Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012

Size: px
Start display at page:

Download "Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012"

Transcription

1 Fig. S1 CASSCF (13,10) active space orbitals with Ru-Ru distance of 2.4 Å. Occupation numbers are on the left and energies in Hartrees are on the right of each orbital. The δ orbital is also included here, even though it was not included in the active space since its occupation number was found to stay very close to 2.0.

2 Fig. S2 The reaction coordinates of 1a-Ru 2 N (left) and 1a-PdRuN (right). For TS1, 2, TS2, and 3 energies of 1b-Ru 2 N (left) and 1b-PdRuN (right) are presented relative to 1. The red dotted lines are uncorrected energies. The black dotted lines are energies for 1b complexes that take into account Van der Waals force differences relative to 1b, compared to Van der Waals forces differences of the full reaction coordinates. Fig. S3 This figure corresponds to the top half of Figure 5 and shows both doublet (black) and quartet (red) reaction coordinates. The energies in ΔG (kj/mol) are presented at the top.

3 Fig. S4 A representation of how the orbital diagrams were obtained. At the left are unrestricted Kohn- Sham orbitals from the final single point DFT calculations. Fig. S5 This figure is an extension of Figure 6 and includes the quartet orbital diagram for the dimetallic complexes. The boxed name designates the ground state, which is clarified in the text and happens only here for M = Zr (as well as 1b-Mo 2 N)

4 Fig. S6 This figure is an extension of Figure 6 and includes 3b diagrams for M = Zr, Mo, Ru, Pd and mononuclear complex 3d. Fig. S7 A representative δ* orbital (from 3b-Ru 2 N) of product complex 3 that is raised in energy relative to reactant nitrido complex due an antibonding π-type interaction of the amide N after it has inserted into the phenyl ring C H bond. This orbital ordering change is seen at the right of this figure, which is taken from Figure 9A.

5 XYZ files of optimized structures from DFT-BP/def2-tzvp on metals and reaction atoms (C,N,H); def2- sv(p) on the rest. 2 1a-Ru 2 N Ru Ru N N N N N N N N N C H C C H C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H

6 H H C C C H H H C C C H H H C C C H H H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C

7 H H H TS1a-Ru 2 N Ru Ru N N N N N N N N N C H C C H C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C

8 C H H H C C C H H H C C C H H H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H a-Ru 2 N

9 Ru Ru N N N N N N N N N C H C C H C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H

10 C C C H H H C C C H H H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H TS2a-Ru 2 N Ru Ru N N

11 N N N N N N N C H C C H C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H

12 H H C C C H H H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H a-Ru 2 N Ru Ru N N N N N N

13 N N N C H C C H C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C

14 C H H H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H a-PdRuN Ru Pd N N N N N N N N N C

15 H C C H C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H

16 C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H TS1a-PdRuN Ru Pd N N N N N N N N N C H C C H

17 C H C H C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H

18 H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H a-PdRuN Ru Pd N N N N N N N N N C H C C H C H C H

19 C H C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H C C

20 C C C H H H C H H H C C C H H H C C C H H H C C C H H H C C C TS2a-PdRuN Ru Pd N N N N N N N N N C H C C H C H C H C H

21 C H C C H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H C C C C

22 C C H H H C C C H H H C C C H H H C C C H H H C C C H H H a-PdRuN Ru Pd N N N N N N N N N C H C C H C H C H C H C H C C

23 H C H C H C H C H C C C H H H C C C C C C H H H C C C H H H C C C H H H C C C H H H C C C H H H C C C C C C H H

24 H C C C H H H C C C H H H C C C H H H C C C H H H b-Ru 2 N Ru Ru N N N N N N N N N C H H H C C C H H H C H H C H C H C H

25 C H C H H H H TS1b-Ru 2 N Ru Ru N N N N N N N N N C H H H C C C H H H C H H C H C H C H C H C H H H H b-Ru 2 N Ru Ru N N N N N N N N

26 N C H H H C C C H H H C H H C H C H C H C H C H H H H TS2b-Ru 2 N Ru Ru N N N N N N N N N C H H H C C C H H H C H H C H C H

27 C H C H C H H H H b-Ru 2 N Ru Ru N N N N N N N N N C H H H C C C H H H C H H C H C H C H C H C H H H H b-ZrRuN Ru Zr N C H N N N

28 N N N N N C H H H C C C H H H C H H C H C H C H C H H H H TS1b-ZrRuN Ru Zr N C H N N N N N N N N C H H H C C C H H H C H H

29 C H C H C H C H H H H b-ZrRuN Ru Zr N C H N N N N N N N N C H H H C C C H H H C H H C H C H C H C H H H H TS2b-ZrRuN Ru Zr N C H N

30 N N N N N N N C H H H C C C H H H C H H C H C H C H C H H H H b-ZrRuN Ru Zr N C H N N N N N N N N C H H H C C C H H H C

31 H H C H C H C H C H H H H b-MoRuN Ru Mo N C H N N N N N N N N C H H H C C C H H H C H H C H C H C H C H H H H TS1b-MoRuN Ru Mo N C

32 H N N N N N N N N C H H H C C C H H H C H H C H C H C H C H H H H b-MoRuN Ru Mo N C H N N N N N N N N C H H H C C C H H

33 H C H H C H C H C H C H H H H TS2b-MoRuN Ru Mo N C H N N N N N N N N C H H H C C C H H H C H H C H C H C H C H H H H b-MoRuN Ru Mo

34 N C H N N N N N N N N C H H H C C C H H H C H H C H C H C H C H H H H b-PdRuN Ru Pd N C H N N N N N N N N C H H H C C C

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Data for Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic

More information

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Supporting Information for Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Claudia Kupper, ǁ Bhaskar Mondal, ǁ Joan Serrano-Plana, Iris Klawitter, Frank Neese,

More information

Electronic communication through molecular bridges Supporting Information

Electronic communication through molecular bridges Supporting Information Electronic communication through molecular bridges Supporting Information Carmen Herrmann and Jan Elmisz Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6,

More information

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G Q1: Display all the MOs for N2 in your report and classify each one of them as bonding, antibonding or non-bonding, and say whether the symmetry of the orbital is σ or π. Sketch a molecular orbital diagram

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

CASSCF and NEVPT2 calculations: Ground and excited states of multireference systems. A case study of Ni(CO)4 and the magnetic system NArO

CASSCF and NEVPT2 calculations: Ground and excited states of multireference systems. A case study of Ni(CO)4 and the magnetic system NArO CASSCF and NEVPT2 calculations: Ground and excited states of multireference systems. A case study of Ni(CO)4 and the magnetic system NArO The ground states of many molecules are often well described by

More information

Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set

Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set Additional omparison of and Data Included in the Training Set Supporting information for the manuscript A Reactive Force Field for Molecular Dynamics Simulations of ydrocarbon Oxidation by Kimberly henoweth,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1677 Entangled quantum electronic wavefunctions of the Mn 4 CaO 5 cluster in photosystem II Yuki Kurashige 1 *, Garnet Kin-Lic Chan 2, Takeshi Yanai 1 1 Department of Theoretical and

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

Study of Iron Dimers Reveals Angular Dependence of Valence- to- Core X- ray Emission Spectra

Study of Iron Dimers Reveals Angular Dependence of Valence- to- Core X- ray Emission Spectra Supporting Information for: Study of Iron Dimers Reveals Angular Dependence of Valence- to- Core X- ray Emission Spectra Christopher J. Pollock, a Kyle M. Lancaster, b Kenneth D. Finkelstein, c Serena

More information

Reikniefnafræði - Verkefni 2 Haustmisseri 2013 Kennari - Hannes Jónsson

Reikniefnafræði - Verkefni 2 Haustmisseri 2013 Kennari - Hannes Jónsson Háskóli Íslands, raunvísindasvið Reikniefnafræði - Verkefni 2 Haustmisseri 2013 Kennari - Hannes Jónsson Guðjón Henning 18. september 2013 1 A. Molecular orbitals of N 2 Q1: Display all the MOs for N 2

More information

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Introduction: The objective of the second computer laboratory exercise is to get acquainted with a program for performing quantum chemical

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 13 Aleksey Kocherzhenko October 16, 2014" Last time " The Hückel method" Ø Used to study π systems of conjugated molecules" Ø π orbitals are treated separately from

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Static and Dynamic Magnetic Properties of the Ferromagnetic Coordination Polymer [Co(NCS) 2 (py) 2 ] n

Static and Dynamic Magnetic Properties of the Ferromagnetic Coordination Polymer [Co(NCS) 2 (py) 2 ] n Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Supporting Information Static and Dynamic Magnetic Properties of the Ferromagnetic

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations CHEM 511 chapter 2 page 1 of 11 Chapter 2 Molecular Structure and Bonding Read the section on Lewis dot structures, we will not cover this in class. If you have problems, seek out a general chemistry text.

More information

Hints on Using the Orca Program

Hints on Using the Orca Program Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Hints on Using the Orca Program

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

Cethrene: The Chameleon of Woodward Hoffmann Rules

Cethrene: The Chameleon of Woodward Hoffmann Rules Supporting Information Cethrene: The Chameleon of Woodward Hoffmann Rules Tomáš Šolomek,*, Prince Ravat,, Zhongyu Mou, Miklos Kertesz, and Michal Juríček*,, Department of Chemistry, University of Basel,

More information

one ν im: transition state saddle point

one ν im: transition state saddle point Hypothetical Potential Energy Surface Ethane conformations Hartree-Fock theory, basis set stationary points all ν s >0: minimum eclipsed one ν im: transition state saddle point multiple ν im: hilltop 1

More information

NH 3 inversion: Potential energy surfaces and transition states CH342L March 28, 2016

NH 3 inversion: Potential energy surfaces and transition states CH342L March 28, 2016 N 3 inversion: Potential energy surfaces and transition states C342L March 28, 2016 Last week, we used the IR spectrum of ammonia to determine the splitting of energy levels due to inversion of the umbrella

More information

Practical Advice for Quantum Chemistry Computations. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Practical Advice for Quantum Chemistry Computations. C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Practical Advice for Quantum Chemistry Computations C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Choice of Basis Set STO-3G is too small 6-31G* or 6-31G** 6 probably

More information

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3-

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 ] and (2-Bromo-1,3-phenylene)bis((diphenylphosphino)methanone) [1,3- Ph 2 PC(O)} 2 C 6 H 4 Br]: Synthesis,

More information

Diatomic Molecules. 14th May Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons

Diatomic Molecules. 14th May Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons Diatomic Molecules 14th May 2009 1 Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons 1.1 H + 2 Molecule Consider the process where 2 atomic nuclei and associated electron (1

More information

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10 Lecture 9 Symmetry III: Molecular Orbital Theory Reading: Shriver and Atkins 2.7-2.9 and g 6.6-6.7, 6.10 The orbitals of molecules H H The electron energy in each H atom is -13.6 ev below vacuum. What

More information

Linking electronic and molecular structure: Insight into aqueous chloride solvation. Supplementary Information

Linking electronic and molecular structure: Insight into aqueous chloride solvation. Supplementary Information Linking electronic and molecular structure: Insight into aqueous chloride solvation Ling Ge, Leonardo Bernasconi, and Patricia Hunt Department of Chemistry, Imperial College London, London SW7 2AZ, United

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-3 Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Qunatum Methods for Plasma-Facing Materials Alain ALLOUCHE Univ.de Provence, Lab.de la Phys.

More information

Physical Chemistry II Recommended Problems Chapter 12( 23)

Physical Chemistry II Recommended Problems Chapter 12( 23) Physical Chemistry II Recommended Problems Chapter 1( 3) Chapter 1(3) Problem. Overlap of two 1s orbitals recprobchap1.odt 1 Physical Chemistry II Recommended Problems, Chapter 1(3), continued Chapter

More information

Exercise 2.4 Molecular Orbital Energy Level Diagrams: Homonuclear Diatomics

Exercise 2.4 Molecular Orbital Energy Level Diagrams: Homonuclear Diatomics Exercise 2.4 Molecular rbital Energy Level Diagrams: Homonuclear Diatomics This exercise assumes that you are familiar with the count and sort algorithm described in Exercise 2.3. The table of atomic orbital

More information

ABC of DFT: Hands-on session 1 Introduction into calculations on molecules

ABC of DFT: Hands-on session 1 Introduction into calculations on molecules ABC of DFT: Hands-on session 1 Introduction into calculations on molecules Tutor: Alexej Bagrets Wann? 09.11.2012, 11:30-13:00 Wo? KIT Campus Nord, Flachbau Physik, Geb. 30.22, Computerpool, Raum FE-6

More information

platinum and iridium complexes

platinum and iridium complexes SUPPORTING INFORMATION A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes Jan Vícha, Michael Patzschke, Radek Marek Figure

More information

Supporting Information

Supporting Information Supporting Information Synthesis of α-(pentafluorosulfanyl)- and α-(trifluoromethyl)-substituted Carboxylic Acid Derivatives by Ireland-Claisen Rearrangement Anna-Lena Dreier, Bernd Beutel, Christian Mück-Lichtenfeld,

More information

Exchange coupling can frequently be understood using a simple molecular orbital approach.

Exchange coupling can frequently be understood using a simple molecular orbital approach. 6.4 Exchange Coupling, a different perspective So far, we ve only been looking at the effects of J on the magnetic susceptibility but haven t said anything about how one might predict the sign and magnitude

More information

Molecular Bond Theory

Molecular Bond Theory Molecular Bond Theory Short comings of the localized electron model: electrons are not really localized so the concept of resonance was added no direct information about bond energies Molecular Orbital

More information

The Azido Gauche Effect Implications for the Conformation of Azidoprolines

The Azido Gauche Effect Implications for the Conformation of Azidoprolines The Azido Gauche Effect Implications for the Conformation of Azidoprolines Louis-Sebastian Sonntag, a Sabine Schweizer, b Christian Ochsenfeld, b * Helma Wennemers a * [a] [b] Department of Chemistry,

More information

CHAPTER 9 COVALENT BONDING: ORBITALS 323

CHAPTER 9 COVALENT BONDING: ORBITALS 323 APTER 9 OVALET BODIG: ORBITALS 323 2 3 2 2 2 3 3 2 2 3 2 3 O * * 2 o; most of the carbons are not in the same plane since a majority of carbon atoms exhibit a tetrahedral structure (19.5 bond angles).

More information

Supporting Information: Predicting the Ionic Product of Water

Supporting Information: Predicting the Ionic Product of Water Supporting Information: Predicting the Ionic Product of Water Eva Perlt 1,+, Michael von Domaros 1,+, Barbara Kirchner 1, Ralf Ludwig 2, and Frank Weinhold 3,* 1 Mulliken Center for Theoretical Chemistry,

More information

Molecular Structure Both atoms and molecules are quantum systems

Molecular Structure Both atoms and molecules are quantum systems Molecular Structure Both atoms and molecules are quantum systems We need a method of describing molecules in a quantum mechanical way so that we can predict structure and properties The method we use is

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Support Information for: The Quest for Insight into Ultra Short CH π Proximities in Molecular Iron Maidens

Support Information for: The Quest for Insight into Ultra Short CH π Proximities in Molecular Iron Maidens Support Information for: The Quest for Insight into Ultra Short CH π Proximities in Molecular Iron Maidens Ina Østrøm, Alexandre O. Ortolan, Felipe S. S. Schneider, Giovanni F. Caramori, and Renato L.

More information

Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission Natalia B. Shustova, Ta-Chung Ong,, Anthony F. Cozzolino, Vladimir

More information

Microsoft Excel Directions

Microsoft Excel Directions Microsoft Excel Directions 1. Working in groups of two, log onto a computer. 2. Create a folder on the desktop a. Right click anywhere on the desktop new folder Name the folder Chemistry 3. Open MS Excel

More information

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1.

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1. The Hückel Approximation In this exercise you will use a program called Hückel to look at the p molecular orbitals in conjugated molecules. The program calculates the energies and shapes of p (pi) molecular

More information

Due: since the calculation takes longer than before, we ll make it due on 02/05/2016, Friday

Due: since the calculation takes longer than before, we ll make it due on 02/05/2016, Friday Homework 3 Due: since the calculation takes longer than before, we ll make it due on 02/05/2016, Friday Email to: jqian@caltech.edu Introduction In this assignment, you will be using a commercial periodic

More information

Electronic Structure Models

Electronic Structure Models Electronic Structure Models Hückel Model (1933) Basic Assumptions: (a) One orbital per atom contributes to the basis set; all orbitals "equal" (b) The relevant integrals involving the Hamiltonian are α

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Lecture outline: Chapter 7 Periodic properties

Lecture outline: Chapter 7 Periodic properties Lecture outline: Chapter 7 Periodic properties 1. Electrostatic effects 2. Atomic size 3. Ionization energy 4. Electron affinity it 5. Summarize some periodic properties 1 Some important terms Electron

More information

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195.

25 Mn Ni Co Rh Fe Ru Os Uns (262) Une (266) 195. 1 Chem 64 Solutions to Problem Set #1, REVIEW 1. AO n l m 1s 1 0 0 2s 2 0 0 2p 2 1 1,0,1 3d 3 2 2, 1,0,1,2 4d 4 2 2, 1,0,1,2 4f 4 3 3, 2, 1,0,1,2,3 2. Penetration relates to the radial probability distribution

More information

Chem Spring, 2017 Assignment 5 - Solutions

Chem Spring, 2017 Assignment 5 - Solutions Page 1 of 10 Chem 370 - Spring, 2017 Assignment 5 - Solutions 5.1 Additional combinations are p z ± d z 2, p x ±d xz, and p y ±d yz. p z ± d z 2 p x ±d xz or p y ±d yz 5.2 a. Li 2 has the configuration

More information

SUPPORTING INFORMATION. Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting

SUPPORTING INFORMATION. Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting SUPPORTING INFORMATION List of Contents Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting S2 Table S2: Structural parameters using the B3LYP** functional for the IS

More information

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci)

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci) Reactivity and Organocatalysis (Adalgisa Sinicropi and Massimo Olivucci) The Aldol Reaction - O R 1 O R 1 + - O O OH * * H R 2 R 1 R 2 The (1957) Zimmerman-Traxler Transition State Counterion (e.g. Li

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Figure 1 Setting the charge in HF 2 -.

Figure 1 Setting the charge in HF 2 -. Self-Stud Problems / Eam Preparation compute the orbitals for (linear) -, draw and annotate a MO diagram consistent with the MOs ou observe o if ou have problems setting up the calculation, select Be and

More information

List of Figures Page Figure No. Figure Caption No. Figure 1.1.

List of Figures Page Figure No. Figure Caption No. Figure 1.1. List of Figures Figure No. Figure Caption Page No. Figure 1.1. Cation- interactions and their modulations. 4 Figure 1.2. Three conformations of benzene dimer, S is not a minimum on the potential energy

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

Rh-Catalyzed Hydroformylation of 1,3-Butadiene to Adipic Aldehyde: Revealing Selectivity and Rate Determining Steps

Rh-Catalyzed Hydroformylation of 1,3-Butadiene to Adipic Aldehyde: Revealing Selectivity and Rate Determining Steps Rh-Catalyzed Hydroformylation of,3-butadiene to Adipic Aldehyde: Revealing Selectivity and Rate Determining Steps Sebastian Schmidt, Eszter Baráth, Christoph Larcher, Tobias Rosendahl, and Peter Hofmann,,*

More information

Chapter 6 Molecular Structure

Chapter 6 Molecular Structure hapter 6 Molecular Structure 1. Draw the Lewis structure of each of the following ions, showing all nonzero formal charges. Indicate whether each ion is linear or bent. If the ion is bent, what is the

More information

Chapter 2 The text above the third display should say Three other examples.

Chapter 2 The text above the third display should say Three other examples. ERRATA Organic Chemistry, 6th Edition, by Marc Loudon Date of this release: October 10, 2018 (Items marked with (*) were corrected in the second printing.) (Items marked with ( ) were corrected in the

More information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in

More information

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Cluster-π electronic interaction in a superatomic Au 13 cluster

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@sdsu.edu. Chapter 7 homework due Nov, 9 th. Chapter 8 homework due Nov. 16 th. Exam 3 is 11/17 at 2 pm. LECTURE OBJECTIVES

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Supporting information (SI)

Supporting information (SI) Supporting information (SI) Revisiting the Mössbauer isomer shifts of the FeMoco cluster of nitrogenase and the cofactor charge Ragnar Bjornsson,*,, Frank Neese, Serena DeBeer*,, Max Planck Institute for

More information

Selective C H and C C Bond Activation

Selective C H and C C Bond Activation 7 Rational Catalyst Design: Selective C H and C C Bond Activation Previously appeared as Selective C H and C C Bond Activation: Electronic Regimes as Tool for Designing d 10 -ML n Catalysts L. P. Wolters,

More information

CHEM 112 Final Exam (New Material) Practice Test Solutions

CHEM 112 Final Exam (New Material) Practice Test Solutions CHEM 112 Final Exam (New Material) Practice Test Solutions 1D Another electrolysis problem. This time we re solving for mass, which almost always means solving for number of moles and then converting to

More information

Conformational energy analysis

Conformational energy analysis Lab 3 Conformational energy analysis Objective This computational project deals with molecular conformations the spatial arrangement of atoms of molecules. Conformations are determined by energy, so the

More information

Supplemental Material for Giant exchange interaction in mixed lanthanides. Abstract

Supplemental Material for Giant exchange interaction in mixed lanthanides. Abstract Supplemental Material for Giant exchange interaction in mixed lanthanides Veacheslav Vieru, Naoya Iwahara, Liviu Ungur, and Liviu F. Chibotaru Theory of Nanomaterials Group, Katholieke Universiteit Leuven,

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part Ruthenium-Catalyzed Alkyne trans-hydrometalation: Mechanistic Insights and Preparative Implications Dragoş Adrian Roşca, Karin Radkowski, Larry M. Wolf, Minal

More information

Inter- and intramolecular interactions in the stabilization and coordination of palladium and silver complexes: DFT and QTAIM studies

Inter- and intramolecular interactions in the stabilization and coordination of palladium and silver complexes: DFT and QTAIM studies Dissertations Department of Chemistry University of Eastern Finland No. 136 (2016) Albert Ofori Inter- and intramolecular interactions in the stabilization and coordination of palladium and silver complexes:

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene From Atoms to Solids Outline - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene 1 A Simple Approximation for an Atom Let s represent the atom in space by its Coulomb potential centered

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

Mechanistic Study of Ethylene Tri- and Tetramerisation with Cr/PNP

Mechanistic Study of Ethylene Tri- and Tetramerisation with Cr/PNP Electronic Supplementary Material (ESI) for atalysis Science & Technology. This journal is The Royal Society of hemistry 2016 Mechanistic Study of Ethylene Tri- and Tetramerisation with r/pnp atalysts:

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

How Partial Atomic Charges and Bonding. Orbitals Affect the Reactivity of Aluminum

How Partial Atomic Charges and Bonding. Orbitals Affect the Reactivity of Aluminum Supporting Information for: How Partial Atomic Charges and Bonding Orbitals Affect the Reactivity of Aluminum Clusters with Water? Anthony M.S Pembere ξ, Xianhu Liu ξ, Weihua Ding, Zhixun Luo * State Key

More information

ABC of DFT: Hands-on session 2 Molecules: structure optimization, visualization of orbitals, charge & spin densities

ABC of DFT: Hands-on session 2 Molecules: structure optimization, visualization of orbitals, charge & spin densities ABC of DFT: Hands-on session 2 Molecules: structure optimization, visualization of orbitals, charge & spin densities Tutor: Alexej Bagrets Wann? 16.11.2012, 11:30-13:00 Wo? KIT Campus Nord, Flachbau Physik,

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of, -Unsaturated Carbonyl Compounds with Hydrogen Peroxide Olga Lifchits, Manuel

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Chemical Bonding. The Octet Rule

Chemical Bonding. The Octet Rule Chemical Bonding There are basically two types of chemical bonds: 1. Covalent bonds electrons are shared by more than one nucleus 2. Ionic bonds electrostatic attraction between ions creates chemical bond

More information

Homework #2. Chapter 14. Covalent Bonding Orbitals

Homework #2. Chapter 14. Covalent Bonding Orbitals Homework # Chapter 14 Covalent Bonding Orbitals 1. Single bonds have their electron density concentrated between the two atoms (on the internuclear axis). Therefore an atom can rotate freely on the internuclear

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

FINAL EXAM April 26, 2004

FINAL EXAM April 26, 2004 CM 1045 (11:15 am Lecture) Dr. Light FINAL EXAM April 26, 2004 Name (please print) Check your recitation section: Sec. 21 5:30-6:20 pm (Popovic) Sec. 24 3:30-4:20 pm (Giunta) Sec. 22 6:30-7:20 pm (Popovic)

More information

PART II ADVANCED AND SPECIAL SUBJECTS

PART II ADVANCED AND SPECIAL SUBJECTS PART II ADVANCED AND SPECIAL SUBJECTS 1 PART II ADVANCED AND SPECIAL SUBJECTS PART II ADVANCED AND SPECIAL SUBJECTS 2 1 Computer Experiment 7: Interpretation of Structure, Bonding and Reactivity Using

More information

DE-MAN HAN, GUO-LIANG DAI*, ZHEN-ZHONG YAN, CHUAN-FENG WANG, AI-GUO ZHONG

DE-MAN HAN, GUO-LIANG DAI*, ZHEN-ZHONG YAN, CHUAN-FENG WANG, AI-GUO ZHONG J. Chil. Chem. Soc., 55, Nº 1 (010) CARBON DIOXIDE ACTIVATION BY Y ATOM AND Y + CATION IN THE GAS PHASE: A DENSITY FUNCTIONAL THEORETICAL STUDY DE-MAN HAN, GUO-LIANG DAI*, ZHEN-ZHONG YAN, CHUAN-FENG WANG,

More information

NTChem. ntprep. ntprep

NTChem. ntprep. ntprep NTChem NTChem.inp ) bash ) csh RCCS)) ntprep ntprep /opt/aics/ntchem/scripts RCCS) ccpg: /local/apl/pg/ntchem/scripts ccuv: /local/apl/uv/ntchem/scripts Focus: /home1/share/ntchem/ntchem2013.4.0/scripts

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

Conformational Geometry of Peptides and Proteins:

Conformational Geometry of Peptides and Proteins: Conformational Geometry of Peptides and Proteins: Before discussing secondary structure, it is important to appreciate the conformational plasticity of proteins. Each residue in a polypeptide has three

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Are intramolecular frustrated Lewis pairs also intramolecular

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-8 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. Organometallic hemistry yclopentadienyl, Alkyl and Alkene yclopentadienyl p The cyclopentadienyl ligand

More information

Density functional theory for modelling large molecular adsorbate surface interactions: a mini-review and worked example

Density functional theory for modelling large molecular adsorbate surface interactions: a mini-review and worked example MOLECULAR SIMULATION, 2016 http://dx.doi.org/10.1080/08927022.2016.1258465 SURFACE CHEMISTRY Density functional theory for modelling large molecular adsorbate surface interactions: a mini-review and worked

More information

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals Supporting Information to the manuscript Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals P. Jost and C. van Wüllen Contents Computational Details...

More information