Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Size: px
Start display at page:

Download "Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds"

Transcription

1 Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds

2 What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is a compound that composed of molecules A covalent bond is a bond formed by the sharing of electrons between atoms This is like a tug of war between atoms for electrons, joining the atoms together

3 What are common examples of molecules? Oxygen gas consists of oxygen molecules Each oxygen molecule is made of two covalently bonded oxygen molecules This is referred to as a diatomic molecule A molecule that contains two atoms Other common examples are Hydrogen, nitrogen and the halogens

4 How are molecules represented? Molecular formulas are used to show how many atoms of each element a molecule of a substance contains Example - H2O Subscript refers to the number of atoms of that element in the molecule. In water there are two hydrogens bonded to one oxygen atom These formulas are not always the lowest whole number ration - why? C4H5 represents Butane. C2H5 would be a different molecule Molecular formulas do not tell you about a molecule's structure. For this you need a structural formula

5 What else does the formula not tell you? The chemical formula does not tell you the overall shape of the molecule Carbon dioxide - linear Water - bent

6 So what are the key differences between ionic and molecular compounds? The formulas of molecular compounds describe a molecule The formulas of ionic compounds describe a formula unit

7 Characteristics of molecular and ionic compounds continued

8 The Nature of Covalent Bonding Section 8.2

9 How do Covalent bonds relate to the Octet rule? Like Ionic bonds, noble gas electron configurations are key Atoms will share electrons so each atom has a noble gas electron configuration This is more common for nonmetals in the periodic table Atoms are able to share electrons until they complete their octet The octet rule still applies!

10 What is meant be a single covalent bond? A single covalent bond forms when two atoms share a pair of electrons The attraction between the shared electrons and the positive nuclei of the atoms holds the atoms in the molecule together On a structural formula this single bond is represented as a dashed line Halogens are an example of atoms that form diatomic molecules with a single covalent bond. When this occurs, each halogen will have three unshared pairs; a pair of valence electrons that is not shared between atoms

11 What about more complex molecules? Water: Top Right, two unshared pairs Ammonia : Top Left, one unshared pair Methane: Right: No unshared pairs

12 What is a double covalent bond? A triple bond? Sometimes atoms must share two or three pairs of electrons to reach a noble gas electron configuration Double bonds involves two shared pairs of electrons - example carbon dioxide (CO2) A triple covalent bond is the sharing of three pairs of electrons - example Nitrogen (N2)

13 What is a coordinate covalent bond? A coordinate covalent bond is an atom in which one atom provides both bonding electrons Example - Carbon monoxide. How does bonding in carbon monoxide work? Once a coordinate covalent bond forms, it is like any other covalent bond. It is often drawn as an arrow in a structural formula

14 What are some of the exceptions to the octet rule? Try and draw an electron dot diagram for Nitrogen Dioxide (NO2) You can t draw one! The same applies for all molecules with odd number of valence electrons Some molecules that do have an even number of valence electrons still fail to follow the octet rule - example BF3 Some molecules expand the octet to more than 8 - example PCl5

15 How does energy relate to bonds? When atoms combine to form a bond energy is released. The product is more stable than the reactants The energy needed to break a bond is the bond dissociation energy, expressed in kj/mol The larger the bond dissociation energy, the stronger the bond, and the shorter the bond length Breaking bonds would require energy Double and tripple bonds have higher bond dissociation energies than their single bond counterparts Bond dissociation energies also contribute to reactivity of molecules - high energy means unreactive molecule.

16 Bond dissociation energy examples

17 What does an electron dot structure for Ozone (O3) look like? Ozone has two different types of bonds - one single coordinate covalent bond and one double covalent bond. This would mean that the bonds in Ozone would have different lengths, however measurements suggest that the two bonds are the same length, being the average of the two structures. When you can draw two or more valid electron dot structures for a molecule or polyatomic ion it is referred to as resonance structures

18 Section 8.3 Bonding Theories

19 What is a molecular orbitals A molecular orbital is an orbital that applies to the entire molecule Individual atomic orbitals can combine to produce a different shaped molecular orbital There are a number of similarities between atomic and molecular orbitals Both contain two electrons when filled Those that can be filled by two electrons of a covalent bond are referred to as bonding orbitals Covalent bonds are caused by an imbalance between attraction and repulsion of the nuclei and electrons Bonds can form because the attraction between atoms is stronger than repulsions

20 What is VSEPR Theory? VSEPR theory states that the repulsion between electron pair causes molecular shapes that allow for the greatest distance between valence electron pairs Stands for Valence Shell Electron Pair Repulsion Theory It is used to estimate the 3D shape of molecules Essentially the valence electron pairs want to stay as far apart as possible, which can give rise to a number of different molecular shapes

21 What is going on in Linear Molecules? Linear is the simplest shape The valence electron pairs are furthest apart when arranged in a straight line Example - Carbon Dioxide In molecules such as methane it is not so straightforward

22 What is happening in these diagrams?

23 The relationship between molecular shapes and unshared pairs Unshared pairs of electrons are important when predicting molecular shapes Unshared pairs of electrons will be held closer to the nucleus than bonded pairs - why? Because, there is no atom competing for them Unshared pairs will always repel bonded pairs - dictating the overall shape of a molecule This explains why the angle between bonds is water is less than in ammonia

24 Can VSEPR theory be used to predict types of bonds in a molecule? No, instead this can be achieved through orbital hybridization Hybridization is the mixing of several atomic orbitals to form the same total number of equivalent hybrid orbitals Orbital hybridization provides information about both molecular bonding and molecular shape In this example, orbital hybridization is the only way that carbon can form 4 bonds

25 Section 8.4 Polar bonds and molecules

26 What is the difference between a polar and a nonpolar covalent bond? Nonpolar: Covalent bond in which two atoms share the electrons equally Polar: A covalent bond in which two atoms share the electrons unequally The more electronegative atom will attract the electrons more strongly, giving slight changes to the atoms in the bond

27 When do polar covalent bonds form? Whenever there is a difference in electronegativity values for the two atoms involved Electronegativity differences are used to assess the strength of the polar bond

28 Relationship between polar bonds and polar molecules The presence of a polar bond in a molecule often makes the entire molecule polar This means that one end of the molecule is slightly positive, and the other is slightly negative When the molecule has two poles of opposite charge it is called a dipolar molecule, or dipole. Sometimes molecules can have polar bonds but not be polar themselves how? Example - carbon dioxide and water. Which is Polar?

29 What effects can bond polarity cause? Bond polarity can cause intermolecular attractions; weak attraction between molecules These can be important, and can determine the state of matter of a molecular compound Van der Waals forces: the two weakest intermolecular attractions Dipole interactions: Polar molecules are attracted to one another (oppositely charged parts). Weaker version of ionic bonds Dispersion forces: The weakest of all intermolecular interactions, caused by motion of electrons.

30 Dispersion forces explained... Dispersion forces are caused by the motion of electrons All molecules experience dispersion forces - not just polar molecules They occur when moving electrons of one molecule happen to move to one side of the molecule Their force then repels electrons in a nearby molecules, causing a slight attraction Halogen diatomic molecules attract each other by dispersion forces Fluorine and chlorine are gases due to weak dispersion forces. Bromine is a liquid due to more electrons and more dispersion forces

31 What is a hydrogen bond? Hydrogen bonds are a special case of dipole interaction, formed when hydrogen is covalently bonded to a very electronegative atom, and is also weakly bonded to an unshared electron pair Example: water They are the strongest of the intermolecular forces, but only have about 5% the strength of an average covalent bond They always involve hydrogen, but can be found in other molecules besides water Form as a result of a highly polar bond and lack of shielding in the hydrogen

32 How do intermolecular attractions relate to Molecular properties? The physical properties of compounds relate to the type of bond it displays (largely ionic vs covalent), but the diverse range is largely due to varying intermolecular forces Melting and Boiling points of most molecular compounds are low compared to ionic compounds, why? Some covalent compounds exist where all the atoms are covalently bonded to each other - a network solid Melting would require breaking of all the covalent bonds throughout the solid Example - diamond. Each carbon atom is bonded to four other carbons - all atoms are connected. Explains why diamonds is so hard, does not melt, and vaporizes to gas at 3500 C. Essentially carbo behaves as a single molecule

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

NOTES: 8.4 Polar Bonds and Molecules

NOTES: 8.4 Polar Bonds and Molecules NOTES: 8.4 Polar Bonds and Molecules ELECTRONEGATIVITY: We ve learned how valence electrons are shared to form covalent bonds between elements. So far, we have considered the electrons to be shared equally.

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Chapter 8: Covalent Bonding. Chapter 8

Chapter 8: Covalent Bonding. Chapter 8 : Covalent Bonding Bonding Ionic Bonding - attracted to each other, but not fully committed Covalent Bonding - fully committed, and shares everything Two methods to gain or lose valence electrons: Transfer

More information

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING 6.1 Introduction to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

The attractions that hold together the atoms in water and carbon dioxide can not be explained by ionic bonding. Ionic bonding =

The attractions that hold together the atoms in water and carbon dioxide can not be explained by ionic bonding. Ionic bonding = In unit six, we discussed ionic compounds, which are generally crystalline solids with high melting points. Other compounds, however, have very different properties. Water is a liquid at room temperature.

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Unit 5: Covalent Bonding and Acids

Unit 5: Covalent Bonding and Acids Unit 5: Covalent Bonding and Acids Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: 1) Ionic bonds transfer of electrons (gained or lost; makes formula unit)

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

1.12 Covalent Bonding

1.12 Covalent Bonding 1.12 Covalent Bonding covalent bond a bond that arises when two atoms share one or more pairs of electrons between them. The shared electron pairs are attracted to the nuclei of both atoms. molecule two

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between.

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between. CHEMISTRY NOTES 6.1 COVALENT BONDS Objectives Explain the role and location of electrons in a covalent bond. Describe the change in energy and stability that takes place as a covalent bond forms. Distinguish

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Chapter 8 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7 hapter 8 ovalent bonding ovalent Bonding A metal and a nonmetal transfer An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

Polar Bonds and Molecules

Polar Bonds and Molecules Chemistry 1 of 33 Snow covers approximately 23 percent of Earth s surface. Each individual snowflake is formed from as many as 100 snow crystals. The polar bonds in water molecules influence the distinctive

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Unit 6: Molecular Geometry

Unit 6: Molecular Geometry Unit 6: Molecular Geometry Molecular Geometry [6-5] the polarity of each bond, along with the geometry of the molecule determines Molecular Polarity. To predict the geometries of more complicated molecules,

More information

Chemical bonding is the combining of elements to form new substances.

Chemical bonding is the combining of elements to form new substances. Name Covalent Bonding and Nomenclature: Unit Objective Study Guide Class Period Date Due 1. Define chemical bonding. What is chemical bonding? Chemical bonding is the combining of elements to form new

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: forces of attraction within the same molecule. Examples:

More information

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds Covalent Compounds Table of Contents Section 1 Covalent Bonds Section 2 Drawing and Naming Molecules Section 3 Molecular Shapes Section 1 Covalent Bonds Bellringer Make a list of the elements that form

More information

How do electronegativity values determine the charge distribution in a polar bond?

How do electronegativity values determine the charge distribution in a polar bond? Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

Thursday Agenda. Do Now Pull out your POGIL packets and a scrap sheet of paper. Review POGIL exercise Covalent Bonding notes.

Thursday Agenda. Do Now Pull out your POGIL packets and a scrap sheet of paper. Review POGIL exercise Covalent Bonding notes. Thursday 10.27.16 Do Now Pull out your POGIL packets and a scrap sheet of paper Agenda Review POGIL exercise Covalent Bonding notes LDD for compounds Homework Covalent Bonding Bonding Ionic Bonding - attracted

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

The Nature of Covalent Bonding

The Nature of Covalent Bonding Chemistry 1 of 50 The colors in this map indicate the concentrations of ozone in various parts of Earth s atmosphere. Oxygen atoms can join in pairs to form the oxygen you breathe and can also join in

More information

Chemistry Chapter 6 Test Review

Chemistry Chapter 6 Test Review Chemistry Chapter 6 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A mutual electrical attraction between the nuclei and valence electrons

More information

CP Covalent Bonds Ch. 8 &

CP Covalent Bonds Ch. 8 & CP Covalent Bonds Ch. 8 & 9 2015-2016 Why do atoms bond? Atoms want stability- to achieve a noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent

More information

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one share or more pairs of valence electrons between

More information

Section 8.1 The Covalent Bond

Section 8.1 The Covalent Bond Section 8.1 The Covalent Bond Apply the octet rule to atoms that form covalent bonds. Describe the formation of single, double, and triple covalent bonds. Contrast sigma and pi bonds. Relate the strength

More information

Unit 4:Chemical Bonding Practice Packet

Unit 4:Chemical Bonding Practice Packet Name: KEY Unit 4:Chemical Bonding Practice Packet 1. I can state the three types of chemical bonds. 2. I can state the number of valence electrons that an atom attains to be most stable. 3. I can state

More information

Ch. 12 Section 1: Introduction to Chemical Bonding

Ch. 12 Section 1: Introduction to Chemical Bonding Name Period Date Chemical Bonding & Intermolecular Forces (Chapter 12, 13 &14) Fill-in the blanks during the PowerPoint presentation in class. Ch. 12 Section 1: Introduction to Chemical Bonding Chemical

More information

CHEMISTRY & YOU What is the difference between the oxygen you breathe and the oxygen in ozone in the atmosphere?

CHEMISTRY & YOU What is the difference between the oxygen you breathe and the oxygen in ozone in the atmosphere? CHEMISTRY & YOU What is the difference between the oxygen you breathe and the oxygen in ozone in the atmosphere? Our atmosphere contains two different molecules that are both made of oxygen atoms. The

More information

Bonding Practice Exam

Bonding Practice Exam Bonding Practice Exam Matching Match each item with the correct statement below. a. halide ion e. valence electron b. octet rule f. coordination number c. ionic bond g. metallic bond d. electron dot structure

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM)

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) Associate Degree in Engineering Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College

More information

Bonding Test pg 1 of 4 Name: Pd. Date:

Bonding Test pg 1 of 4 Name: Pd. Date: Bonding Test pg 1 of 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many electrons are shared in a single covalent bond? 1. A) 2 B) 3 C)

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds involve adjustments in the position of one or more valence electrons. PE is lower in bonded

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Outline Introduction: Multiple bonds, Bond. strength. Naming molecules Drawing Lewis Structures Molecular shapes and VSEPR theory Bond Polarity

Outline Introduction: Multiple bonds, Bond. strength. Naming molecules Drawing Lewis Structures Molecular shapes and VSEPR theory Bond Polarity Covalent Bonding Outline Introduction: Multiple bonds, Bond strength Naming molecules Drawing Lewis Structures Molecular shapes and VSEPR theory Bond Polarity Why do atoms bond? Recall that noble gases

More information

c. Ionic bonding d. Covalent bonding i. nonpolar covalent bonding

c. Ionic bonding d. Covalent bonding i. nonpolar covalent bonding Chapter 11: Chemical Bonding I. Introduction to Chemical Bonding a. Types of chemical bonding i. A chemical bond is a mutual attraction between nuclei and the valence electrons of different atoms that

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CEMICAL BNDING Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to the

More information

For the following intermolecular forces:

For the following intermolecular forces: Lecturenotes 1 unit6_review_exercise_2017.odt Lecturenotes 2 unit6_review_exercise_2017.odt Lecturenotes 3 unit6_review_exercise_2017.odt Lecturenotes 4 unit6_review_exercise_2017.odt Answers: 1. Ionic

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Covalent Bonds. Unit 4b.1: Covalent bonds. Unit 4b ( se ven c la s s peri od s) Name:

Covalent Bonds. Unit 4b.1: Covalent bonds. Unit 4b ( se ven c la s s peri od s) Name: Name: Covalent Bonds Unit 4b ( se ven c la s s peri od s) Unit 4b.1: Covalent bonds 1) A different type of intramolecular force (bond) a) Ionic compounds form between ions i) Electrons are transferred

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding.

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chemical Bonding. 5. _c Atoms with a strong attraction for electrons they share with another atom exhibit

Chemical Bonding. 5. _c Atoms with a strong attraction for electrons they share with another atom exhibit CHAPTER 6 REVIEW Chemical Bonding SHORT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence electrons and of

More information

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds: CHEMICAL BONDS Chemical Bonds: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds (EU 2.C). Reflect a balance in the attractive and repulsive forces

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Intermolecular Forces of Attraction

Intermolecular Forces of Attraction Name Unit Title: Covalent Bonding and Nomenclature Text Reference: Pages 189-193 Date Intermolecular Forces of Attraction Intramolecular vs. Intermolecular So far in our discussion of covalent bonding,

More information

Lesson 1: Stability and Energy in Bonding Introduction

Lesson 1: Stability and Energy in Bonding Introduction Lesson 1: Stability and Energy in Bonding Introduction Chemical bonding is the simultaneous attraction of two positive nuclei to negative electrons. Chemical bonding is said to be the glue that holds particles

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2 NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one or more pairs of valence electrons between the

More information

How are atoms held together in a Covalent Bond?

How are atoms held together in a Covalent Bond? 4.3 Covalent Bonds Vocabulary: Covalent Bond - Molecule - Double bond Triple bond Molecular compound Nonpolar bond Polar bond - How are atoms held together in a Covalent Bond? The chemical bond formed

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Big Ideas in Unit 6 How do atoms form chemical bonds? How does the type of a chemical bond influence a compounds physical and

More information

Ch8 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch8 Test. Multiple Choice Identify the choice that best completes the statement or answers the question. h8 Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. n ionic bond is. a. attraction of an atom for its electrons. b. attraction of atoms for electrons

More information

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Chemistry II Unit 5b Practice Test

Chemistry II Unit 5b Practice Test Practice for Unit 5b Exam 2013 1 Unit5Practicetest2013.odt Chemistry II Unit 5b Practice Test Reading: This material is covered in chapter 5 and chapter 12 in your book. Your notes and your molecular drawings

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: 1. I can define intramolecular forces and intermolecular

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

Notes: Covalent Bonding

Notes: Covalent Bonding Name Chemistry Pre-AP Notes: Covalent Bonding Period The main focus of this unit is on the covalent bond; however, we will briefly treat the ionic and metallic bond as well. I. Chemical Bonding Overview

More information

Often times we represent atoms and their electrons with Lewis Dot Structures.

Often times we represent atoms and their electrons with Lewis Dot Structures. They are trying to get their number of valence electrons to either 0 or 8. Group 1: 1 valence electron Group 2: 2 valence electrons Group 13: 3 valence electrons Group 14: 4 valence electrons Group 15:

More information

Name Date Class. covalent bond molecule sigma bond exothermic pi bond

Name Date Class. covalent bond molecule sigma bond exothermic pi bond Date Class 8 Covalent Bonding Section 8.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule

More information

A. Lewis Dots and Valence electrons: Uses to represent

A. Lewis Dots and Valence electrons: Uses to represent Unit 5: Chemical bonding, names and formulas Ch. 7 & 8 7.1 Ions and Ionic Compounds I. Define Ion NAME Period: A. Lewis Dots and Valence electrons: Uses to represent B. Rule: Every atom wants a valence

More information