observation and modeling of single-wall carbon nanotube bend junctions

Observation and modeling of single-wall carbon nanotube bend junctions PHYSICAL REVIEW B VOLUME 57, NUMBER 23 15 JUNE 1998-I Observation and modeling of single-wall carbon nanotube bend junctions Jie Han, M. P. Anantram, and R. L. Jaffe NASA Ames Research Center, Moffett

More information

Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes

Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Lecture 16, February 25, 2015 Metallic bonding

Lecture 16, February 25, 2015 Metallic bonding Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am

More information

Functionalized Carbon Nanotubes a key to nanotechnology?

Functionalized Carbon Nanotubes a key to nanotechnology? 1 27th Max Born Symposium Multiscale Modeling of Real Materials Wroclaw, Sep 19, 2010 Functionalized Carbon Nanotubes a key to nanotechnology? Karolina Milowska, Magda Birowska & Jacek A. Majewski Faculty

More information

GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage"

GECP Hydrogen Project: Nanomaterials Engineering for Hydrogen Storage GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage" PI: KJ Cho Students and Staff Members: Zhiyong Zhang, Wei Xiao, Byeongchan Lee, Experimental Collaboration: H. Dai, B. Clemens, A.

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-15-2008 Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

More information

SIR - Single-walled carbon nanotubes (SWNT) have been produced in a carbon arc [1-3]

SIR - Single-walled carbon nanotubes (SWNT) have been produced in a carbon arc [1-3] SR - Single-walled carbon nanotubes (SWNT) have been produced in a carbon arc [1-3] and in amazingly high yield by laser vaporization [4] where, in both cases, a small amount of transition metal has been

More information

Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons

Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons Effects of Defects on the Strength of Nanotubes: Experimental- Computational Comparisons T. Belytschko, S. P. Xiao and R. Ruoff Department of Mechanical Engineering Northwestern University, 2145 Sheridan

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012141 TITLE: Transformation of Active Carbon to Onion-like Fullerenes Under Electron Beam Irradiation DISTRIBUTION: Approved

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

Dependence of workfunction on the geometries of single-walled carbon nanotubes

Dependence of workfunction on the geometries of single-walled carbon nanotubes INSTITUTE OF PHYSICS PUBLISHING Nanotechnology 15 () 8 8 Dependence of workfunction on the geometries of single-walled carbon nanotubes NANOTECHNOLOGY PII: S9578()77 Chun-Wei Chen 1 and Ming-Hsien Lee

More information

MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES

MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES Shigeo MARUYAMA Engineering Research Institute The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

More information

Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls

Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls Daniel Solis 1, Cristiano F. Woellner 1,2, Daiane D. Borges 1, and Douglas S. Galvao 1 1 Applied Physics Department, University of

More information

Rahul Sen 1, Hiromichi Kataura 2, Yohsuke Ohtsuka 1, Toshinobu Ishigaki 1, Shinzo Suzuki 1 and Yohji Achiba 1 ABSTRACT

Rahul Sen 1, Hiromichi Kataura 2, Yohsuke Ohtsuka 1, Toshinobu Ishigaki 1, Shinzo Suzuki 1 and Yohji Achiba 1 ABSTRACT EFFECT OF TEMPERATURE GRADIENT NEAR THE TARGET AND GAS FLOW RATE ON THE DIAMETER DISTRIBUTION OF SINGLE-WALLED CARBON NANOTUBES GROWN BY THE LASER ABLATION TECHNIQUE Rahul Sen 1, Hiromichi Kataura 2, Yohsuke

More information

Studies of fullerenes and carbon nanotubes by an extended bond order potential

Studies of fullerenes and carbon nanotubes by an extended bond order potential Nanotechnology 10 (1999) 263 268. Printed in the UK PII: S0957-4484(99)01334-3 Studies of fullerenes and carbon nanotubes by an extended bond order potential Jianwei Che, Tahir Çağın and William A Goddard

More information

(10,10,200) 4,000 Carbon Atoms R= (A) (10,10,2000) 40,000 Carbon Atoms R = (A)

(10,10,200) 4,000 Carbon Atoms R= (A) (10,10,2000) 40,000 Carbon Atoms R = (A) 27 Chapter 3 Energetics and Structures of Single-Walled Carbon Nano Toroids 3.1 Introduction Carbon has diverse forms of structure, 1,2 both in nature and by lab synthesize. Three dimensional diamond and

More information

A molecular dynamics study of the effect of a substrate on catalytic metal clusters. in nucleation process of single-walled carbon nanotubes

A molecular dynamics study of the effect of a substrate on catalytic metal clusters. in nucleation process of single-walled carbon nanotubes A molecular dynamics study of the effect of a substrate on catalytic metal clusters in nucleation process of single-walled carbon nanotubes Yasushi Shibuta 1 *, Shigeo Maruyama 2 1 Department of Materials

More information

Molecular Dynamics in Formation Process of Single-Walled Carbon Nanotubes. Department of Mechanical Engineering, The University of Tokyo, Japan

Molecular Dynamics in Formation Process of Single-Walled Carbon Nanotubes. Department of Mechanical Engineering, The University of Tokyo, Japan Molecular Dynamics in Formation Process of Single-Walled Carbon Nanotubes Yasushi SHIBUTA and Shigeo MARUYAMA Department of Mechanical Engineering, The University of Tokyo, Japan Abstract The mechanism

More information

Car bo n Na no-t ube s: An Ov er view BY ARUNDUBEY ROLL NO. 0905EC ELEX. & COMM. DPTT. I. T. M., GWALIOR

Car bo n Na no-t ube s: An Ov er view BY ARUNDUBEY ROLL NO. 0905EC ELEX. & COMM. DPTT. I. T. M., GWALIOR Car bo n Na no-t ube s: An Ov er view BY ARUNDUBEY ROLL NO. 0905EC071033 ELEX. & COMM. DPTT. I. T. M., GWALIOR Pre se nta tion O ve rvie w Definition History Properties Current Application Manufacturing

More information

Novel Zinc Oxide Nanostructures Discovery by Electron Microscopy

Novel Zinc Oxide Nanostructures Discovery by Electron Microscopy Institute of Physics Publishing Journal of Physics: Conference Series 26 (2006) 1 6 doi:10.1088/1742-6596/26/1/001 EMAG NANO 05: Imaging, Analysis and Fabrication on the Nanoscale Novel Zinc Oxide Nanostructures

More information

A new method of growing graphene on Cu by hydrogen etching

A new method of growing graphene on Cu by hydrogen etching A new method of growing graphene on Cu by hydrogen etching Linjie zhan version 6, 2015.05.12--2015.05.24 CVD graphene Hydrogen etching Anisotropic Copper-catalyzed Highly anisotropic hydrogen etching method

More information

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111)

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) 20028 J. Phys. Chem. C 2010, 114, 20028 20041 Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*,

More information

Nanostrukturphysik Übung 2 (Class 3&4)

Nanostrukturphysik Übung 2 (Class 3&4) Nanostrukturphysik Übung 2 (Class 3&4) Prof. Yong Lei & Dr. Yang Xu 2017.05.03 Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902)

More information

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Pedro A. S. Autreto and Douglas S. Galvao Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,

More information

Structural and Mechanical Properties of Nanostructures

Structural and Mechanical Properties of Nanostructures Master s in nanoscience Nanostructural properties Mechanical properties Structural and Mechanical Properties of Nanostructures Prof. Angel Rubio Dr. Letizia Chiodo Dpto. Fisica de Materiales, Facultad

More information

Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah , India. Abstract

Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah , India. Abstract Bond Lengths of Single-Walled Carbon Nanotubes Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah-6004, India. Abstract Results of the bond lengths for various chiralities

More information

Ab initio study of CNT NO 2 gas sensor

Ab initio study of CNT NO 2 gas sensor Chemical Physics Letters 387 (2004) 271 276 www.elsevier.com/locate/cplett Ab initio study of CNT NO 2 gas sensor Shu Peng a, *, Kyeongjae Cho a, Pengfei Qi b, Hongjie Dai b a Department of Mechanical

More information

Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014

Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014 Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014 Functionalization of SWCNTs with Stone-Wales and vacancy defects:

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Shunfu Xu Institute of Architecture and Engineering, Weifang University of Science and Technology,

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved Lecture, October 28, 205: Si, Ga crystal surfaces Ch 25a: Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Ch 20a:Nature of the Chemical bond Room

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

List of Abbreviations Figure Captions Abstract Introduction Experimental details Results and Discussion...

List of Abbreviations Figure Captions Abstract Introduction Experimental details Results and Discussion... Table of Contents List of Abbreviations... 2 Figure Captions... 3 Abstract... 4 1. Introduction... 5 2. Experimental details... 9 3. Results and Discussion... 12 3.1. Microstructural studies of as-prepared

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Movie 1 Description: This movie

More information

Random Telegraph Signal in Carbon Nanotube Device

Random Telegraph Signal in Carbon Nanotube Device Random Telegraph Signal in Carbon Nanotube Device Tsz Wah Chan Feb 28, 2008 1 Introduction 1. Structure of Single-walled Carbon Nanotube (SWCNT) 2. Electronic properties of SWCNT 3. Sample preparation:

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Synthesis of nanotubes. Ewelina Broda

Synthesis of nanotubes. Ewelina Broda Synthesis of nanotubes Ewelina Broda Presentation Overview 1. Introduction 2. History 3. Types and structures 4. Properties 5. Synthesis 6. Applications 7. References Allotropes of Elemental Carbon History

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes

Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 4 15 AUGUST 2004 Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes Y. Y. Chou and G.-Y. Guo Department of Physics, National

More information

Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM

Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM The 5 th Workshop on Nucleation and Growth Mechanisms of SWCNTs Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM Chang Liu Shenyang National Laboratory for Materials

More information

Nanotube AFM Probe Resolution

Nanotube AFM Probe Resolution Influence of Elastic Deformation on Single-Wall Carbon Nanotube AFM Probe Resolution Ian R. Shapiro, Santiago D. Solares, Maria J. Esplandiu, Lawrence A. Wade, William A. Goddard,* and C. Patrick Collier*

More information

Theory of doping graphene

Theory of doping graphene H. Pinto, R. Jones School of Physics, University of Exeter, EX4 4QL, Exeter United Kingdom May 25, 2010 Graphene Graphene is made by a single atomic layer of carbon atoms arranged in a honeycomb lattice.

More information

Periodic Trends in Properties of Homonuclear

Periodic Trends in Properties of Homonuclear Chapter 8 Periodic Trends in Properties of Homonuclear Diatomic Molecules Up to now, we have discussed various physical properties of nanostructures, namely, two-dimensional - graphene-like structures:

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

A NEW APPROACH TOWARDS PROPERTY NANOMEASUREMENTS USING IN-SITU TEM

A NEW APPROACH TOWARDS PROPERTY NANOMEASUREMENTS USING IN-SITU TEM A NEW APPROACH TOWARDS PROPERTY NANOMEASUREMENTS USING IN-SITU TEM Z.L. WANG*, P. PONCHARAL**, W.A. DE HEER** and R.P. GAO* * School of Materials Science and Engineering, ** School of Physics, Georgia

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si Lecture 8 January 24, 2013 Ga crystal surfaces, n-p dopants Si Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinornic chemistry, and

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A nanometer (nm) is one billionth (10-9 ) of a meter. Nanoscience can be defined as the science of objects and phenomena occurring at the scale of 1 to 100 nm. The range of 1 100

More information

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2011) Special Session 5 6-2011 Understanding Irreducible and Reducible Oxides as Catalysts for Carbon

More information

Theoretical Modeling of Tunneling Barriers in Carbon-based Molecular Electronic Junctions

Theoretical Modeling of Tunneling Barriers in Carbon-based Molecular Electronic Junctions Second Revised version, jp-2014-09838e Supporting Information Theoretical Modeling of Tunneling Barriers in Carbon-based Molecular Electronic Junctions Mykola Kondratenko 1,2, Stanislav R. Stoyanov 1,3,4,

More information

NSF/ITR: LARGE-SCALE QUANTUM- MECHANICAL MOLECULAR DYNAMICS SIMULATIONS

NSF/ITR: LARGE-SCALE QUANTUM- MECHANICAL MOLECULAR DYNAMICS SIMULATIONS NSF/ITR: LARGE-SCALE QUANTUM- MECHANICAL MOLECULAR DYNAMICS SIMULATIONS C. S. Jayanthi and S.Y. Wu (Principal Investigators) Lei Liu (Post-doc) Ming Yu (Post-doc) Chris Leahy (Graduate Student) Alex Tchernatinsky

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Ying Li Collaboratory for Advanced Computing & Simulations Department of Chemical Engineering & Materials Science Department

More information

The World of Carbon Nanotubes

The World of Carbon Nanotubes The World of Carbon Nanotubes Carbon Nanotubes Presentation by Jan Felix Eschermann at JASS05 from March 31st to April 9th, 2005 1 Outline Introduction Physical Properties Manufacturing Techniques Applications

More information

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI

More information

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Defects and diffusion in metal oxides: Challenges for first-principles modelling Defects and diffusion in metal oxides: Challenges for first-principles modelling Karsten Albe, FG Materialmodellierung, TU Darmstadt Johan Pohl, Peter Agoston, Paul Erhart, Manuel Diehm FUNDING: ICTP Workshop

More information

Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties

Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties Computational Materials Design and Discovery Energy and Electronic Applications Synthesis Structure Properties Supercapacitors Rechargeable batteries Supercomputer Photocatalysts Fuel cell catalysts First

More information

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA Conference for Undergraduate Women in Physics at Yale January 18, 2009 Why are

More information

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes.

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes. OCR A GCSE Chemistry Topic 2: Elements, compounds and mixtures Properties of materials Notes C2.3a recall that carbon can form four covalent bonds C2.3b explain that the vast array of natural and synthetic

More information

Investigation Report of Graphene

Investigation Report of Graphene Investigation Report of Graphene Reporter: Shao Xiaoru Superviser: Prof.Zhao & Dr. Hong 2014-4-14 Contents 1 Basic Knowledge 2 Synthesis Method 3 Research Progress 4 Future research directions 2 Omnipotent

More information

175-IJN Article No SPIN IN CARBON NANOTUBE-BASED OSCILLATORS

175-IJN Article No SPIN IN CARBON NANOTUBE-BASED OSCILLATORS 175-IJN Article No. 49 FA International Journal of Nanoscience Vol. 5, No. 1 (26) 47 55 World Scientific Publishing Company SPIN IN CARBON NANOTUBE-BASED OSCILLATORS SHAOPING XIAO Department of Mechanical

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun Computational Modeling of Molecular Electronics Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University May 9, 2007 Outline: 1. Introduction

More information

Report on Atomistic Modeling of Bonding in Carbon-Based Nanostructures

Report on Atomistic Modeling of Bonding in Carbon-Based Nanostructures Report on Atomistic Modeling of Bonding in Carbon-Based Nanostructures Timothy Stillings Department of Physics, Astronomy and Materials Science Missouri State University Advisor: Ridwan Sakidja Abstract

More information

Enduring Understandings & Essential Knowledge for AP Chemistry

Enduring Understandings & Essential Knowledge for AP Chemistry Enduring Understandings & Essential Knowledge for AP Chemistry Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements

More information

Boron Fullerenes: A First-Principles Study

Boron Fullerenes: A First-Principles Study Nanoscale Res Lett (2008) 3:49 54 DOI 10.1007/s11671-007-9113-1 NANO EXPRESS Boron Fullerenes: A First-Principles Study Nevill Gonzalez Szwacki Received: 11 November 2007 / Accepted: 4 December 2007 /

More information

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the 1 2 3 4 5 6 7 8 Supplementary Figure 1. Potential energy, volume, and molecular distribution of the organic substrates prepared by MD simulation. (a) Change of the density and total potential energy of

More information

Self-assembly and electronic structure of bundled single- and multi-wall nanotubes

Self-assembly and electronic structure of bundled single- and multi-wall nanotubes Self-assembly and electronic structure of bundled single- and multi-wall nanotubes David Tomanek Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University,

More information

Binding energy of bilayer graphene and Electronic properties of oligoynes

Binding energy of bilayer graphene and Electronic properties of oligoynes Binding energy of bilayer graphene and Electronic properties of oligoynes E. Mostaani and N. Drummond Thursday, 31 July 2014 Van der Waals interaction Important contributions to the description of binding

More information

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23

STM and graphene. W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23 STM and graphene W. W. Larry Pai ( 白偉武 ) Center for condensed matter sciences, National Taiwan University NTHU, 2013/05/23 Why graphene is important: It is a new form of material (two dimensional, single

More information

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) ISBN: 978-1-60595-482-0 Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate Miao-Juan REN

More information

Thermodynamic calculations on the catalytic growth of carbon nanotubes

Thermodynamic calculations on the catalytic growth of carbon nanotubes Thermodynamic calculations on the catalytic growth of carbon nanotubes Christian Klinke, Jean-Marc Bonard and Klaus Kern Ecole Polytechnique Federale de Lausanne, CH-05 Lausanne, Switzerland Max-Planck-Institut

More information

Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles

Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles Australian Journal of Basic and Applied Sciences, 5(7): 483-490, 2011 ISSN 1991-8178 Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles 1 S. Hamidi and 2 H. Golnabi 1 Physics

More information

Multi-Wall Carbon Nanotubes/Styrene Butadiene Rubber (SBR) Nanocomposite

Multi-Wall Carbon Nanotubes/Styrene Butadiene Rubber (SBR) Nanocomposite Fullerenes, Nanotubes, and Carbon Nanostructures, 15: 207 214, 2007 Copyright # Taylor & Francis Group, LLC ISSN 1536-383X print/1536-4046 online DOI: 10.1080/15363830701236449 Multi-Wall Carbon Nanotubes/Styrene

More information

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A.

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. Ab Initio Studies On Phase Behavior of Barium Titanate Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. 1 Physics Department,

More information

In the name of Allah

In the name of Allah In the name of Allah Nano chemistry- 4 th stage Lecture No. 1 History of nanotechnology 16-10-2016 Assistance prof. Dr. Luma Majeed Ahmed lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq Nano chemistry-4

More information

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Available online at ScienceDirect. Procedia Materials Science 6 (2014 )

Available online at   ScienceDirect. Procedia Materials Science 6 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 6 (2014 ) 256 264 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014) A new approach

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

Interaction between Inner and Outer Tubes in DWCNTs

Interaction between Inner and Outer Tubes in DWCNTs Interaction between Inner and Outer Tubes in DWCNTs R. Pfeiffer, Ch. Kramberger, F. Simon, H. Kuzmany and V. N. Popov Institut für Materialphysik, Universität Wien, Vienna, Austria Faculty of Physics,

More information

Mathematical Modelling in Nanotechnology

Mathematical Modelling in Nanotechnology NMG Mathematical Modelling in Nanotechnology Dr Ngamta (Natalie) Thamwattana Nanomechanics Group, University of Wollongong Nanomechanics Group Supported by the Discovery Project scheme of the Australian

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

DETECTION OF NO 2 ADSORBED ON GRAPHYNE NANOTUBES

DETECTION OF NO 2 ADSORBED ON GRAPHYNE NANOTUBES DETECTION OF NO 2 ADSORBED ON GRAPHYNE NANOTUBES A.R. KARAMI 1, R. MAJIDI 2 1 Department of Chemistry, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811 Tehran, Iran, E-mail: ar_karami@srttu.edu,

More information

The Boron Buckyball has an Unexpected T h Symmetry

The Boron Buckyball has an Unexpected T h Symmetry The Boron Buckyball has an Unexpected T h Symmetry G. Gopakumar, Minh Tho Nguyen, and Arnout Ceulemans* Department of Chemistry and Institute for Nanoscale Physics and Chemistry, University of Leuven,

More information

The Chemistry of Everything Kimberley Waldron. Chapter topics

The Chemistry of Everything Kimberley Waldron. Chapter topics The Chemistry of Everything Kimberley Waldron Chapter 3 Diamonds Carbon allotropes, covalent bonding and the structure of simple organic molecules Richard Jarman, College of DuPage 2007 Pearson Prentice

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

Innovative Nanosensor for Disease Diagnosis

Innovative Nanosensor for Disease Diagnosis Supporting Information Innovative Nanosensor for Disease Diagnosis Sang Joon Kim,, Seon Jin Choi,,, Ji Soo Jang, Hee Jin Cho, and Il Doo Kim,* Department of Materials Science and Engineering, Korea Advanced

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012151 TITLE: Chemical Bonding of Polymer on Carbon Nanotube DISTRIBUTION: Approved for public release, distribution unlimited

More information

Methods of Continual Modeling for Graphitic Systems: Scrolling at Nanoscale

Methods of Continual Modeling for Graphitic Systems: Scrolling at Nanoscale SV Rotkin 1 Methods of Continual Modeling for Graphitic Systems: Scrolling at Nanoscale SV Rotkin 2 Scrolling at the Nanoscale ~2-4 nm Material properties of the layered lattice of the graphite define

More information

Catalyst effects on formation of boron nitride nano-tubules synthesized by laser ablation

Catalyst effects on formation of boron nitride nano-tubules synthesized by laser ablation PERGAMON Solid State Communications 109 (1999) 555 559 Catalyst effects on formation of boron nitride nano-tubules synthesized by laser ablation Guang Wen Zhou a, Ze Zhang a, *, Zhi Gang Bai b, Da Peng

More information

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and

Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and Supplementary Figure 1(a) The trajectory of the levitated pyrolytic graphite test sample (blue curve) and the envelope from free vibration theory (red curve). (b) The FFT of the displacement-time curve

More information