Lecture 16, February 25, 2015 Metallic bonding

Size: px
Start display at page:

Download "Lecture 16, February 25, 2015 Metallic bonding"

Transcription

1 Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am Monday, Wednesday, Friday William A. Goddard, III, 316 Beckman Institute, x3093 Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics, California Institute of Technology Special Instructor: Julius Su Teaching Assistants: Hai Xiao Mark Fornace Ch125-Goddard-L16 copyright 2015 William A. Goddard III, all rights reserved Ch125a- 1 Goddard-

2 Bonding in metallic solids Most of the systems discussed so far in this course have been covalent, with the number of bonds to an atom related to the number of valence electrons. Thus we have discussed the bonding of molecules such as CH 4, benzene, O 2, and Ozone. The solids with covalent bonding, such as diamond, silicon, GaAs, are generally insulators or semiconductors We also considered covalent bonds to metals such as FeH +, (PH 3 ) 2 Pt(CH 3 ) 2, (bpym)pt(cl)(ch 3 ), The Grubbs Ru catalysts We have also discussed the bonding in ionic materials such as (NaCl) n, NaCl crystal, and BaTiO3, where the atoms are best modeled as ions with the bonding dominated by electrostatics Next we consider the bonding in bulk metals, such as iron, Pt, Li, etc. where there is little connection between the number of bonds and the number of valence electrons. 2

3 Elementary ideas about metals and insulators The first attempts to develop quantum theory started with the Bohr model H atom with electrons in orbits around the nucleus. With Schrodinger QM came the idea that the electrons were in distinct orbitals (s, p, d..), leading to a universal Aufbau diagram which is filled with 2 electrons in each of the lowest orbitals For example: O (1s) 2 (2s) 2 (2p) 4 3

4 Bringing atoms together to form the solid As we bring atoms together to form the solid, the levels broaden into energy bands, which may overlap. Thus for Cu we obtain Energy Fermi energy (HOMO and LUMO Thus Cu does not have a band gap at ordinary distances Density states 4

5 Metals vs inulators 5

6 conductivity For systems with a band gap, there is no current until excite an electron from the occupied valence band to the empty conduction band The population of electrons in the conduction band and holes in the valence bond is proportional to exp(-egap/rt). Thus conductivity incresses with T (resistivity decreases) 6

7 The elements leading to metallic binding There is not yet a conceptual description for metals of a quality comparable to that for non-metals. However there are some trends, as will be described 7

8 Body centered cubic (bcc), A2 A2 8

9 Face-centered cubic (fcc), A1 9

10 Alternative view of fcc 10

11 Closest packing layer 11

12 Stacking of 2 closest packed layers 12

13 Hexagonal closest packed (hcp) structure, A3 13

14 Cubic closest packing 14

15 Double hcp The hexagonal lanthanides mostly exhibit a packing of closest packed layers in the sequence ABAC ABAC ABAC This is called the double hcp structure 15

16 Structures of elemental metals bcc hcp fcc mis some correlation of structure with number of valence electrons 16

17 Binding in metals Li has the bcc structure with 8 nearest neighbor atoms, but there is only one valence electron per atom. Similarly fcc and hcp have 12 nearest neighbor atoms, but Al with fcc has only three valence electrons per atom while Mg with hcp has only 2. Clearly the bonding is very different than covalent One model (Pauling) resonating valence bonds One problem is energetics: Li 2 bond energy = 24 kcal/mol 12 kcal/mol per valence electron Cohesive energy of Li (energy to atomize the crystal is 37.7 kcal/mol per valence electron. Too much to explain with resonance New paradigm: Interstitial Electron Model (IEM). Each valence electron localizes in a tetrahedron between four Li nuclei. Bonding like in Li 2+, which is 33.7 kcal/mol per valence electron 17

18 GVB orbitals of ring M 10 molecules Get 10 valence electrons each localized in a bond midpoint R=2 a 0 note H 10 is very different, get orbital localized on atom, not bond midpoint Calculations treated all 11 valence electrons of Cu, Ag, Au using effective core potential. All electrons for H and Li 18

19 Stop Feb. 28,

20 Bonding in alkalis 20

21 21

22 The bonding in column 11 Get trend similar to alkalis 22

23 Geometries of Li 4 clusters For H 4, the electrons are in 1s orbitals centered on each atom Thus spin pair across sides. Orthogonalization cases distortion to rectangle For Li 4, the electrons are in orbitals centered on each bond midpoint Thus spin pair between bond midpoint. Orthogonalization cases distortion to rhombus 23

24 Geometries of Li 6 cluster For H 6, the electrons are in 1s orbitals centered on each atom Thus spin pair across sides. Orthogonalization cases distortion to D3h hexagone For Li 6, the electrons are in orbitals centered on each bond midpoint Thus spin pair between bond midpoint. Orthogonalization cases distortion to triangular structure 24

25 Geometries of Li 8 cluster For Li 8, the electrons are in orbitals centered on each bond midpoint Thus spin pair between bond midpoint. Orthogonalization cases distortion to out-of-plane D 2d structure 25

26 Li 10 get closest packed structure 26

27 Li two dimensional Electrons localize into triangular interstitial regions Closest packed structure has 2 triangles per electron One occupied and one empty Spin pair adjacent triangles but leave others empty to avoid Pauli Repulsion Calculation periodic cell with 8 electrons or 4 GVB pairs with overlap =

28 Crystalline properties of B column 28

29 CH x /Ni(111) Structures, Energetics, and Reaction Barriers for CHx Bound to the Nickel (111) Surface Mueller, JE; van Duin, ACT and Goddard, WA J. Phys. Chem. C, 113 (47): (2009) wag 828 Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 29

30 3 views of periodic N(111) surface A B C A A B C A Ch120a-Goddard-L24 FCC is ABCABC HCP IS ABABAB copyright 2011 William A. Goddard III, all rights reserved 30

31 H/Ni(111) fcc site 65.7 kcal hcp site 65.4 kcal bridge site 62.6 kcal On-top site 52.7 kcal Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 31

32 fcc site 42.7 kcal hcp site 42.3 kcal CH3/Ni(111) bridge site 39.3 kcal On-top site 37.2 kcal Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 32

33 fcc site 89.3 kcal hcp site 88.6 kcal CH 2 /Ni(111) bridge site 83.9 kcal On-top site 66.0 kcal Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 33

34 fcc site kcal hcp site kcal CH/Ni(111) bridge site kcal On-top site 99.5 kcal Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 34

35 fcc site kcal hcp site kcal C/Ni(111) bridge site kcal On-top site kcal Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 35

36 CH3ad Had + CH2ad CH3 0 kcal Ch120a-Goddard-L24 H-CH2 TS 18.4 kcal Had-CH2ad 8.2 kcal adj Had-CH2ad 1.3 kcal next copyright 2011 William A. Goddard III, all rights reserved 36

37 CH 2ad H ad + CH ad CH 2ad 0 kcal H-CH TS 8.3 kcal H ad -CH ad -6.5 kcal adj Had-CHad kcal next Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 37

38 Energy surface for CH 2ad H ad + CH ad Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 38

39 CH ad H ad + C ad CH ad 0 kcal H-C TS 32.8 kcal H ad -CH ad 19.3 kcal adj Had-CHad 11.6 kcal next Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 39

40 Ch120a-Goddard-L24 copyright 2011 William A. Goddard III, all rights reserved 40

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI

More information

Lecture 16 February 20 Transition metals, Pd and Pt

Lecture 16 February 20 Transition metals, Pd and Pt Lecture 16 February 20 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Lecture 11 January 30, Transition metals, Pd and Pt

Lecture 11 January 30, Transition metals, Pd and Pt Lecture 11 January 30, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a Hours:

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 13, October 31, 2016 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Lecture February 13-15, Silicon crystal surfaces

Lecture February 13-15, Silicon crystal surfaces Lecture 18-19 February 13-15, 2012 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si Lecture 8 January 24, 2013 Ga crystal surfaces, n-p dopants Si Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinornic chemistry, and

More information

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lecture 15 February 15, 2013 Transition metals

Lecture 15 February 15, 2013 Transition metals Lecture 15 February 15, 2013 Transition metals Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Lecture 17 February 14, 2013 MH + bonding, metathesis

Lecture 17 February 14, 2013 MH + bonding, metathesis Lecture 17 February 14, 2013 MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 22, November 16, 2016 Graphite, graphene, bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lecture 3, January 9, 2015 Bonding in H2+

Lecture 3, January 9, 2015 Bonding in H2+ Lecture 3, January 9, 2015 Bonding in H2+ Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 147 Noyes Hours: 11-11:50am

More information

Lecture 8 January 28, Silicon crystal surfaces

Lecture 8 January 28, Silicon crystal surfaces Lecture 8 January 28, 203 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch20a Hours:

More information

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved Lecture, October 28, 205: Si, Ga crystal surfaces Ch 25a: Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Ch 20a:Nature of the Chemical bond Room

More information

Crystallographic structure Physical vs Chemical bonding in solids

Crystallographic structure Physical vs Chemical bonding in solids Crystallographic structure Physical vs Chemical bonding in solids Inert gas and molecular crystals: Van der Waals forces (physics) Water and organic chemistry H bonds (physics) Quartz crystal SiO 2 : covalent

More information

1.1 Atoms. 1.1 Atoms

1.1 Atoms. 1.1 Atoms 1. Chemical bonding and crystal structure 19 21 Hydrogen atom Scanning electron microscopy Ni surface Cleaved surface ZnO, TiO 2, NiO, NaCl, Si, Ge, GaAs, InP Crystals are build by small repeating units

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Chapter 2. Atomic Packing

Chapter 2. Atomic Packing Chapter 2. Atomic Packing Contents 2-1. Packing of directional bonding atoms 2-2. Packing of indirectional bonding in same size atoms 2-3. Packing of indirectional bonding in different size atoms 2-4.

More information

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Crystal Structure and Chemistry

Crystal Structure and Chemistry Crystal Structure and Chemistry Controls on Crystal Structure Metallic bonding closest packing Covalent bonding depends on orbital overlap and geometry Ionic bonding Pauling s Rules Coordination Principle

More information

For this activity, all of the file labels will begin with a Roman numeral IV.

For this activity, all of the file labels will begin with a Roman numeral IV. I V. S O L I D S Name Section For this activity, all of the file labels will begin with a Roman numeral IV. A. In Jmol, open the SCS file in IV.A.1. Click the Bounding Box and Axes function keys. Use the

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

Experiment 7: Understanding Crystal Structures

Experiment 7: Understanding Crystal Structures Experiment 7: Understanding Crystal Structures To do well in this laboratory experiment you need to be familiar with the concepts of lattice, crystal structure, unit cell, coordination number, the different

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 12, October 21, 2016 Transition metals Heme-Fe Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Lecture 4, January 12, 2015 Bonding in H2

Lecture 4, January 12, 2015 Bonding in H2 Lecture 4, January 12, 2015 Bonding in H2 Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 147 Noyes Hours: 11-11:50am

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

Bonding and Packing: building crystalline solids

Bonding and Packing: building crystalline solids Bonding and Packing: building crystalline solids The major forces of BONDING Gravitational forces: F = G m m 1 2 F = attractive forces between 2 bodies G = universal graviational constant (6.6767 * 10

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Name: Chemical properties are related only to chemical composition; physical properties are related to chemical composition AND the

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Lecture 9 January 30, Ionic bonding and crystals

Lecture 9 January 30, Ionic bonding and crystals Lecture 9 January 30, 2013 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a Hours:

More information

Atomic Arrangement. Primer Materials For Science Teaching Spring

Atomic Arrangement. Primer Materials For Science Teaching Spring Atomic Arrangement Primer Materials For Science Teaching Spring 2016 31.3.2015 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling

More information

Atomic Arrangement. Primer in Materials Spring

Atomic Arrangement. Primer in Materials Spring Atomic Arrangement Primer in Materials Spring 2017 30.4.2017 1 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling the volume to

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Chemical Bonding Ionic Bonding. Unit 1 Chapter 2

Chemical Bonding Ionic Bonding. Unit 1 Chapter 2 Chemical Bonding Ionic Bonding Unit 1 Chapter 2 Valence Electrons The electrons responsible for the chemical properties of atoms are those in the outer energy level. Valence electrons - The s and p electrons

More information

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available.

Creating Energy-Level Diagrams Aufbau (building up) Principle Electrons are added to the lowest energy orbital available. 3.6 Atomic Structure and the Periodic Table Bohr's Theory Was Incorrect Because... Only explained the line spectrum of hydrogen Position and motion of an e cannot be specified (since the e is so small,

More information

Lecture 2: Bonding in solids

Lecture 2: Bonding in solids Lecture 2: Bonding in solids Electronegativity Van Arkel-Ketalaar Triangles Atomic and ionic radii Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonds in Reciprocal space

More information

Crystalline Solids. Amorphous Solids

Crystalline Solids. Amorphous Solids Crystal Structure Crystalline Solids Possess rigid and long-range order; atoms, molecules, or ions occupy specific positions the tendency is to maximize attractive forces Amorphous Solids lack long-range

More information

CHEM1902/ N-2 November 2014

CHEM1902/ N-2 November 2014 CHEM1902/4 2014-N-2 November 2014 The cubic form of boron nitride (borazon) is the second-hardest material after diamond and it crystallizes with the structure shown below. The large spheres represent

More information

Earth and Planetary Materials

Earth and Planetary Materials Earth and Planetary Materials Spring 2013 Lecture 3 2013.01.14 14 1 Close Packed Anion Arrays Closest Packing Coordination number (C.N.) : number of anions bonded to a cation larger cation, higher C.N.

More information

Molecules and Condensed Matter

Molecules and Condensed Matter Chapter 42 Molecules and Condensed Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 42 To understand

More information

Lecture 1, January 4, 2012 Elements QM, stability H, H2+

Lecture 1, January 4, 2012 Elements QM, stability H, H2+ Lecture 1, January 4, 2012 Elements QM, stability H, H2+ Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Crystal Models. Figure 1.1 Section of a three-dimensional lattice.

Crystal Models. Figure 1.1 Section of a three-dimensional lattice. Crystal Models The Solid-State Structure of Metals and Ionic Compounds Objectives Understand the concept of the unit cell in crystalline solids. Construct models of unit cells for several metallic and

More information

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8,

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8, Lecture 2 Unit Cells and Miller Indexes Reading: (Cont d) Anderson 2 1.8, 2.1-2.7 Unit Cell Concept The crystal lattice consists of a periodic array of atoms. Unit Cell Concept A building block that can

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus

More information

Chapter 12 Solids and Modern Materials

Chapter 12 Solids and Modern Materials Sec$on 10.3 An Introduc+on to Structures and Types of Solids Chapter 12 Solids and Modern Materials Sec$on 10.3 An Introduc+on to Structures and Types of Solids Solids Amorphous Solids: Disorder in the

More information

Semiconductor Physics and Devices Chapter 3.

Semiconductor Physics and Devices Chapter 3. Introduction to the Quantum Theory of Solids We applied quantum mechanics and Schrödinger s equation to determine the behavior of electrons in a potential. Important findings Semiconductor Physics and

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

Electrons in materials. (where are they, what is their energy)

Electrons in materials. (where are they, what is their energy) Electrons in materials (where are they, what is their energy) 1 Lone atoms A single atom has electrons in shells and sub shells. Each of these have a distinct energy level. The diagram shows an example

More information

Reactive potentials and applications

Reactive potentials and applications 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I Continuum and particle methods Reactive potentials and applications Lecture 8 Markus J. Buehler Laboratory for Atomistic

More information

Unit wise Marks Distribution of 10+2 Syllabus

Unit wise Marks Distribution of 10+2 Syllabus Unit wise Marks Distribution of 10+2 Syllabus S.No Unit Name Marks 1 I Solid State 4 2 II Solutions 5 3 III Electro Chemistry 5 4 IV Chemical Kinetics 5 5 V Surface Chemistry 4 6 VI General Principles

More information

Chem 241. Lecture 21. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 21. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 21 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Calculation of space filling Counting atoms Alloys Ionic Solids Rock Salt CsCl... 2 ZnS Sphalerite/

More information

Chem 241. Lecture 24. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 24. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 24 UMass Amherst Biochemistry... Teaching Initiative Announcement Mistake we have class on the 3 rd not 4 th Exam 3 Originally scheduled April 23 rd (Friday) What about April 26 th (Next

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM OUTLINE 2.1 INTRODUCTION: 2.1.1 Semiconductor Materials 2.1.2 Basic Crystal Structure 2.1.3 Basic Crystal Growth technique 2.1.4 Valence

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 20, November 11, 2016 Ionic bonding and crystals Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons.

We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons. ET3034Tux - 2.2.2 - Band Gap 2 - Electrons in Molecular Bonds We have arrived to the question: how do molecular bonds determine the band gap? We have discussed that the silicon atom has four outer electrons.

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

Notes on Solids and Liquids

Notes on Solids and Liquids THE LIQUID STATE Notes on Solids and Liquids Why do liquids tend to bead up when on a solid surface? The effect of uneven pull on surface molecules draws them into the body of the liquid causing droplet

More information

States of Matter SM VIII (post) Crystallography. Experimental Basis. Experimental Basis Crystal Systems Closed Packing Ionic Structures

States of Matter SM VIII (post) Crystallography. Experimental Basis. Experimental Basis Crystal Systems Closed Packing Ionic Structures States of Matter SM VIII (post) Crystallography Experimental Basis Crystal Systems Closed Packing Ionic Structures Ref 12: 8 22-1 Experimental Basis is X-ray diffraction; see HT Fig. 21.1, Pet. Fig. 12.43

More information

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms Paramagnetic Susceptibility A) Bound Electrons in Atoms m s probability B +½ p ½e x Curie Law: 1/T s=½ + B ½ p + ½e +x With increasing temperature T the alignment of the magnetic moments in a B field is

More information

4. Interpenetrating simple cubic

4. Interpenetrating simple cubic 2 1. The correct structure t of CsClCl crystal is 1. Simple cubic 2. Body centered cubic 3. Face centered cubic 4. Interpenetrating simple cubic If corner as well as the particle at the center are same

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

I. Introduction II. Solid State Physics Detection of Light Bernhard Brandl 1

I. Introduction II. Solid State Physics Detection of Light Bernhard Brandl 1 Detection of Light I. Introduction II. Solid State Physics 4-2-2015 Detection of Light Bernhard Brandl 1 4-2-2015 Detection of Light Bernhard Brandl 2 Blabla Recommended 4-2-2015 Detection of Light Bernhard

More information

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry From Last Time Several important conceptual aspects of quantum mechanics Indistinguishability particles are absolutely identical Leads to Pauli exclusion principle (one Fermion / quantum state). Symmetry

More information

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

CHAPTER 4. Crystal Structure

CHAPTER 4. Crystal Structure CHAPTER 4 Crystal Structure We can assume minerals to be made of orderly packing of atoms or rather ions or molecules. Many mineral properties like symmetry, density etc are dependent on how the atoms

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC) Metal Structure Atoms held together by metallic bonding Crystalline structures in the solid state, almost without exception BCC, FCC, or HCP unit cells Bodycentered cubic (BCC) Chromium, Iron, Molybdenum,

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Unit 3: Chemical Bonding and Molecular Structure Bonds Forces that hold groups of atoms together and make them function as a unit. Ionic bonds transfer of electrons

More information

Lecture 1, January 3, 2011 Elements QM, stability H, H2+

Lecture 1, January 3, 2011 Elements QM, stability H, H2+ Lecture 1, January 3, 2011 Elements QM, stability H, H2+ Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Metallic and Ionic Structures and Bonding

Metallic and Ionic Structures and Bonding Metallic and Ionic Structures and Bonding Ionic compounds are formed between elements having an electronegativity difference of about 2.0 or greater. Simple ionic compounds are characterized by high melting

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

Materials 218/UCSB: Class III Cohesion in solids van der Waals, ionic, covalent, metallic

Materials 218/UCSB: Class III Cohesion in solids van der Waals, ionic, covalent, metallic Materials 218/UCSB: Class III Cohesion in solids van der Waals, ionic, covalent, metallic Ram Seshadri (seshadri@mrl.ucsb.edu) Introduction There are four forces in nature. The strong and the weak interactions

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

Chem 241. Lecture 23. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 23. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 23 UMass Amherst Biochemistry... Teaching Initiative Announcement Mistake we have class on the 3 rd not 4 th Exam 3 Originally scheduled April 23 rd (Friday) What about April 26 th (Next

More information

CHAPTER 3. Crystallography

CHAPTER 3. Crystallography CHAPTER 3 Crystallography Atomic Structure Atoms are made of Protons: mass 1.00728 amu, +1 positive charge Neutrons: mass of 1.00867 amu, neutral Electrons: mass of 0.00055 amu, -1 negative charge (1 amu

More information

S.No. Crystalline Solids Amorphous solids 1 Regular internal arrangement of irregular internal arrangement of particles

S.No. Crystalline Solids Amorphous solids 1 Regular internal arrangement of irregular internal arrangement of particles Classification of solids: Crystalline and Amorphous solids: S.No. Crystalline Solids Amorphous solids 1 Regular internal arrangement of irregular internal arrangement of particles particles 2 Sharp melting

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 19, ovember 9, 2016 complexes C4 activation, functionalization ature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

CHAPTER 2: BONDING AND PROPERTIES

CHAPTER 2: BONDING AND PROPERTIES CHAPTER 2: BONDING AND PROPERTIES ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2 1 Fundamental concepts Proton and electron,

More information

Semiconductor Polymer

Semiconductor Polymer Semiconductor Polymer Organic Semiconductor for Flexible Electronics Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic semiconductors with hole

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

What happens when substances freeze into solids? Less thermal energy available Less motion of the molecules More ordered spatial properties

What happens when substances freeze into solids? Less thermal energy available Less motion of the molecules More ordered spatial properties Chapter #16 Liquids and Solids 16.1) Intermolecular Forces 16.2) The Liquid State 16.3) An Introduction to Structures and Types of Solids 16.4) Structure and Bonding of Metals 16.5) Carbon and Silicon:

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Adsorption of Atomic H and O on the (111) Surface of Pt 3 Ni Alloys

Adsorption of Atomic H and O on the (111) Surface of Pt 3 Ni Alloys J. Phys. Chem. B 2004, 108, 8311-8323 8311 Adsorption of Atomic H and O on the (111) Surface of Pt 3 Ni Alloys Timo Jacob and William A. Goddard, III* Materials and Process Simulation Center, Beckman Institute

More information

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111)

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) 20028 J. Phys. Chem. C 2010, 114, 20028 20041 Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*,

More information

Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes

Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information