Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set

Size: px
Start display at page:

Download "Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set"

Transcription

1 Additional omparison of and Data Included in the Training Set Supporting information for the manuscript A Reactive Force Field for Molecular Dynamics Simulations of ydrocarbon Oxidation by Kimberly henoweth, Adri.T. van Duin and William A. Goddard, III Table. omparison of reaction energetics obtained from and. Reaction Dehydrogenation O O O O O O =O bond dissociation O.. O.. O.. O O O.. O O O..

2 O O O O O.. = bond dissociation +.. O O + O O + O O O O + O O O O O O O O + O O O O O-O bond dissociation O O O O O O O.. O O +.. O +.. O O + O O.. O O O.. O O O.. O O + O O.. O O + O O.. O O O O.. - dissociation

3 O O O O O O + O O -O bond dissociation O O O O O O O bond dissociation O O O Other Reactions O O O O O O bond dissociation () x (O) y ( ) z () x- (O) y ( ) z + where x + y + z = x y z......

4 O bond dissociation () x (O) y ( ) z () x (O) y- ( ) z where x + y + z = x y z

5 Reactions not included in training the force field but observed during the simulations.. O + O.. O O O O O.. O O O +.. O O O. -. O O + O..

6 Figure. omparison of and energies for (a) - bond dissociation and (b) =O bond dissociation. (a) DFT Doublet O Bond Distance (Å) (b) O DFT Doublet DFT Quartet =O Bond Distance (Å) Figure. and angle distortion energies for (a) =-O, (b) -=O, (c) O=-O, (d) --O, (e) -O-, (f) O--O, (g) --O, and (h) -O-. (a) (b) = O Valence Angle (degrees) =O Valence Angle (degrees)

7 (c) (d) O= O Valence Angle (degrees) O Valence Angle (degrees) O Valence Angle (degrees) - - (e) (g) O Valence Angle (degrees) (f) O O Valence Angle (degrees) (h) O Valence Angle (degrees)

8 Figure. and distortion energies for various dihedral angles O O Dihedral Angle (degrees) O= O O Dihedral Angle (degrees) O O O Dihedral Angle (degrees) O O O O Dihedral Angle (degrees)

9 - - - = = Dihedral Angle (degrees) = Dihedral Angle (degrees) = =O Dihedral Angle (degrees) = Dihedral Angle (degrees) Dihedral Angle (degrees) O = Dihedral Angle (degrees)

10 - - - O Dihedral Angle (degrees) O =O Dihedral Angle (degrees) O O Dihedral Angle (degrees) O O Dihedral Angle (degrees) O O O Dihedral Angle (degrees) = Dihedral Angle (degrees)

11 - - - = Dihedral Angle (degrees) = Dihedral Angle (degrees) = O Dihedral Angle (degrees) Dihedral Angle (degrees) Dihedral Angle (degrees) O Dihedral Angle (degrees)

12 - - - O Dihedral Angle (degrees) O O Dihedral Angle (degrees) O = Dihedral Angle (degrees) O Dihedral Angle (degrees) - O Dihedral Angle (degrees) O =O Dihedral Angle (degrees)

13 O O Dihedral Angle (degrees) O O Dihedral Angle (degrees) O= =O Dihedral Angle (degrees) - O O Dihedral Angle (degrees) O O O Dihedral Angle (degrees) O = O Dihedral Angle (degrees)

Charge equilibration

Charge equilibration Charge equilibration Taylor expansion of energy of atom A @E E A (Q) =E A0 + Q A + 1 @Q A 0 2 Q2 A @ 2 E @Q 2 A 0 +... The corresponding energy of cation/anion and neutral atom E A (+1) = E A0 + @E @Q

More information

Atomistics of the Lithiation of Oxidized Silicon. Dynamics Simulations

Atomistics of the Lithiation of Oxidized Silicon. Dynamics Simulations Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information (ESI) Atomistics of the Lithiation of Oxidized

More information

Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations

Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations J. Phys. Chem. C 2007, 111, 16405-16415 16405 Mechanism of Selective Oxidation of Propene to Acrolein on Bismuth Molybdates from Quantum Mechanical Calculations Sanja Pudar, Jonas Oxgaard, Kimberly Chenoweth,

More information

Reactive Empirical Force Fields

Reactive Empirical Force Fields Reactive Empirical Force Fields Jason Quenneville jasonq@lanl.gov X-1: Solid Mechanics, EOS and Materials Properties Applied Physics Division Los Alamos National Laboratory Timothy C. Germann, Los Alamos

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications) Ying Li Collaboratory for Advanced Computing & Simulations Department of Chemical Engineering & Materials Science Department

More information

Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization

Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization J. Phys. Chem. B 2011, 115, 249 261 249 Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization Obaidur Rahaman, Adri C. T. van Duin, William A. Goddard

More information

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012 Fig. S1 CASSCF (13,10) active space orbitals with Ru-Ru distance of 2.4 Å. Occupation numbers are on the left and energies in Hartrees are on the right of each orbital. The δ orbital is also included here,

More information

Supporting Information

Supporting Information Supporting Information Tuning of Second-Order Nonlinear Optical Response Properties of Aryl-Substituted Boron-Dipyrromethene Dyes: Unidirectional Charge Transfer Coupled with Structural Tailoring Ramprasad

More information

ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems

ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems J. Phys. Chem. A 2005, 109, 851-859 851 ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems Sam Cheung, Wei-Qiao Deng, Adri C. T. van Duin, and William A. Goddard III* Materials and Process Simulation

More information

Molecular Mechanics / ReaxFF

Molecular Mechanics / ReaxFF Molecular Dynamics simulations Lecture 09: Molecular Mechanics / ReaxFF Dr. Olli Pakarinen University of Helsinki Fall 2012 Lecture notes based on notes by Dr. Jani Kotakoski, 2010 CONTENTS Molecular mechanics

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Atomistic Origin of Brittle Failure of Boron Carbide from Large Scale Reactive Dynamics Simulations; Suggestions toward Improved Ductility Qi An and William A. Goddard III * Materials

More information

Structural and Electronic Properties of Neutral and Ionic Ga n O n Clusters with n ) 4-7

Structural and Electronic Properties of Neutral and Ionic Ga n O n Clusters with n ) 4-7 3814 J. Phys. Chem. A 2006, 110, 3814-3819 Structural and Electronic Properties of Neutral and Ionic Ga n O n Clusters with n ) 4-7 Mrinalini Deshpande, D. G. Kanhere, and Ravindra Pandey* Michigan Technological

More information

Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts

Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts J. Phys. Chem. C 2008, 112, 14645 14654 14645 Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts Kimberly Chenoweth, Adri C.T. van Duin,

More information

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation 1040 J. Phys. Chem. A 2008, 112, 1040-1053 ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation Kimberly Chenoweth, Adri C. T. van Duin, and William A. Goddard, III*

More information

Lecture 16, February 25, 2015 Metallic bonding

Lecture 16, February 25, 2015 Metallic bonding Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am

More information

sharing or transferring electrons between atoms covalent ionic polar covalent Quantitative description: Quantum mechanics

sharing or transferring electrons between atoms covalent ionic polar covalent Quantitative description: Quantum mechanics Chapter. 3 Chemical Bonding: The Classical Description Two or more atoms approach -> their electrons interact and form new arrangements of electrons with lower total potential energy than isolated atoms

More information

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-15-2008 Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

More information

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation Pedro A. S. Autreto and Douglas S. Galvao Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,

More information

Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF)

Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF) Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF) Markus J. Buehler 1, Adri C.T. van Duin 2, Timo Jacob 3, Yunhee Jang 2, Boris Berinov 2, William A. Goddard III 2 1

More information

Chapter 9 Bonding - 1. Dr. Sapna Gupta

Chapter 9 Bonding - 1. Dr. Sapna Gupta Chapter 9 Bonding - 1 Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and

More information

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Data for Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic

More information

Ch120 Lecture: The BiMoO x Story

Ch120 Lecture: The BiMoO x Story Ch120 Lecture: The Bi x Story Heterogeneous selective (amm)oxidation of propene. Kimberly Chenoweth November 28, 2007 What do these processes have in common? Late 1800s Early 1900s 1950s 1960s 1970s 1980s

More information

A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde

A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde Indian Journal of Chemistry Vol. 51A, November 2012, pp. 1553-1560 A DFT study on the mechanism of the gas phase reaction of niobium with acetaldehyde Yong Wang a, b & Gui-hua Chen a, * a School of Pharmaceutical

More information

Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations

Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations pubs.acs.org/jpca Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations V. J. F. Lapoutre, B. Redlich, A. F. G. van der Meer, J. Oomens,, J. M. Bakker,*, A. Sweeney,

More information

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111)

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) 20028 J. Phys. Chem. C 2010, 114, 20028 20041 Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*,

More information

Ground State Calculations for Protonated PAHs

Ground State Calculations for Protonated PAHs 15 Chapter 2 Ground State Calculations for Protonated PAHs 2.1 Introduction Ab initio ground electronic state calculations can be used to determine geometries and energies of all possible protonated PAH

More information

1 Supporting information

1 Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 1 Supporting information 1.1 Separation of the chemical potentials of electrons and protons in

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

T6.2 Molecular Mechanics

T6.2 Molecular Mechanics T6.2 Molecular Mechanics We have seen that Benson group additivities are capable of giving heats of formation of molecules with accuracies comparable to those of the best ab initio procedures. However,

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Formation of the Active Species of Cytochrome P450 Using Iodosylbenzene: A Case for Spin-Selective Reactivity Kyung-Bin

More information

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard Coupling ReaxFF and DREIDING to Model Enzymatic Reactions Li Tao, Markus J. Buehler and William A. Goddard Motivation Find efficient computational method to model reactivity in large biological systems

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

Recent activities in TP C6:

Recent activities in TP C6: Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO 3 and V 2 O 5 substrate K. Hermann, M. Gruber, and X. Shi Theory Department, Fritz-Haber-Institut, Berlin Sfb 546 Workshop, Schmöckwitz,

More information

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA Atomistic-Scale Simulations of Defect Formation in Graphene Under Noble Gas Ion Irradiation Kichul Yoon a, Ali Rahnamoun a, Jacob L. Swett b, Vighter Iberi c, d, David A. Cullen e, Ivan V. Vlassiouk f,

More information

CHEM 203. Topics Discussed on Oct. 16

CHEM 203. Topics Discussed on Oct. 16 EM 203 Topics Discussed on Oct. 16 ydrogenation (= saturation) of olefins in the presence of finely divided transition metal catalysts (Ni, Pd, Pt, Rh, Ru...): generic alkene R 1 finely divided Pd (or

More information

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Supporting Information for Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Claudia Kupper, ǁ Bhaskar Mondal, ǁ Joan Serrano-Plana, Iris Klawitter, Frank Neese,

More information

3. An Introduction to Molecular Mechanics

3. An Introduction to Molecular Mechanics 3. An Introduction to Molecular Mechanics Introduction When you use Chem3D to draw molecules, the program assigns bond lengths and bond angles based on experimental data. The program does not contain real

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 SEM/EDS mapping of LiNi 0.4 Mn 0.4 Co 0.18 Ti 0.02 O 2. The experimental error of the mapping is ±1%. The atomic percentages of each element are based on multiple

More information

MOP. Mechanism? Objectives. Energy hill for dehydrohalogenation. Last lecture. LQ#1) A) Draw the MOP B) Name MOP

MOP. Mechanism? Objectives. Energy hill for dehydrohalogenation. Last lecture. LQ#1) A) Draw the MOP B) Name MOP 0% 0% 0% 0% 1. 2.. 4. 2-bromo-,-dimethylpentane strong base salt dissolved in corresponding conjugate acid Given these conditions, select the mechanism that leads to the MP. Sodium isopropoxide Mechanism?

More information

Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate

Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate M. Gruber and K. Hermann Inorg. Chem. Dept., Fritz-Haber-Institut der Max-Planck-Gesellschaft,

More information

Agency, Honcho, Kawaguchi, Saitama (Japan), University, Tsushima, Kita-ku, Okayama (Japan),

Agency, Honcho, Kawaguchi, Saitama (Japan), University, Tsushima, Kita-ku, Okayama (Japan), Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Why do zeolites induce unprecedented electronic state on exchanged metal ions?

More information

Computational Studies on Catalytic Light Alkane Dehydrogenation. Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov

Computational Studies on Catalytic Light Alkane Dehydrogenation. Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov Computational Studies on Catalytic Light Alkane Dehydrogenation Martin Hangaard Hansen Paul Jennings Thomas Bligaard Jens Nørskov 1 Coking and size effect [1] Wu, Peng, Bell, Journal of Catalysis 311 (2014)

More information

Introduction to ReaxFF: Reactive Molecular Dynamics

Introduction to ReaxFF: Reactive Molecular Dynamics Introduction to ReaxFF: Reactive Molecular Dynamics Ole Carstensen carstensen@scm.com TCCM ADF Tutorial April 21 Amsterdam Outline ReaxFF - general aspects Molecular Dynamics Intro 200 DFT 100 ReaxFF Harmonic

More information

Lecture 1: Chemistry of the Carbonyl Group

Lecture 1: Chemistry of the Carbonyl Group Lecture 1: Chemistry of the Carbonyl Group bjectives: By the end of this lecture you will be able to: 1. identify and name all major carbonyl functional groups; 2. use a molecular orbital approach to describe

More information

STRUCTURES, ENERGETICS AND REACTIONS OF HYDROCARBONS ON NICKEL. Thesis by. Jonathan Edward Mueller

STRUCTURES, ENERGETICS AND REACTIONS OF HYDROCARBONS ON NICKEL. Thesis by. Jonathan Edward Mueller STRUCTURES, ENERGETICS AND REACTIONS OF HYDROCARBONS ON NICKEL Thesis by Jonathan Edward Mueller In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF

More information

3. An Introduction to Molecular Mechanics

3. An Introduction to Molecular Mechanics 3. An Introduction to Molecular Mechanics Introduction When you use Chem3D to draw molecules, the program assigns bond lengths and bond angles based on experimental data. The program does not contain real

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Supplemental Information:

Supplemental Information: Supplemental Information: Nanoscale Voltage Enhancement at Cathode Interfaces in Li-ion Batteries Shenzhen Xu 1, Ryan Jacobs 2, Chris Wolverton 4, Thomas Kuech 3 and Dane Morgan 1,2 1 Materials Science

More information

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step Supporting Information Photoinduced Water Oxidation at the Aqueous Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step Mehmed Z. Ertem,,,* eerav Kharche,,* Victor S. Batista,

More information

Applications of Computational Chemistry to the Reactions of Lignin

Applications of Computational Chemistry to the Reactions of Lignin Applications of Computational Chemistry to the Reactions of Lignin Thomas Elder USDA-Forest Service Southern Research Station ctober 30-ovember 2, 2012 Frontiers in Biorefining, Chemicals and Products

More information

Flatbands in 2D boroxine-linked covalent organic frameworks

Flatbands in 2D boroxine-linked covalent organic frameworks Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Supplementary Material Flatbands in 2D boroxine-linked covalent organic frameworks

More information

CHEMISTRY XL-14A CHEMICAL BONDS

CHEMISTRY XL-14A CHEMICAL BONDS CHEMISTRY XL-14A CHEMICAL BONDS July 16, 2011 Robert Iafe Office Hours 2 July 18-July 22 Monday: 2:00pm in Room MS-B 3114 Tuesday-Thursday: 3:00pm in Room MS-B 3114 Chapter 2 Overview 3 Ionic Bonds Covalent

More information

Section 8.1 The Covalent Bond

Section 8.1 The Covalent Bond Section 8.1 The Covalent Bond Apply the octet rule to atoms that form covalent bonds. Describe the formation of single, double, and triple covalent bonds. Contrast sigma and pi bonds. Relate the strength

More information

Quantum Chemical Challenges in Nanostructured Systems

Quantum Chemical Challenges in Nanostructured Systems Quantum Chemical Challenges in Nanostructured Systems Petter Persson May 31, June 1 2011 Overview Introduction to nanoscale problems Molecules, clusters, and crystals Exploring Potential Energy Surfaces

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MOLEULAR REPRESENTATIONS AND INFRARED SPETROSOPY A STUDENT SOULD BE ABLE TO: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

Yuan Ping 1,2,3*, Robert J. Nielsen 1,2, William A. Goddard III 1,2*

Yuan Ping 1,2,3*, Robert J. Nielsen 1,2, William A. Goddard III 1,2* Supporting Information for the Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO2 (110) Surface Yuan Ping 1,2,3*, Robert J. Nielsen 1,2, William

More information

Stage 1. Chemistry. Written by. Mr Ian Kershaw. BSc Dip Ed

Stage 1. Chemistry. Written by. Mr Ian Kershaw. BSc Dip Ed Stage 1 Written by Chemistry Mr Ian Kershaw BSc Dip Ed The Author Ian Kershaw B.Sc., Dip.Ed. Ian has taught senior Chemistry since 1976. e was a member of the SSABSA Subject Advisory Committee for some

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-3 Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Qunatum Methods for Plasma-Facing Materials Alain ALLOUCHE Univ.de Provence, Lab.de la Phys.

More information

Supporting Information. P,N Ligands. General Information:

Supporting Information. P,N Ligands. General Information: Supporting Information A Dynamic Kinetic C Cross Coupling for the Asymmetric Synthesis of Axially Chiral,N Ligands edro Ramírez-López, Abel Ros, *, Beatriz Estepa, Rosario Fernández, *, Béla Fiser, Enrique

More information

(a) (e) (b) (f) (c) (g) (h) (d) Chapter 6. The Dissociation Reaction of Acetylacetone

(a) (e) (b) (f) (c) (g) (h) (d) Chapter 6. The Dissociation Reaction of Acetylacetone Chapter 6. The Dissociation Reaction of Acetylacetone (e) (f) (g) (h) Fig.6-. Difference patterns created by subtracting the ratio pattern of the 77 ps time point from the ratio patterns recorded at 27

More information

Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls

Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls Mechanical and Thermal Stability of Graphyne and Graphdiyne Nanoscrolls Daniel Solis 1, Cristiano F. Woellner 1,2, Daiane D. Borges 1, and Douglas S. Galvao 1 1 Applied Physics Department, University of

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

You have mastered this topic when you can:

You have mastered this topic when you can: CH 11 T17 IONIC COMPOUNDS IONIC BONDS 1 You have mastered this topic when you can: 1) define or describe these terms: IONIC BOND, CATION, ANION and FORMULA UNIT. 2) predict the formation of an IONIC BOND

More information

Surface Complexes in Catalysis

Surface Complexes in Catalysis Surface Complexes in Catalysis David Karhánek Ústav organické technologie, VŠCHT Praha Institut für Materialphysik, Universität Wien XXXVII Symposium on Catalysis, Prague, October 7-8, 2005. Research Methodologies:

More information

Molecular Dynamics modeling of O 2 /Pt(111) gas-surface interaction using the ReaxFF potential

Molecular Dynamics modeling of O 2 /Pt(111) gas-surface interaction using the ReaxFF potential Molecular Dynamics modeling of O 2 /Pt(111) gas-surface interaction using the ReaxFF potential Paolo Valentini, Thomas E. Schwartzentruber and Ioana Cozmuta Department of Aerospace Engineering and Mechanics,

More information

Supporting Information for

Supporting Information for Supporting Information for Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites Lu Wang *,,, Hai Xiao, Tao Cheng, Youyong Li *,, William A. Goddard III

More information

Understanding electron energy loss mechanisms in EUV resists using EELS and first-principles calculations

Understanding electron energy loss mechanisms in EUV resists using EELS and first-principles calculations Understanding electron energy loss mechanisms in EUV resists using EELS and first-principles calculations Robert Bartynski Sylvie Rangan Department of Physics & Astronomy and Laboratory for Surface Modification

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

Spontaneous dehydrogenation of methanol over defect-free MgO(100)

Spontaneous dehydrogenation of methanol over defect-free MgO(100) Spontaneous dehydrogenation of methanol over defect-free MgO(100) thin film deposited on molybdenum Zhenjun Song, Hu Xu* Department of Physics, South University of Science and Technology of China, Shenzhen,

More information

Unit C8: The Periodic Table Developing the Periodic Table Question Developing the periodic table Question Groups Question Groups Question Period

Unit C8: The Periodic Table Developing the Periodic Table Question Developing the periodic table Question Groups Question Groups Question Period 1 2 3 4 5 6 7 Unit C8: The Periodic Table Chemistry A Developing the Periodic Table Mendeleev arranged his periodic table on the basis of the similar properties of elements. He concluded that the properties

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Conformational Studies on Aryl-cyclopentadienylidenes: Electronic Effects of Aryl Groups

Conformational Studies on Aryl-cyclopentadienylidenes: Electronic Effects of Aryl Groups Asian Journal of Chemistry Vol., No. (010), 888-89 Conformational Studies on Aryl-cyclopentadienylidenes: Electronic Effects of Aryl roups E. VESSALLY Islamic Azad University, Miyaneh Branch, Miyaneh,

More information

International Journal of Mass Spectrometry

International Journal of Mass Spectrometry International Journal of Mass Spectrometry 321 322 (2012) 49 65 Contents lists available at SciVerse ScienceDirect International Journal of Mass Spectrometry j our na l ho me page: www.elsevier.com/locate/ijms

More information

Spectroscopy: The Study of Squiggly Lines. Reflectance spectroscopy: light absorbed at specific wavelengths corresponding to energy level transi8ons

Spectroscopy: The Study of Squiggly Lines. Reflectance spectroscopy: light absorbed at specific wavelengths corresponding to energy level transi8ons Spectroscopy: The Study of Squiggly Lines Reflectance spectroscopy: light absorbed at specific wavelengths corresponding to energy level transi8ons Interaction of Radiant Energy and Matter What causes

More information

Acid / Base Properties of Salts

Acid / Base Properties of Salts Acid / Base Properties of Salts n Soluble ionic salts produce may produce neutral, acidic, or basic solutions depending on the acidbase properties of the individual ions. n Consider the salt sodium nitrate,

More information

Supporting Information

Supporting Information Supporting Information Roles of Water Molecules in Modulating the Reactivity of Dioxygen-bound - ZSM-5 toward Methane: A Theoretical Prediction Takashi Yumura,,* Yuuki Hirose, Takashi Wakasugi, Yasushige

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Reactive Force Fields in Particular ReaxFF and Application Possibilities

Reactive Force Fields in Particular ReaxFF and Application Possibilities Reactive Force Fields in Particular ReaxFF and Application Possibilities Thomas Schönfelder 07/01/2010 Chemnitz Part I: General Concepts and Comparison to other Simulation Methods Part II: ReaxFF as Reactive

More information

Supplementary information

Supplementary information Supplementary information rganic Polyanionic High-Spin Molecular Clusters in Solution: Topological-Symmetry Controlled Models for rganic Ferromagnetic Metals with meta-benzoylbenzene Linkers Shigeaki Nakazawa,*

More information

The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof

The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof Summary Catalysis plays a key role in the prosperity of our society, as catalysts are applied in the majority

More information

Chemical Bonding Forces and Metallization of Hydrogen

Chemical Bonding Forces and Metallization of Hydrogen Chemical Bonding Forces and Metallization of Hydrogen Ivan I. Naumov Geophysical Laboratory, Carnegie Institution of Washington Naumov & Hemley, Accts. Chem. Res., 47(12), 3551 (2014) Importance of Fundamental

More information

- H. Predicts linear structure. Above are all σ bonds

- H. Predicts linear structure. Above are all σ bonds arbon sp hybrids: : Acetylene and the Triple bond 2 2 is - - Form sp on each leaving 2p x, 2p y unused - sp sp + + sp sp - Predicts linear structure. Above are all σ bonds --- Uses up 2 valence e - for

More information

Ch. 9 Practice Questions

Ch. 9 Practice Questions Ch. 9 Practice Questions 1. The hybridization of the carbon atom in the cation CH + 3 is: A) sp 2 B) sp 3 C) dsp D) sp E) none of these 2. In the molecule C 2 H 4 the valence orbitals of the carbon atoms

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry

CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry CHEM1101 Worksheet 6: Lone Pairs and Molecular Geometry Model 1: Oxidation numbers Oxidation numbers are a useful accountancy tool to help keep track of electrons in compounds and reactions. This is particularly

More information

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Atomic Orbitals 1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Valence Bond Theory and ybridized Atomic Orbitals Bonding in 2 1s 1s Atomic Orbital

More information

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016 Chemisorption František Máca VIII. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 16th December 2016 Chemisorption The knowledge of chemisorption phenomena requires the determination of the geometrical

More information

Developing the Periodic Table

Developing the Periodic Table Developing the Periodic Table Early Element Classification Mendeleev s First Periodic Table Mendeleev s First Periodic Table Mendeleev s Periodic Table Arranged by increasing atomic mass Some elements

More information

EXPLANATION OF THE COLOSSAL DETONATION SENSITIVITY OF SILICON PENTAERYTHRITOL TETRANITRATE EXPLOSIVE

EXPLANATION OF THE COLOSSAL DETONATION SENSITIVITY OF SILICON PENTAERYTHRITOL TETRANITRATE EXPLOSIVE h a p t e r 2 EPLAATI F THE LSSAL DETATI SESITIVITY F SILI PETAERYTHRITL TETRAITRATE EPLSIVE verview For applications requiring high shattering power, it is desirable to increase detonation velocity so

More information

Supporting Information

Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2004 Chem. Eur. J. 2004 Supporting Information for Chem. Eur. J. Supporting Information For Quantitative Evaluation of d-p Interaction in Copper(I)

More information

The Pennsylvania State University. The Graduate School. College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR

The Pennsylvania State University. The Graduate School. College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR The Pennsylvania State University The Graduate School College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR HETEROGENEOUS CATALYSIS AND METAL OXIDATION: TOWARD THE DYNAMIC SAMPLING

More information

Formal Charge. Formal Charge. Formal Charge. Formal Charge. Most Lewis structures do not require any formal charges.

Formal Charge. Formal Charge. Formal Charge. Formal Charge. Most Lewis structures do not require any formal charges. : a charge assigned to each atom in a structure by assuming that the shared electrons are divided equally between the bonded atoms. Most Lewis structures do not require any formal charges. tructures that

More information

Copper Chemistry. Cu : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10

Copper Chemistry. Cu : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 Copper Chemistry Cu : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochman, Advanced Inorganic Chemistry, 6 th ed., John Wiley, New York, pp. 855-864. 1 Cuhasasingleselectroninitsfourthshell.Onemaybeinclinedtothink,basedon

More information

5.03 In-Class Exam 2

5.03 In-Class Exam 2 5.03 In-Class Exam 2 Christopher C. Cummins March 12, 2010 Instructions Clearly write your name at the top of this front page, but otherwise do not write on this front page as it will be used for scoring.

More information

O 2 -coverage-dependent CO oxidation on reduced TiO : A first principles study

O 2 -coverage-dependent CO oxidation on reduced TiO : A first principles study THE JOURNAL OF CHEMICAL PHYSICS 125, 144706 2006 O 2 -coverage-dependent CO oxidation on reduced TiO 2 110 : A first principles study Devina Pillay and Gyeong S. Hwang a Department of Chemical Engineering,

More information

SPECTROSCOPY OF METAL ION COMPLEXES: Gas-Phase Models for Solvation

SPECTROSCOPY OF METAL ION COMPLEXES: Gas-Phase Models for Solvation Annu. Rev. Phys. Chem. 1997. 48:69 93 Copyright c 1997 by Annual Reviews Inc. All rights reserved SPECTROSCOPY OF METAL ION COMPLEXES: Gas-Phase Models for Solvation Michael A. Duncan Department of Chemistry,

More information

Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints

Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints Steven M. Swasey [b], Leonardo Espinosa Leal [c], Olga Lopez- Acevedo [c],

More information

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table.

Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. 1.6. Review of Electronegativity (χ) CONCEPT: Electronegativity is a very useful concept for the explanation or understanding of chemical reactivity throughout the periodic table. There are many definitions

More information