Lecture 16 February 20 Transition metals, Pd and Pt

Size: px
Start display at page:

Download "Lecture 16 February 20 Transition metals, Pd and Pt"

Transcription

1 Lecture 16 February 20 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a Hours: 2-3pm Monday, Wednesday, Friday William A. Goddard, III, 316 Beckman Institute, x3093 Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics, California Institute of Technology Teaching Assistants: Ross Fu Fan Liu Ch120a-1

2 Last Time 2

3 Transition metals Aufbau (4s,3d) Sc---Cu (5s,4d) Y-- Ag (6s,5d) (La or Lu), Ce-Au 3

4 Transition metals 4

5 Ground states of neutral atoms Sc (4s)2(3d)1 Sc ++ (3d)1 Ti (4s)2(3d)2 Ti ++ (3d)2 V (4s)2(3d)3 V ++ (3d)3 Cr (4s)1(3d)5 Cr ++ (3d)4 Mn (4s)2(3d)5 Mn ++ (3d)5 Fe (4s)2(3d)6 Fe ++ (3d)6 Co (4s)2(3d)7 Co ++ (3d)7 Ni (4s)2(3d)8 Ni ++ (3d)8 Cu (4s)1(3d)10 Cu ++ (3d)10 5

6 The heme group The net charge of the Fe-heme is zero. The VB structure shown is one of several, all of which lead to two neutral N and two negative N. Thus we consider that the Fe is Fe 2+ with a d 6 configuration Each N has a doubly occupied sp 2 s orbital pointing at it. 6

7 Energies of the 5 Fe 2+ d orbitals x 2 -y 2 z 2 =2z 2 -x 2 -y 2 yz xz xy 7

8 Exchange stabilizations 8

9 Skip energy stuff 9

10 Energy for 2 electron product wavefunction Consider the product wavefunction Ψ(1,2) = ψ a (1) ψ b (2) And the Hamiltonian H(1,2) = h(1) + h(2) +1/r /R In the details slides next, we derive E = < Ψ(1,2) H(1,2) Ψ(1,2)>/ <Ψ(1,2) Ψ(1,2)> E = h aa + h bb + J ab + 1/R where h aa =<a h a>, h bb =<b h b> SKIP for now J ab <ψ a (1)ψ b (2) 1/r 12 ψ a (1)ψ b (2)>=ʃ [ψ a (1)] 2 [ψ b (1)] 2 /r 12 Represent the total Coulomb interaction between the electron density r a (1)= ψ a (1) 2 and r b (2)= ψ b (2) 2 Since the integrand r a (1) r b (2)/r 12 is positive for all positions of 1 and 2, the integral is positive, J ab > 0 Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 10

11 Details in deriving energy: normalization First, the normalization term is <Ψ(1,2) Ψ(1,2)>=<ψ a (1) ψ a (1)><ψ b (2) ψ b (2)> Which from now on we will write as SKIP for now <Ψ Ψ> = <ψ a ψ a ><ψ b ψ b > = 1 since the ψ i are normalized Here our convention is that a two-electron function such as <Ψ(1,2) Ψ(1,2)> is always over both electrons so we need not put in the (1,2) while one-electron functions such as <ψ a (1) ψ a (1)> or <ψ b (2) ψ b (2)> are assumed to be over just one electron and we ignore the labels 1 or 2 Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 11

12 Details of deriving energy: one electron terms Using H(1,2) = h(1) + h(2) +1/r /R We partition the energy E = <Ψ H Ψ> as E = <Ψ h(1) Ψ> + <Ψ h(2) Ψ> + <Ψ 1/R Ψ> + <Ψ 1/r 12 Ψ> Here <Ψ 1/R Ψ> = <Ψ Ψ>/R = 1/R since R is a constant <Ψ h(1) Ψ> = <ψ a (1)ψ b (2) h(1) ψ a (1)ψ b (2)> = = <ψ a (1) h(1) ψ a (1)><ψ b (2) ψ b (2)> = <a h a><b b> = h aa Where h aa <a h a> <ψ a h ψ a > Similarly <Ψ h(2) Ψ> = <ψ a (1)ψ b (2) h(2) ψ a (1)ψ b (2)> = SKIP for now = <ψ a (1) ψ a (1)><ψ b (2) h(2) ψ b (2)> = <a a><b h b> = h bb The remaining term we denote as J ab <ψ a (1)ψ b (2) 1/r 12 ψ a (1)ψ b (2)> so that the total energy is E = h aa + h bb + J ab + 1/R Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 12

13 The energy for an antisymmetrized product, A ψ a ψ b The total energy is that of the product plus the exchange term which is negative with 4 parts SKIP for now E ex =-< ψ a ψ b h(1) ψ b ψ a >-< ψ a ψ b h(2) ψ b ψ a >-< ψ a ψ b 1/R ψ b ψ a > - < ψ a ψ b 1/r 12 ψ b ψ a > The first 3 terms lead to < ψ a h(1) ψ b ><ψ b ψ a >+ <ψ a ψ b ><ψ b h(2) ψ a >+ <ψ a ψ b ><ψ b ψ a >/R But <ψ b ψ a >=0 Thus all are zero Thus the only nonzero term is the 4 th term: -Kab=- < ψ a ψ b 1/r 12 ψ b ψ a > which is called the exchange energy (or the 2-electron exchange) since it arises from the exchange term due to the antisymmetrizer. Summarizing, the energy of the Aψ a ψ b wavefunction for H 2 is E = h aa + h bb + (J ab K ab ) + 1/R Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 13

14 The energy of the antisymmetrized wavefunction The total electron-electron repulsion part of the energy for any wavefunction Ψ(1,2) must be positive SKIP for now E ee = (d 3 r 1 )((d 3 r 2 ) Ψ(1,2) 2 /r 12 > 0 This follows since the integrand is positive for all positions of r 1 and r 2 then We derived that the energy of the A ψ a ψ b wavefunction is E = h aa + h bb + (J ab K ab ) + 1/R Where the E ee = (J ab K ab ) > 0 Since we have already established that J ab > 0 we can conclude that J ab > K ab > 0 Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 14

15 Separate the spinorbital into orbital and spin parts Since the Hamiltonian does not contain spin the spinorbitals can be factored into spatial and spin terms. For 2 electrons there are two possibilities: Both electrons have the same spin ψ a (1)ψ b (2)=[Φ a (1)a(1)][Φ b (2)a(2)]= [Φ a (1)Φ b (2)][a(1)a(2)] So that the antisymmetrized wavefunction is Aψ a (1)ψ b (2)= A[Φ a (1)Φ b (2)][a(1)a(2)]= =[Φ a (1)Φ b (2)- Φ b (1)Φ a (2)][a(1)a(2)] Also, similar results for both spins down Aψ a (1)ψ b (2)= A[Φ a (1)Φ b (2)][b(1)b(2)]= =[Φ a (1)Φ b (2)- Φ b (1)Φ a (2)][b(1)b(2)] Since <ψ a ψ b >= 0 = < Φ a Φ b ><a a> = < Φ a Φ b > We see that the spatial orbitals for same spin must be orthogonal Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 15

16 Energy for 2 electrons with same spin The total energy becomes E = h aa + h bb + (J ab K ab ) + 1/R where h aa <Φ a h Φ a > and h bb <Φ b h Φ b > where J ab = <Φ a (1)Φ b (2) 1/r 12 Φ a (1)Φ b (2)> SKIP for now We derived the exchange term for spin orbitals with same spin as follows K ab <ψ a (1)ψ b (2) 1/r 12 ψ b (1)ψ a (2)> `````= <Φ a (1)Φ b (2) 1/r 12 Φ b (1)Φ a (2)><a(1) a(1)><a(2) a(2)> K ab where K ab <Φ a (1)Φ b (2) 1/r 12 Φ b (1)Φ a (2)> Involves only spatial coordinates. Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 16

17 Energy for 2 electrons with opposite spin Now consider the exchange term for spin orbitals with opposite spin SKIP for now K ab <ψ a (1)ψ b (2) 1/r 12 ψ b (1)ψ a (2)> `````= <Φ a (1)Φ b (2) 1/r 12 Φ b (1)Φ a (2)><a(1) b(1)><b(2) a(2)> = 0 Since <a(1) b(1)> = 0. Thus the total energy is E ab = h aa + h bb + J ab + 1/R With no exchange term unless the spins are the same Since <ψ a ψ b >= 0 = < Φ a Φ b ><a b> There is no orthogonality condition of the spatial orbitals for opposite spin electrons In general < Φ a Φ b > =S, where the overlap S 0 Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 17

18 Summarizing: Energy for 2 electrons When the spinorbitals have the same spin, Aψ a (1)ψ b (2)= A[Φ a (1)Φ b (2)][a(1)a(2)] The total energy is E aa = h aa + h bb + (J ab K ab ) + 1/R SKIP for now But when the spinorbitals have the opposite spin, Aψ a (1)ψ b (2)= A[Φ a (1)Φ b (2)][a(1)b(2)]= The total energy is E ab = h aa + h bb + J ab + 1/R With no exchange term Thus exchange energies arise only for the case in which both electrons have the same spin Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 18

19 Consider further the case for spinorbtials with opposite spin Neither of these terms has the correct permutation symmetry separately for space or spin. But they can be combined [Φ a (1)Φ b (2)-Φ b (1)Φ a (2)][a(1)b(2)+b(1)a(2)]= A[Φ a (1)Φ b (2)][a(1)b(2)]-A[Φ b (1)Φ a (2)][a(1)b(2)] Which describes the Ms=0 component of the triplet state [Φ a (1)Φ b (2)+Φ b (1)Φ a (2)][a(1)b(2)-b(1)a(2)]= A[Φ a (1)Φ b (2)][a(1)b(2)]+A[Φ b (1)Φ a (2)][a(1)b(2)] Which describes the Ms=0 component of the singlet state Thus for the ab case, two Slater determinants must be combined to obtain the correct spin and space permutational symmetry Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 19

20 Consider further the case for spinorbtials with opposite spin The wavefunction [Φ a (1)Φ b (2)-Φ b (1)Φ a (2)][a(1)b(2)+b(1)a(2)] Leads directly to 3 E ab = h aa + h bb + (J ab K ab ) + 1/R Exactly the same as for [Φ a (1)Φ b (2)-Φ b (1)Φ a (2)][a(1)a(2)] [Φ a (1)Φ b (2)-Φ b (1)Φ a (2)][b(1)b(2)] These three states are collectively referred to as the triplet state and denoted as having spin S=1 The other combination leads to one state, referred to as the singlet state and denoted as having spin S=0 [Φ a (1)Φ b (2)+Φ b (1)Φ a (2)][a(1)b(2)-b(1)a(2)] We will analyze the energy for this wavefunction next. SKIP for now Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 20

21 Consider the energy of the singlet wavefunction [Φ a (1)Φ b (2)+Φ b (1)Φ a (2)][a(1)b(2)-b(1)a(2)] (ab+ba)(ab-ba) The next few slides show that SKIP for now 1 E = {(h aa + h bb + (h ab + h ba ) S 2 + J ab + K ab + (1+S 2 )/R}/(1 + S 2 ) Where the terms with S or Kab come for the exchange \ Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 21

22 energy of the singlet wavefunction - details [Φ a (1)Φ b (2)+Φ b (1)Φ a (2)][a(1)b(2)-b(1)a(2)] (ab+ba)(ab-ba) 1 E = numerator/ denominator Where numerator =<(ab+ba)(ab-ba) H (ab+ba)(ab-ba)> = =<(ab+ba) H (ab+ba)><(ab-ba) (ab-ba)> denominator = <(ab+ba)(ab-ba) (ab+ba)(ab-ba)> Since <(ab-ba) (ab-ba)>= 2 <ab (ab-ba)>= We obtain 2[<a a><b b>-<a b><b a>]=2 numerator =<(ab+ba) H (ab+ba)> = 2 <ab H (ab+ba)> denominator = <(ab+ba) (ab+ba)>=2 <ab (ab+ba)> Thus 1 E = <ab H (ab+ba)>/<ab (ab+ba)> SKIP for now Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 22

23 energy of the singlet wavefunction - details 1 E = <ab H (ab+ba)>/<ab (ab+ba)> SKIP for now Consider first the denominator <ab (ab+ba)> = <a a><b b> + <a b><b a> = 1 + S 2 Where S= <a b>=<b a> is the overlap The numerator becomes <ab (ab+ba)> = <a h a><b b> + <a h b><b a> + + <a a><b h b> + <a b><b h a> + + <ab 1/r 12 (ab+ba)> + (1 + S 2 )/R Thus the total energy is 1 E = {(h aa + h bb + (h ab + h ba ) S 2 + J ab + K ab + (1+S 2 )/R}/(1 + S 2 ) Ch120a-Goddard-L03 copyright William A. Goddard III, all rights reserved 23

24 Ferrous Fe II x 2 -y 2 destabilized by heme N lone pairs z 2 destabilized by 5 th ligand imidazole or 6 th ligand CO y x 24

25 Summary 4 coord and 5 coord states 25

26 Out of plane motion of Fe 4 coordinate 26

27 Add axial base N-N Nonbonded interactions push Fe out of plane is antibonding 27

28 Free atom to 4 coord to 5 coord Net effect due to five N ligands is to squish the q, t, and s states by a factor of 3 This makes all three available as possible ground states depending on the 6 th ligand 28

29 Bonding of O 2 with O to form ozone O 2 has available a ps orbital for a s bond to a ps orbital of the O atom And the 3 electron p system for a p bond to a pp orbital of the O atom 29

30 Bond O 2 to Mb Simple VB structures get S=1 or triplet state In fact MbO 2 is singlet Why? 30

31 change in exchange terms when Bond O 2 to Mb O 2 ps O 2 pp Assume perfect VB spin pairing Then get 4 cases Thus average K dd is ( )/4 = K dd 5*4/2 up spin down spin 7 K dd 4*3/2 + 2*1/2 7 K dd 4*3/2 + 2*1/2 6 K dd 3*2/2 + 3*2/2 31

32 Bonding O 2 to Mb Exchange loss on bonding O 2 32

33 Modified exchange energy for q state But expected t binding to be 2*22 = 44 kcal/mol stronger than q What happened? Binding to q would have DH = = + 11 kcal/mol Instead the q state retains the high spin pairing so that there is no exchange loss, but now the coupling of Fe to O 2 does not gain the full VB strength, leading to bond of only 8kcal/mol instead of 33 33

34 Bond CO to Mb H 2 O and N 2 do not bond strongly enough to promote the Fe to an excited state, thus get S=2 34

35 compare bonding of CO and O2 to Mb 35

36 New material 36

37 GVB orbitals for bonds to Ti Ti ds character, 1 elect H 1s character, 1 elect Covalent 2 electron TiH bond in Cl 2 TiH 2 Think of as bond from Tidz2 to H1s Covalent 2 electron CH bond in CH 4 Csp 3 character 1 elect H 1s character, 1 elect 37

38 Bonding at a transition metaal Bonding to a transition metals can be quite covalent. Examples: (Cl 2 )Ti(H 2 ), (Cl 2 )Ti(C 3 H 6 ), Cl 2 Ti=CH 2 Here the two bonds to Cl remove ~ 1 to 2 electrons from the Ti, making is very unwilling to transfer more charge, certainly not to C or H (it would be the same for a Cp (cyclopentadienyl ligand) Thus TiCl 2 group has ~ same electronegativity as H or CH 3 The covalent bond can be thought of as Ti(dz2-4s) hybrid spin paired with H1s A{[(Tids)(H1s)+ (H1s)(Tids)](ab-ba)} 38

39 But TM-H bond can also be s-like Cl 2 TiH + Ti (4s) 2 (3d) 2 The 2 Cl pull off 2 e from Ti, leaving a d 1 configuration Ti-H bond character 1.07 Tid+0.22Tisp+0.71H ClMnH Mn (4s) 2 (3d) 5 The Cl pulls off 1 e from Mn, leaving a d 5 s 1 configuration H bonds to 4s because of exchange stabilization of d 5 Mn-H bond character 0.07 Mnd+0.71Mnsp+1.20H 39

40 Bond angle at a transition metal For two p orbitals expect 90, HH nonbond repulsion increases it What angle do two d orbitals want H-Ti-H plane 76 Metallacycle plane 40

41 Best bond angle for 2 pure Metal bonds using d orbitals Assume that the first bond has pure d z2 or ds character to a ligand along the z axis Can we make a 2 nd bond, also of pure ds character (rotationally symmetric about the z axis) to a ligand along some other axis, call it z. For pure p systems, this leads to = 90 For pure d systems, this leads to = 54.7 (or ), this is ½ the tetrahedral angle of (also the magic spinning angle for solid state NMR). 41

42 Best bond angle for 2 pure Metal bonds using d orbitals Problem: two electrons in atomic d orbitals with same spin lead to 5*4/2 = 10 states, which partition into a 3 F state (7) and a 3 P state (3), with 3 F lower. This is because the electron repulsion between say a d xy and d x2-y2 is higher than between sasy d z2 and d xy. Best is ds with dd because the electrons are farthest apart This favors = 90, but the bond to the dd orbital is not as good Thus expect something between 53.7 and 90 Seems that ~76 is often best 42

43 How predict character of Transition metal bonds? Start with ground state atomic configuration Ti (4s) 2 (3d) 2 or Mn (4s) 2 (3d) 5 Consider that bonds to electronegative ligands (eg Cl or Cp) take electrons from 4s easiest to ionize, also better overlap with Cl or Cp, also leads to less reduction in dd exchange (3d) 2 (4s)(3d) 5 Now make bond to less electronegative ligands, H or CH 3 Use 4s if available, otherwise use d orbitals 43

44 But TM-H bond can also be s-like Cl 2 TiH + Ti (4s) 2 (3d) 2 The 2 Cl pull off 2 e from Ti, leaving a d 1 configuration Ti-H bond character 1.07 Tid+0.22Tisp+0.71H ClMnH Mn (4s) 2 (3d) 5 The Cl pulls off 1 e from Mn, leaving a d 5 s 1 configuration H bonds to 4s because of exchange stabilization of d 5 Mn-H bond character 0.07 Mnd+0.71Mnsp+1.20H 44

45 Example (Cl) 2 VH 3 + resonance configuration 45

46 Example ClMometallacycle butadiene 46

47 Example [Mn CH] 2+ 47

48 Summary: start with Mn + s 1 d 5 dy2 s bond to H1s dx2-x2 non bonding dyz p bond to CH dxz p bond to CH dxy non bonding 4sp hybrid s bond to CH 48

49 Summary: start with Mn + s 1 d 5 dy2 s bond to H1s dx2-x2 non bonding dyz p bond to CH dxz p bond to CH dxy non bonding 4sp hybrid s bond to CH 49

50 Compare chemistry of column 10 50

51 Ground state of group 10 column Pt: (5d) 9 (6s) 1 3 D ground state Pt: (5d) 10 (6s) 0 1 S excited state at 11.0 kcal/mol Pt: (5d) 8 (6s) 2 3 F excited state at 14.7 kcal/mol Ni: (5d) 8 (6s) 2 3 F ground state Ni: (5d) 9 (6s) 1 3 D excited state at 0.7 kcal/mol Ni: (5d) 10 (6s) 0 1 S excited state at 40.0 kcal/mol Pd: (5d) 10 (6s) 0 1 S ground state Pd: (5d) 9 (6s) 1 3 D excited state at 21.9 kcal/mol Pd: (5d) 8 (6s) 2 3 F excited state at 77.9 kcal/mol 51

52 Salient differences between Ni, Pd, Pt 2 nd row (Pd): 4d much more stable than 5s Pd d 10 ground state 3 rd row (Pt): 5d and 6s comparable stability Pt d 9 s 1 ground state 52

53 Ground state configurations for column 10 Ni Pd Pt 53

54 Next section Theoretical Studies of Oxidative Addition and Reductive Elimination: J. J. Low and W. A. Goddard III J. Am. Chem. Soc. 106, 6928 (1984) wag 190 Reductive Coupling of H-H, H-C, and C-C Bonds from Pd Complexes J. J. Low and W. A. Goddard III J. Am. Chem. Soc. 106, 8321 (1984) wag 191 Theoretical Studies of Oxidative Addition and Reductive Elimination. II. Reductive Coupling of H-H, H-C, and C-C Bonds from Pd and Pt Complexes J. J. Low and W. A. Goddard III Organometallics 5, 609 (1986) wag

55 Mysteries from experiments on oxidative addition and reductive elimination of CH and CC bonds on Pd and Pt Why are Pd and Pt so different 55

56 Mysteries from experiments on oxidative addition and reductive elimination of CH and CC bonds on Pd and Pt Why is CC coupling so much harder than CH coupling? 56

57 Step 1: examine GVB orbitals for (PH 3 ) 2 Pt(CH 3 ) 57

58 Analysis of GVB wavefunction 58

59 Alternative models for Pt centers 59

60 60

61 61

62 energetics Not agree with experiment 62

63 Possible explanation: kinetics 63

64 Consider reductive elimination of HH, CH and CC from Pd Conclusion: HH no barrier CH modest barrier CC large barrier 64

65 Consider oxidative addition of HH, CH, and CC to Pt Conclusion: HH no barrier CH modest barrier CC large barrier 65

66 Summary of barriers This explains why CC coupling not occur for Pt while CH and HHcoupling is fast But why? 66

67 How estimate the size of barriers (without calculations) 67

68 Examine HH coupling at transition state Can simultaneously get good overlap of H with Pd sd hybrid and with the other H Thus get resonance stabilization of TS low barrier 68

69 Examine CC coupling at transition state Can orient the CH 3 to obtain good overlap with Pd sd hybrid OR can orient the CH 3 to obtain get good overlap with the other CH 3 But CANNOT DO BOTH SIMULTANEOUSLY, thus do NOT get resonance stabilization of TS high barier 69

70 Examine CH coupling at transition state H can overlap both CH 3 and Pd sd hybrid simultaneously but CH 3 cannot thus get ~ ½ resonance stabilization of TS 70

71 Now we understand Pt chemistry But what about Pd? Why are Pt and Pd so dramatically different 71

72 stop 72

Lecture 11 January 30, Transition metals, Pd and Pt

Lecture 11 January 30, Transition metals, Pd and Pt Lecture 11 January 30, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a Hours:

More information

Lecture 15 February 15, 2013 Transition metals

Lecture 15 February 15, 2013 Transition metals Lecture 15 February 15, 2013 Transition metals Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 13, October 31, 2016 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 12, October 21, 2016 Transition metals Heme-Fe Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Lecture 17 February 14, 2013 MH + bonding, metathesis

Lecture 17 February 14, 2013 MH + bonding, metathesis Lecture 17 February 14, 2013 MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lecture 16, February 25, 2015 Metallic bonding

Lecture 16, February 25, 2015 Metallic bonding Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am

More information

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si Lecture 8 January 24, 2013 Ga crystal surfaces, n-p dopants Si Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinornic chemistry, and

More information

Lecture 4, January 12, 2015 Bonding in H2

Lecture 4, January 12, 2015 Bonding in H2 Lecture 4, January 12, 2015 Bonding in H2 Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 147 Noyes Hours: 11-11:50am

More information

Lecture 14 February 7, 2014 Symmetry

Lecture 14 February 7, 2014 Symmetry Lecture 14 February 7, 2014 Symmetry Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI

More information

Lecture February 13-15, Silicon crystal surfaces

Lecture February 13-15, Silicon crystal surfaces Lecture 18-19 February 13-15, 2012 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 22, November 16, 2016 Graphite, graphene, bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Transition Metals and Coordination Chemistry

Transition Metals and Coordination Chemistry Transition Metals and Coordination Chemistry Transition Metals Similarities within a given period and within a given group. Last electrons added are inner electrons (d s, f s). 20_431 Ce Th Pr Pa d U

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

Inorganic Chemistry with Doc M. Fall Semester, 2011 Day 19. Transition Metals Complexes IV: Spectroscopy

Inorganic Chemistry with Doc M. Fall Semester, 2011 Day 19. Transition Metals Complexes IV: Spectroscopy Inorganic Chemistry with Doc M. Fall Semester, 011 Day 19. Transition Metals Complexes IV: Spectroscopy Name(s): lement: Topics: 1. The visible spectrum and the d-orbitals 3. Octahedral fields. Term symbols

More information

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons B. Electron Deficient (less than an octet) e.g. BeH 2 H-Be-H Be does not need an octet Total of 4 valence electrons Not the same as unsaturated systems that achieve the 8e - (octet) through the formation

More information

Lecture 4; January Electrons in Atoms: Magnetism; Term Symbols, Z eff, and Other Properties

Lecture 4; January Electrons in Atoms: Magnetism; Term Symbols, Z eff, and Other Properties Lecture 4; January 2017 Electrons in Atoms: Magnetism; Term Symbols, Z eff, and Other Properties Three prototypical kinds of Magnetic Behavior Paramagnetism: atoms, molecules, and solids with unpaired

More information

Molecular Orbital Theory (MOT)

Molecular Orbital Theory (MOT) Molecular Orbital Theory (MOT) In this section, There are another approach to the bonding in metal complexes: the use of molecular orbital theory (MOT). In contrast to crystal field theory, the molecular

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

Molecular Orbital Theory and Charge Transfer Excitations

Molecular Orbital Theory and Charge Transfer Excitations Molecular Orbital Theory and Charge Transfer Excitations Chemistry 123 Spring 2008 Dr. Woodward Molecular Orbital Diagram H 2 Antibonding Molecular Orbital (Orbitals interfere destructively) H 1s Orbital

More information

Lecture 2, January 9, 2012 Origin Binding H 2 +,nodal thm, H 2, QM post 2-4

Lecture 2, January 9, 2012 Origin Binding H 2 +,nodal thm, H 2, QM post 2-4 Lecture 2, January 9, 2012 Origin Binding H 2 +,nodal thm, H 2, QM post 2-4 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

Lecture 3, January 9, 2015 Bonding in H2+

Lecture 3, January 9, 2015 Bonding in H2+ Lecture 3, January 9, 2015 Bonding in H2+ Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 147 Noyes Hours: 11-11:50am

More information

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.61 Physical Chemistry Exam III (1) PRINT your name on the cover page. (2) It is suggested that you READ THE ENTIRE EXAM before

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 19, ovember 9, 2016 complexes C4 activation, functionalization ature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Inorganic Chemistry with Doc M. Day 19. Transition Metals Complexes IV: Spectroscopy

Inorganic Chemistry with Doc M. Day 19. Transition Metals Complexes IV: Spectroscopy Inorganic Chemistry with Doc M. Day 19. Transition Metals Complexes IV: Spectroscopy Topics: 1. The visible spectrum and the d-orbitals 3. Octahedral fields 2. Term symbols and the method of microstates

More information

Molecular Orbital Theory and Charge Transfer Excitations

Molecular Orbital Theory and Charge Transfer Excitations Molecular Orbital Theory and Charge Transfer Excitations Chemistry 123 Spring 2008 Dr. Woodward Molecular Orbital Diagram H 2 Antibonding Molecular Orbital (Orbitals interfere destructively) H 1s Orbital

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved Lecture, October 28, 205: Si, Ga crystal surfaces Ch 25a: Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Ch 20a:Nature of the Chemical bond Room

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden Multiconfigurational Quantum Chemistry Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden April 20, 2009 1 The Slater determinant Using the spin-orbitals,

More information

Electronic structure / bonding in d-block complexes

Electronic structure / bonding in d-block complexes LN05-1 Electronic structure / bonding in d-block complexes Many, many properties of transition metal complexes (coordination number, structure, colour, magnetism, reactivity) are very sensitive to the

More information

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points)

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points) Problem 1 (2 points) a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions (υ1 and

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

Lecture 4, October 5, 2016 Bonding CBBe hydrides and Fluorides

Lecture 4, October 5, 2016 Bonding CBBe hydrides and Fluorides Lecture 4, October 5, 2016 Bonding CBBe hydrides and Fluorides Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Chemistry Lecture Notes

Chemistry Lecture Notes Molecular orbital theory Valence bond theory gave us a qualitative picture of chemical bonding. Useful for predicting shapes of molecules, bond strengths, etc. It fails to describe some bonding situations

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution Functions/ s and p orbitals

Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution Functions/ s and p orbitals Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution unctions/ s and p orbitals Where are we going? Lecture 3 Brief wavefunction considerations:

More information

Bonding in Molecules Covalent Bonding

Bonding in Molecules Covalent Bonding Bonding in Molecules Covalent Bonding The term covalent implies sharing of electrons between atoms. Valence electrons and valence shell orbitals - nly valence electrons are used for bonding: ns, np, nd

More information

Lecture 8 January 28, Silicon crystal surfaces

Lecture 8 January 28, Silicon crystal surfaces Lecture 8 January 28, 203 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch20a Hours:

More information

Pauli Deformation APPENDIX Y

Pauli Deformation APPENDIX Y APPENDIX Y Two molecules, when isolated say at infinite distance, are independent and the wave function of the total system might be taken as a product of the wave functions for the individual molecules.

More information

Chemical bonding in complexes of transition metals

Chemical bonding in complexes of transition metals Chemical bonding in complexes of transition metals Chem 202, Sept. 28, 2010 What are transition elements? Electronic structure of atoms Naming delocalized molecular orbitals: tetrahedral and octahedral

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10

Symmetry III: Molecular Orbital Theory. Reading: Shriver and Atkins and , 6.10 Lecture 9 Symmetry III: Molecular Orbital Theory Reading: Shriver and Atkins 2.7-2.9 and g 6.6-6.7, 6.10 The orbitals of molecules H H The electron energy in each H atom is -13.6 ev below vacuum. What

More information

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding Bonding in Octahedral and Tetrahedral Metal Complexes 327 Molecular Orbital Theory and Crystal Field/Ligand Field Theory Predict how the d orbitals are affected by the Metal- Ligand Bonding d z 2, d x

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Electronic Spectroscopy of Polyatomics

Electronic Spectroscopy of Polyatomics Electronic Spectroscopy of Polyatomics We shall discuss the electronic spectroscopy of the following types of polyatomic molecules: 1. general AH 2 molecules, A = first-row element 2. formaldehyde 3. benzene

More information

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s) XIII 63 Polyatomic bonding -09 -mod, Notes (13) Engel 16-17 Balance: nuclear repulsion, positive e-n attraction, neg. united atom AO ε i applies to all bonding, just more nuclei repulsion biggest at low

More information

Lecture 1, January 3, 2011 Elements QM, stability H, H2+

Lecture 1, January 3, 2011 Elements QM, stability H, H2+ Lecture 1, January 3, 2011 Elements QM, stability H, H2+ Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling Colors of Co(III) solutions Electronic-Vibrational Coupling Vibronic Coupling Because they have g g character, the d-d transitions of complees of the transition metals are forbidden (LaPorte forbidden).

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 22, March 20, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 22, March 20, 2006 Chem 350/450 Physical Chemistry II Quantum Mechanics 3 Credits Spring Semester 006 Christopher J. Cramer Lecture, March 0, 006 Some material in this lecture has been adapted from Cramer, C. J. Essentials

More information

Lecture 7,8 January 24, 2011 CC Bonds

Lecture 7,8 January 24, 2011 CC Bonds Lecture 7,8 January 24, 2011 CC Bonds Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy William A. Goddard,

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Organometallic Chemistry

Organometallic Chemistry Organometallic Chemistry Organometallic compounds combine an organic moiety with a metal in a molecule that has direct metal-carbon bonds. Ferrocene, first prepared in 1951, ushered in the modern era of

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond.

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond. Problem 1 (2 points) 1. Consider the MoMoCr heterotrimetallic complex shown below (Berry, et. al. Inorganica Chimica Acta 2015, p. 241). Metal-metal bonds are not drawn. The ligand framework distorts this

More information

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Chem 324 Midterm 1 Fall 2011 Version 1 Page 1 of 9 Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Name: Answer all questions on the paper (use the back if necessary). There

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals.

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Molecular Orbital Theory Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Using the concept of hybridization, valence

More information

EPSC501 Crystal Chemistry WEEK 5

EPSC501 Crystal Chemistry WEEK 5 EPSC501 Crystal Chemistry WEEK 5 Oxidation states of transition elements (many more in aqueous solutions than in the common rock-forming minerals) Notice that almost every transition metal has a +2 oxidation

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 9 October 1, 016 nd Homonuclear diatomics Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

Lecture 1, January 4, 2012 Elements QM, stability H, H2+

Lecture 1, January 4, 2012 Elements QM, stability H, H2+ Lecture 1, January 4, 2012 Elements QM, stability H, H2+ Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms Molecular Orbital Theory Valence Bond Theory: Electrons are located in discrete pairs between specific atoms Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions

More information

Chapter 7: Chemical Bonding and Molecular Structure

Chapter 7: Chemical Bonding and Molecular Structure Chapter 7: Chemical Bonding and Molecular Structure Ionic Bond Covalent Bond Electronegativity and Bond Polarity Lewis Structures Orbital Overlap Hybrid Orbitals The Shapes of Molecules (VSEPR Model) Molecular

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds involve adjustments in the position of one or more valence electrons. PE is lower in bonded

More information

Bonding in transition metal complexes

Bonding in transition metal complexes rystal Field Theory(FT) Bonding in transition metal complexes Assumes electrostatic(ionic) interactions between ligands and metal ions Useful for understanding magnetism and electronic spectra Valence

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Chemistry 1B. Fall Topics Lectures Coordination Chemistry

Chemistry 1B. Fall Topics Lectures Coordination Chemistry Chemistry 1B Fall 2016 Topics Lectures 17-18 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 good reasons for studying coordination chemistry

More information