Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)

Size: px
Start display at page:

Download "Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)"

Transcription

1 Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Ying Li Collaboratory for Advanced Computing & Simulations Department of Chemical Engineering & Materials Science Department of Computer Science Feb 19 th, 2013

2 Outline Theory: Simulation method: Parallel reactive molecular dynamics (MD) RMD ReaxFF Applications: 1. Combustion of aluminum nanostructures: Aluminum (Al) nanoparticle aggregates & Al nanorods 2. Shock-induced detonation and associated reaction pathway on high explosives: RDX

3 Research Background Objective: Understanding the combustion mechanism of energetic materials by atomistic simulations Challenge: Reactive atomistic simulations Large scale (multimillion atoms) Long time (nanosecond)

4 Simulation Method Reactive MD Reactive force field (RMD & ReaxFF) Al Nanostructures RDX TATB

5 Reactive Force Fields (RMD) Ceramic Al 2 O 3 (Vashishta et al., 2008) Al EAM Potential (Voter and Chen, 1987) Hybrid Potential for Al-O system

6 Reactive Force Fields (RMD) Ceramic Al 2 O 3 (Vashishta et al., 2008) Metallic Al (Voter and Chen, 1987)

7 Environmental Dependent Interpolation Coupling of two potentials Oxidation degree:

8 Validation of Al 2 O 3 Potential Cohesive energy, elastic constants and melting Liquid structure P. Vashishta et al., J. Appl. Phys. 103, (2008)

9 Validation of EAM Potential Cohesive energy, lattice constant, bulk modulus and elastic constants A. F. Voter et al., Mat. Res. Symp. Porc. 82, 175 (1987)

10 Validation of RMD for Al x O y Comparison of bond length and bond angle in Al x O y fragments QM W. Wang, PhD Thesis, USC (2008) P. Politzer et al., J. Phys. Chem. A, 105, (2001)

11 Reactive Force Fields (ReaxFF)

12 Classification of ReaxFF Potential E = E lp + E over + E under + E bond + E val + E pen + E coa Bonded + E tors + E conj + E hbond + E vdwaals + E coulomb Non-bonded Coordination, 2-body, 3-body, 4-body, hydrogen bonding, and nonbonding energies

13 Bond Order (ReaxFF) Reactive bond order : {BO ij } Bond breakage & formation Bond Order

14 Bond Energy (ReaxFF: Term 4) Reactive bond order potential energy: E bond ({r ij },{BO ij }) Bond breakage & formation Bond Energy Developed by Goddard, van Duin, et al. (Caltech)

15 Variable Charge Problem (ReaxFF: Term12) Charge-equilibration (QEq) Charge transfer Determine atomic charges {q i i = 1,..., N} every MD step to minimize E ES (r N,q N ) with charge-neutrality constraint: Σ i q i = 0 O 2 dissociation on Al(111)

16 Published ReaxFF Force ReaxFF: Fields: Periodic Table - Hydrocarbons (van Duin, Dasgupta, Lorant & Goddard, JPC-A 01, 105, 9396; van Duin & Sinninghe Damste, Org. Geochem. 03, 34, 515) - Si/SiO 2 (van Duin, Strachan, Stewman, Zhang, Xu & Goddard, JPC-A 03, 107, 3803) - Nitramines/RDX/TATP (Strachan, van Duin, Chakraborty, Dasgupta & Goddard, PRL 2003, 91, 09301; Strachan, van Duin, Kober & Goddard, JCP 05, 122, ; Han, Strachan, van Duin & Goddard, in preparation; van Duin, Dubnikova, Zeiri, Kosloff & Goddard, submitted to JACS) - Al/Al 2 O 3 (Zhang, Cagin, van Duin, Goddard, Qi & Hector, PRB 04, 69, ) - Ni/Cu/Co/C (Nielson, van Duin, Oxgaard, Deng & Goddard, JPC-A 05, 109, 493) - Pt/PtH (Jacob, van Duin, Niemer & Goddard, submitted to JPC-A; Chen, Lusk, Kee, van Duin & Goddard, submitted to JCP) - Mg/MgH (Cheung, Deng, van Duin & Goddard, JPC-A 05, 109, 851) : not currently described by ReaxFF

17 Validation of Reax-FF 1,600 structures & 40 reactions for H, C, N & O by density functional theory (DFT) Good agreement with DFT for RDX decomposition pathways A. Strachen et al., Phys. Rev. Lett. 91, (2003)

18 Parallelization Entire system is divided into sub-system and each sub-system is assigned to one processor Each processor calculates force on its resident atoms Neighboring atoms information is copied to calculate the force on the surface

19 Linked List Cell Normal Traversal: Search space: Full system Computation: O(N 2 ) Linked List Cell Length of each cell is at least equal to r cut Search space: Only neighboring cells Computation: O(N)

20 Scalability of Parallel ReaxFF MD N Weak scaling N = P P Parallel efficiency is on 786,432 BG/Q cores for ReaxFF on 8,455,716,864 atoms RDX

21 Outline Theory: Simulation method: Parallel reactive molecular dynamics (MD) RMD ReaxFF Applications: 1. Combustion of aluminum nanostructures: Aluminum (Al) nanoparticle aggregates & Al nanorods 2. Shock-induced detonation and associated reaction pathway on high explosives: RDX

22 Aluminum Nanostructures Experimental Background Aluminum combustion reaction Aluminum nanoparticle (Al-NP) microscale vs. nanoscale core metallic Al shell 2~4 nm amorphous Al2O3 Y. Sun et al., Defense Science J., 4, 56 (2006) Y. A. Kotov et al., Nanotech. in Russia, 4 (2009) Close packed Al-NP aggregate Vapor deposited Al-nanorod Y. Gan et al., Combust. Flame, 158, (2011) C. Li, et al., Chem. Mater. 19, (2007)

23 Oxidation of Al-NP Aggregates In air Small fragments With CuO Large agglomerations Y. Ohkura, et al., Combust. Flame, 158, (2011) Questions: 1. After oxidation, Al-NP agglomerate or fragment? 2. What s the size effect on the oxidation of Al-NP aggregates? 3. What are the reaction pathways (or intermediate products)?

24 Combustion Propagation for D = 26 nm Al-NP Aggregate core Al shell Al shell O

25 Al Nanorods Oxidation Al nanorods synthesis Improved oxidation due to larger available surface area S. K. Cheah et al., Nano Letters 10, 9, (2009) Questions: 1. What s the size effect on the oxidation of Al-NRs? 2. What s the oxidation mechanism for Al-NRs?

26 Combustion Propagation for D = 36 nm Al-NR core Al shell Al shell O environmental O

27 RDX RDX: cyclotrimethylenetrinitramine Research Department Explosive Applications: civil mining and military defense Single Molecule (CH 2 -N-NO 2 ) 3 1,3,5-Trinitroperhydro-1,3,5-triazine 1 unit cell a = , b = , c = Å a = b = g = 90 Z=8 molecules (168 atoms) per unit cell Space Group 61 Pbca

28 Motivation: Shock-induced Detonation PBXN 109 shock sensitivity test Ingredients: 64% RDX, 20% aluminum, etc. Scientific questions: 1. What is the reaction time? 2. What is the reaction pathway (or intermediate products)?

29 Detonation Speed

30 Reaction Time Fast reaction Slow reaction Simulation reveals two-stage reactions in RDX detonation Large C-&O-rich clusters explain the slow release of CO

31 Quantum Mechanical Validation ReaxFF MD QM (VASP) QM confirms the stability of the large clusters at 1,300 K

32 Thank You

ReaxFF force fields. Development of a transferable empirical method for atomic-scale simulations of chemical reactions

ReaxFF force fields. Development of a transferable empirical method for atomic-scale simulations of chemical reactions ReaxFF force fields Development of a transferable empirical method for atomic-scale simulations of chemical reactions Adri van Duin, Kimberley Chenoweth 2 and Bill Goddard 2 : Department of Mechanical

More information

Reactive Empirical Force Fields

Reactive Empirical Force Fields Reactive Empirical Force Fields Jason Quenneville jasonq@lanl.gov X-1: Solid Mechanics, EOS and Materials Properties Applied Physics Division Los Alamos National Laboratory Timothy C. Germann, Los Alamos

More information

Reactive Force Fields in Particular ReaxFF and Application Possibilities

Reactive Force Fields in Particular ReaxFF and Application Possibilities Reactive Force Fields in Particular ReaxFF and Application Possibilities Thomas Schönfelder 07/01/2010 Chemnitz Part I: General Concepts and Comparison to other Simulation Methods Part II: ReaxFF as Reactive

More information

Atomistics of the Lithiation of Oxidized Silicon. Dynamics Simulations

Atomistics of the Lithiation of Oxidized Silicon. Dynamics Simulations Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information (ESI) Atomistics of the Lithiation of Oxidized

More information

xxx Nanomechanics of hierarchical biological materials (cont d) Size Effects in Deformation of Materials Lecture 8 Markus J.

xxx Nanomechanics of hierarchical biological materials (cont d) Size Effects in Deformation of Materials Lecture 8 Markus J. From nano to macro: Introduction to atomistic modeling techniques IAP 007 Nanomechanics of hierarchical biological materials (cont d) Size Effects in Deformation of Materials xxx Lecture 8 Markus J. Buehler

More information

Detailed Temperature-dependent Study of n-heptane Pyrolysis at High Temperature

Detailed Temperature-dependent Study of n-heptane Pyrolysis at High Temperature CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 26, NUMBER 3 JUNE 27, 2013 ARTICLE Detailed Temperature-dependent Study of n-heptane Pyrolysis at High Temperature Jun-xia Ding, Guo-zhong He, Liang Zhang State

More information

Thermal decomposition of RDX from reactive molecular dynamics

Thermal decomposition of RDX from reactive molecular dynamics THE JOURNAL OF CHEMICAL PHYSICS 122, 054502 2005 Thermal decomposition of RDX from reactive molecular dynamics Alejandro Strachan a) and Edward M. Kober Theoretical Division, Los Alamos National Laboratory,

More information

Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF)

Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF) Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF) Markus J. Buehler 1, Adri C.T. van Duin 2, Timo Jacob 3, Yunhee Jang 2, Boris Berinov 2, William A. Goddard III 2 1

More information

Reactive Molecular Dynamics Simulation of Hydrogen/Oxygen Adsorption and Dissociation on Pd/TiO2

Reactive Molecular Dynamics Simulation of Hydrogen/Oxygen Adsorption and Dissociation on Pd/TiO2 Reactive Molecular Dynamics Simulation of Hydrogen/Oxygen Adsorption and Dissociation on Pd/TiO2 Qian Mao 1, 1, 2, K. H. Luo 1 Center for Combustion Energy, Key Laboratory for Thermal Science and Power

More information

Charge equilibration

Charge equilibration Charge equilibration Taylor expansion of energy of atom A @E E A (Q) =E A0 + Q A + 1 @Q A 0 2 Q2 A @ 2 E @Q 2 A 0 +... The corresponding energy of cation/anion and neutral atom E A (+1) = E A0 + @E @Q

More information

Introduction to ReaxFF: Reactive Molecular Dynamics

Introduction to ReaxFF: Reactive Molecular Dynamics Introduction to ReaxFF: Reactive Molecular Dynamics Ole Carstensen carstensen@scm.com TCCM ADF Tutorial April 21 Amsterdam Outline ReaxFF - general aspects Molecular Dynamics Intro 200 DFT 100 ReaxFF Harmonic

More information

ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems

ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems J. Phys. Chem. A 2005, 109, 851-859 851 ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T. van Duin, and William A. Goddard III* Materials and Process Simulation

More information

1,3,5-trinitro-1,3,5-triazine decomposition and chemisorption on Al 111 surface: First-principles molecular dynamics study

1,3,5-trinitro-1,3,5-triazine decomposition and chemisorption on Al 111 surface: First-principles molecular dynamics study THE JOURNAL OF CHEMICAL PHYSICS 126, 234702 2007 1,3,5-trinitro-1,3,5-triazine decomposition and chemisorption on Al 111 surface: First-principles molecular dynamics study Naoto Umezawa, a Rajiv K. Kalia,

More information

Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel

Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel Article Subscriber access provided by Caltech Library Services Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel Kimberly Chenoweth, Adri C. T. van Duin, Siddharth

More information

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard Coupling ReaxFF and DREIDING to Model Enzymatic Reactions Li Tao, Markus J. Buehler and William A. Goddard Motivation Find efficient computational method to model reactivity in large biological systems

More information

Parameterization of a reactive force field using a Monte Carlo algorithm

Parameterization of a reactive force field using a Monte Carlo algorithm Parameterization of a reactive force field using a Monte Carlo algorithm Eldhose Iype (e.iype@tue.nl) November 19, 2015 Where innovation starts Thermochemical energy storage 2/1 MgSO 4.xH 2 O+Q MgSO 4

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Atomistic Origin of Brittle Failure of Boron Carbide from Large Scale Reactive Dynamics Simulations; Suggestions toward Improved Ductility Qi An and William A. Goddard III * Materials

More information

The application of nano aluminum powder on solid propellant

The application of nano aluminum powder on solid propellant The application of nano aluminum powder on solid propellant Metal incendiary agent is one of the important components of modern solid propellant, which can improve the explosion heat and density of propellant.

More information

From Atoms to Materials: Predictive Theory and Simulations

From Atoms to Materials: Predictive Theory and Simulations From Atoms to Materials: Predictive Theory and Simulations Week 3 Lecture 4 Potentials for metals and semiconductors Ale Strachan strachan@purdue.edu School of Materials Engineering & Birck anotechnology

More information

References in the Supporting Information:

References in the Supporting Information: Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning Supporting

More information

Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set

Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set Additional omparison of and Data Included in the Training Set Supporting information for the manuscript A Reactive Force Field for Molecular Dynamics Simulations of ydrocarbon Oxidation by Kimberly henoweth,

More information

Reactive potentials and applications

Reactive potentials and applications 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I Continuum and particle methods Reactive potentials and applications Lecture 8 Markus J. Buehler Laboratory for Atomistic

More information

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Pedro A. S. Autreto and Douglas S. Galvao Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Reactive Dynamics Study of Hypergolic Bipropellants: Monomethylhydrazine and Dinitrogen Tetroxide

Reactive Dynamics Study of Hypergolic Bipropellants: Monomethylhydrazine and Dinitrogen Tetroxide pubs.acs.org/jpcb Reactive Dynamics Study of Hypergolic Bipropellants: Monomethylhydrazine and Dinitrogen Tetroxide Yi Liu,*,, Sergey V. Zybin, Jiaqi Guo, Adri C. T. van Duin, and William A. Goddard, III*,

More information

Force Field for Copper Clusters and Nanoparticles

Force Field for Copper Clusters and Nanoparticles Force Field for Copper Clusters and Nanoparticles CHENGGANG ZHOU, 1 JINPING WU, 1 LIANG CHEN, 2 YANG WANG, 2 HANSONG CHENG 3 ROBERT C. FORREY 4 1 Institute of Theoretical Chemistry and Computational Materials

More information

Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls

Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls Daniel Solis 1, Cristiano F. Woellner 1,2, Daiane D. Borges 1, and Douglas S. Galvao 1 1 Applied Physics Department, University of

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials JOURNAL OF PROPULSION AND POWER Vol. 23, No. 4, July August 2007 Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials Priya Vashishta, Rajiv K. Kalia, and Aiichiro Nakano University

More information

PARAMETRIC STUDY OF SIMULATION PARAMETERS FOR MOLECULAR DYNAMICS MODELING OF REACTIVE CARBON GASES USING REAXFF

PARAMETRIC STUDY OF SIMULATION PARAMETERS FOR MOLECULAR DYNAMICS MODELING OF REACTIVE CARBON GASES USING REAXFF THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS PARAMETRIC STUDY OF SIMULATION PARAMETERS FOR MOLECULAR DYNAMICS MODELING OF REACTIVE CARBON GASES USING REAXFF B.D. Jensen 1, A. Bandyopadhyay

More information

2.3 Modeling Interatomic Interactions Pairwise Potentials Many-Body Potentials Studying Biomolecules: The Force

2.3 Modeling Interatomic Interactions Pairwise Potentials Many-Body Potentials Studying Biomolecules: The Force Contents 1 Introduction to Computational Meso-Bio-Nano (MBN) Science and MBN EXPLORER.... 1 1.1 Meso-Bio-Nano Science: A Novel Field of Interdisciplinary Research.... 1 1.1.1 Structure and Dynamics of

More information

Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation

Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation pubs.acs.org/jpcc Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation Qi An, William A. Goddard III,* Sergey V. Zybin, Andres Jaramillo-Botero, and

More information

PuReMD-GPU: A Reactive Molecular Dynamic Simulation Package for GPUs

PuReMD-GPU: A Reactive Molecular Dynamic Simulation Package for GPUs Purdue University Purdue e-pubs Department of Computer Science Technical Reports Department of Computer Science 2012 PuReMD-GPU: A Reactive Molecular Dynamic Simulation Package for GPUs Sudhir B. Kylasa

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

14. The ABSTRACT views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

14. The ABSTRACT views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field

Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field pubs.acs.org/jpcc Toward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field Saber Naserifar, Lianchi Liu, William A. Goddard, III, Theodore T. Tsotsis, and Muhammad

More information

Molecular Mechanics / ReaxFF

Molecular Mechanics / ReaxFF Molecular Dynamics simulations Lecture 09: Molecular Mechanics / ReaxFF Dr. Olli Pakarinen University of Helsinki Fall 2012 Lecture notes based on notes by Dr. Jani Kotakoski, 2010 CONTENTS Molecular mechanics

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-15-2008 Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

More information

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES Weiqiao Deng, Jianwei Che, Xin Xu, Tahir Çagin, and William A Goddard, III Materials and Process Simulation Center, Beckman Institute,

More information

NANO ENGINEERED ENERGETIC MATERIALS MURI Overview

NANO ENGINEERED ENERGETIC MATERIALS MURI Overview ARO Review of Nanoenergetic Materials Initiatives MURI / DURINT Review 16-17 November 2005 Holiday Inn Aberdeen, Aberdeen, MD NANO ENGINEERED ENERGETIC MATERIALS MURI Overview Synthesis & Assembly PSU

More information

Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF

Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF pubs.acs.org/jpca Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF Naomi Rom,*, Sergey V. Zybin, Adri C. T. van Duin, William A. Goddard, III, Yehuda

More information

The split-charge method:

The split-charge method: Split charge equilibration: A charge transfer method for electrolytes and other non-metallic materials The split-charge method: Martin H. Müser Materialwissenschaften und Werkstoffwissenschaften Motivation

More information

The Pennsylvania State University. The Graduate School. College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR

The Pennsylvania State University. The Graduate School. College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR The Pennsylvania State University The Graduate School College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR HETEROGENEOUS CATALYSIS AND METAL OXIDATION: TOWARD THE DYNAMIC SAMPLING

More information

Supplementary Figure 1. Schematic of rapid thermal annealing process: (a) indicates schematics and SEM cross-section of the initial layer-by-layer

Supplementary Figure 1. Schematic of rapid thermal annealing process: (a) indicates schematics and SEM cross-section of the initial layer-by-layer Supplementary Figure 1. Schematic of rapid thermal annealing process: (a) indicates schematics and SEM cross-section of the initial layer-by-layer film configuration, (b) demonstrates schematic and cross-section

More information

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions CMS Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki,

More information

PCCP PAPER. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity

PCCP PAPER. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity PAPER View Article Online View Journal View Issue Cite this: Phys. Chem. Chem. Phys., 2014, 16, 23779 Received 22nd August 2014, Accepted 16th September 2014 DOI: 10.1039/c4cp03781b www.rsc.org/pccp 1.

More information

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation 1040 J. Phys. Chem. A 2008, 112, 1040-1053 ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation Kimberly Chenoweth, Adri C. T. van Duin, and William A. Goddard, III*

More information

High Temperature Water Clean and Etch Reactions with Low-k and SiO 2 Films: Experiments and Simulations

High Temperature Water Clean and Etch Reactions with Low-k and SiO 2 Films: Experiments and Simulations High Temperature Water Clean and Etch Reactions with Low-k and SiO 2 Films: Experiments and Simulations Joshua Barclay, Lu Deng, Oseoghaghare Okobiah, Tina Sengphanlaya, Jincheng Du, Rick Reidy University

More information

Supporting Information for: Design Rules for. Enhanced Interfacial Shear Response in. Functionalized Carbon Fiber Epoxy Composites

Supporting Information for: Design Rules for. Enhanced Interfacial Shear Response in. Functionalized Carbon Fiber Epoxy Composites Supporting Information for: Design Rules for Enhanced Interfacial Shear Response in Functionalized Carbon Fiber Epoxy Composites Baris Demir, Luke C. Henderson, and Tiffany R. Walsh Institute for Frontier

More information

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A.

Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. Ab Initio Studies On Phase Behavior of Barium Titanate Mustafa Uludogan 1, Tahir Cagin, William A. Goddard, III Materials and Process Simulation Center, Caltech, Pasadena, CA 91125, U.S.A. 1 Physics Department,

More information

Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water

Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water Pascal Brault GREMI, UMR7344 CNRS Université d Orléans, Orléans, France Outline Plasma- liquid interactions Reactive

More information

Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and glasses

Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and glasses International Journal of Fracture 121: 71 79, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and

More information

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles S. Wippermann, M. Vörös, D. Rocca, T. Li, A. Gali, G. Zimanyi, F. Gygi,

More information

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes

Modeling of Electrochemical Cells: HYD Lecture 08. Composite Membranes Modeling of Electrochemical Cells: Proton Exchange Membrane Fuel Cells HYD7007 01 Lecture 08. Composite Membranes Dept. of Chemical & Biomolecular Engineering Yonsei University Spring, 2011 Prof. David

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

Toward Computational Materials Design. Rick Muller Materials and Process Simulations Center California Institute of Technology February 2003

Toward Computational Materials Design. Rick Muller Materials and Process Simulations Center California Institute of Technology February 2003 Toward omputational Materials Design Rick Muller Materials and Process Simulations enter alifornia Institute of Technology February 2003 omputational Materials Design Develop tools to design new materials

More information

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic supplementary information Self-Supported Three-Dimensional Mesoporous Semimetallic

More information

Size-dependent melting of PAH nano-clusters: A molecular dynamic study

Size-dependent melting of PAH nano-clusters: A molecular dynamic study Size-dependent melting of PAH nano-clusters: A molecular dynamic study Dongping Chen, Tim Totton, and April 2013 PAH mobility: current questions The internal structure of a soot particle is poorly understood.

More information

GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage"

GECP Hydrogen Project: Nanomaterials Engineering for Hydrogen Storage GECP Hydrogen Project: "Nanomaterials Engineering for Hydrogen Storage" PI: KJ Cho Students and Staff Members: Zhiyong Zhang, Wei Xiao, Byeongchan Lee, Experimental Collaboration: H. Dai, B. Clemens, A.

More information

Structural and Mechanical Properties of Nanostructures

Structural and Mechanical Properties of Nanostructures Master s in nanoscience Nanostructural properties Mechanical properties Structural and Mechanical Properties of Nanostructures Prof. Angel Rubio Dr. Letizia Chiodo Dpto. Fisica de Materiales, Facultad

More information

First-Principles Modeling of Charge Transport in Molecular Junctions

First-Principles Modeling of Charge Transport in Molecular Junctions First-Principles Modeling of Charge Transport in Molecular Junctions Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University September

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

Mechanism for Unimolecular Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazocine), an ab Initio Study

Mechanism for Unimolecular Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazocine), an ab Initio Study 1302 J. Phys. Chem. A 2001, 105, 1302-1314 Mechanism for Unimolecular Decomposition of HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazocine), an ab Initio Study Debashis Chakraborty, Richard P. Muller, Siddharth

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes

Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes Toward a multilevel QM/MM methodology for performing molecular dynamic simulations of complex reactive processes Michael R. Salazar Department of Chemistry Union University, Jackson, TN 38305 msalazar@uu.edu

More information

Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects

Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2011 Modeling initial stage of phenolic pyrolysis: Graphitic

More information

Flame Chemistry and Diagnostics

Flame Chemistry and Diagnostics Flame Chemistry and Diagnostics High-Temperature Oxidation of (1) n-butanol and (2) C 4 - Hydrocarbons in Low-Pressure Premixed Flames Nils Hansen, Michael R. Harper, William H. Green Bin Yang, Hai Wang,

More information

Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles

Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles JOURNAL OF APPLIED PHYSICS 15, 12431 9 Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles Brian J. Henz, 1 Takumi Hawa, 3 and Michael Zachariah 2,3,a 1 U.S. Army Research

More information

Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals

Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals Citation & Copyright (to be inserted by the publisher ) Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals Hyon-Jee Lee 1,2, Tahir Cagin 2, William A. Goddard

More information

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph.

Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Supplementary Materials Explanation of Dramatic ph-dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High ph. Tao Cheng,, Lu Wang, Boris V Merinov, and William

More information

Support Information. For. Theoretical study of water adsorption and dissociation on Ta 3 N 5 (100) surfaces

Support Information. For. Theoretical study of water adsorption and dissociation on Ta 3 N 5 (100) surfaces Support Information For Theoretical study of water adsorption and dissociation on Ta 3 N 5 (100) surfaces Submitted to Physical Chemistry Chemical Physics by Jiajia Wang a, Wenjun Luo a, Jianyong Feng

More information

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2011) Special Session 5 6-2011 Understanding Irreducible and Reducible Oxides as Catalysts for Carbon

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

Lecture 24 March 02, 2011 Metal Oxide Catalysis Bucky tube overni

Lecture 24 March 02, 2011 Metal Oxide Catalysis Bucky tube overni Lecture 24 March 02, 2011 Metal xide Catalysis Bucky tube overni Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Defects and diffusion in metal oxides: Challenges for first-principles modelling Defects and diffusion in metal oxides: Challenges for first-principles modelling Karsten Albe, FG Materialmodellierung, TU Darmstadt Johan Pohl, Peter Agoston, Paul Erhart, Manuel Diehm FUNDING: ICTP Workshop

More information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 Under the guidance of Prof. (Ms). Sasmita Mohapatra Department

More information

Article Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride

Article Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride Article Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride Xiaoxing Zhang 1, *, Yunjian Wu 1, Xiaoyu Chen 2, Hao Wen 1 and Song Xiao 1 1 School of Electrical Engineering,

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

Molecular Dynamics Simulation of Fracture of Graphene

Molecular Dynamics Simulation of Fracture of Graphene Molecular Dynamics Simulation of Fracture of Graphene Dewapriya M. A. N. 1, Rajapakse R. K. N. D. 1,*, Srikantha Phani A. 2 1 School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

More information

Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology

Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology IOP Conference Series: Materials Science and Engineering Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology To cite this article: C Mastail et al 2012 IOP Conf.

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Reactive Nanocomposite Materials: Challenges and Perspectives

Reactive Nanocomposite Materials: Challenges and Perspectives Reactive Nanocomposite Materials: Challenges and Perspectives New Jersey Institute of Technology Newark, NJ 07102 Edward L. Dreizin Primary research sponsors: DTRA, TACOM-ARDEC Picatinny Presented at Workshop

More information

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles Louis C. Jones 6/8/12 Abstract Simulations were carried out to investigate phase segregation of insoluble alloy nanoparticles

More information

Factors Affecting the Rate of Chemical Reactions

Factors Affecting the Rate of Chemical Reactions Name Date Factors Affecting the Rate of Chemical Reactions Textbook pages 2 72-281 62 Summary Before You Read What do you already know about the speed of chemical reactions? Outline your ideas in the lines

More information

Factors Affecting the Rate of Chemical Reactions

Factors Affecting the Rate of Chemical Reactions Name Date Factors Affecting the Rate of Chemical Reactions Textbook pages 2 72-281 62 Summary Before You Read What do you already know about the speed of chemical reactions? Outline your ideas in the lines

More information

Atomistic Insights into the Conversion Reaction in Iron Fluoride: A Dynamically Adaptive Force Field Approach

Atomistic Insights into the Conversion Reaction in Iron Fluoride: A Dynamically Adaptive Force Field Approach pubs.acs.org/jacs Atomistic Insights into the Conversion Reaction in Iron Fluoride: A Dynamically Adaptive Force Field Approach Ying Ma and Stephen H. Garofalini* Interfacial Molecular Science Laboratory,

More information

Lecture February 6-8, Metal Oxide Catalysis

Lecture February 6-8, Metal Oxide Catalysis Lecture 15-16 February 6-8, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Application du modèle métal-carbone en liaisons fortes à la croissance de nanostructures de carbone

Application du modèle métal-carbone en liaisons fortes à la croissance de nanostructures de carbone Application du modèle métal-carbone en liaisons fortes à la croissance de nanostructures de carbone M. Diarra, H. Amara, F. Ducastelle C. Bichara LEM CNRS and ONERA CINaM - CNRS and Aix-Marseille Université

More information

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Mat. Res. Soc. Symp. Vol. 635 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu Shi, Zhou Yu, S. X. Wang 1, Wim J.

More information

Supplementary material. From cellulose to kerogen: molecular simulation. of a geological process

Supplementary material. From cellulose to kerogen: molecular simulation. of a geological process Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supplementary material From cellulose to kerogen: molecular simulation of a geological

More information

Thermodynamic aspects of

Thermodynamic aspects of Thermodynamic aspects of nanomaterials Advanced nanomaterials H.HofmannHofmann EPFL-LTP 2011/2012 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Thermodynamic properties p of nanosized materials 100000 120 Total

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Interatomic Potentials. The electronic-structure problem

Interatomic Potentials. The electronic-structure problem Interatomic Potentials Before we can start a simulation, we need the model! Interaction between atoms and molecules is determined by quantum mechanics: Schrödinger Equation + Born-Oppenheimer approximation

More information

Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli

Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations S. Wippermann, G. Galli ICAMP-12, 08/10/2012 Search for materials to harvest light: Desperately seeking

More information

Application to modeling brittle materials

Application to modeling brittle materials 1.01, 3.01, 10.333,.00 Introduction to Modeling and Simulation Spring 011 Part I Continuum and particle methods Application to modeling brittle materials Lecture 7 Markus J. Buehler Laboratory for Atomistic

More information

Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel

Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel J. Phys. Chem. C 2010, 114, 4939 4949 4939 Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel Jonathan E. Mueller, Adri C. T. van Duin, and William

More information

A Computational Screening Method in Deriving New Promising Explosive Molecules: ADD Method-1 and MS-HEMs

A Computational Screening Method in Deriving New Promising Explosive Molecules: ADD Method-1 and MS-HEMs A Computational Screening Method in Deriving New Promising Explosive Molecules: ADD Method-1 and MS-HEMs Soo Gyeong Cho, Eun Mee Goh, (ADD), Daejeon, South Korea 1 Research Purpose: Develop Better Warhead/Ammunition

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information