Electronic structure / bonding in d-block complexes

Size: px
Start display at page:

Download "Electronic structure / bonding in d-block complexes"

Transcription

1 LN05-1 Electronic structure / bonding in d-block complexes Many, many properties of transition metal complexes (coordination number, structure, colour, magnetism, reactivity) are very sensitive to the number of d-electrons and how they are arranged in the d-orbitals. For the transition element valence orbitals the energy-ordering is: ns < (n-1)d < np H&S 19.2 BUT For higher oxidation states, M n+, the energies of (n-1)d orbitals tend to be lower in energy than the ns orbitals. Why? Recall: orbital energies affected by principal quantum number (n), effective nuclear charge experienced by electrons (Z eff ) and e -e repulsions as subshells are filled. Removal of one or more electrons (oxidation) reduces overall e repulsion and lowers energy; this effect is most pronounced for d-orbital energies, relative to s or p. e.g. Element free atom configuration configuration in complexes Scandium 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 1s 2 2s 2 2p 6 3s 2 3p 6 3d 3 Iron 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8

2 LN05-2 Oxidation states and d-electron counts Transition metal ions (mostly) have no s-e, only d-e, in their valence shell so, by convention, we discuss the electron configurations of metal ions as d n where n is the number of d-electrons in the valence shell of the T.M. ion. H&S 20. Determining the d-electron count in a transition metal complex 1. Determine the oxidation state: oxidation state = - (Σ ligand charge) + (charge on inner sphere complex) Once the formal charge of the metal is determined, the d-electron count can be determined based on the group that the metal belongs to: for d n, n = (group number) (oxidation state of metal)

3 LN05-3 Examples: Rh(PPh 3 ) 3 Cl: Oxidation states and d-electron counts H&S 20. K 3 [Fe(CN) 6 ]

4 LN05-4 Oxidation states Group (Figure 19.3, H&S) Blue = common oxidation state. [ ] = rare oxidation state. Blank = non-existent

5 LN05-5 Oxidation states general comments 1. Most metals can adopt more than 1 oxidation state. Exceptions are groups 3 and Within a group, the heavier metals tend to (slightly) favour higher oxidation states. 3. In the early to mid part of the d-block (up to Group 8), oxidation states range up to and including the maximum possible oxidation state. 4. From Group 9 onwards, very high oxidation states become less favoured. For most metals in this part the preferred oxidation states are maximum +3 (and occasionally +4 for heavier metals)

6 LN05-6 The Electroneutrality principle H&S 19.6 Formal oxidation states are mainly useful for bookkeeping purposes and should not be interpreted as a representation of the real charge on a metal ion. old-fashioned way of representing Lewis acidbase interaction Purely covalent model Purely ionic model Partly ionic and covalent (polar covalent): electroneutrality principle

7 LN05-7 Bonding in transition metal complexes H&S 20.4 Various models have been used to discuss structure and bonding in relation to experimentally determined properties (structure, colour, magnetism). Valence bond theory (H&S 20.2) - not really used anymore; included for historical reasons Crystal field theory (H&S 20.3) - Conceptually simple and has some predictive power; but, based on dubious premise that there are NO covalent interactions between a metal and its ligands Molecular orbital theory (H&S 20.4) - The most complex, but most complete model. We will simply (but thoroughly) analyze them and focus on particular part of them (i.e. MOs that are based on the metal d orbitals) Ligand field theory (H&S 20.5) - Related to crystal field theory but with additional parameters ( fudge factors ) included to represent metal-ligand covalent bonding

8 LN05-8 Atomic orbitals H&S 1.6 3D representations of common atomic orbitals. Know these! 3d yz 3d xy 3d xz 3d z2 3d x2-y2

9 LN05-9 Molecular orbital diagram for octahedral complexesh&s 20.4

10 LN05-10 Octahedral MOs: a closer look M-L antibonding (σ*) orbitals H&S 20.4 e g * t 2g Non-bonding orbitals

11 LN05-11 MO theory: tetrahedral complexes H&S 20.4 y z x

12 LN05-12 MO theory: square planar complexes H&S 20.4 y z x

13 LN05-13 Qualitative comparison of MO diagrams

14 LN05-14 The 18 electron rule

15 LN05-15 The 18 electron rule H&S 20.4 & 24.3 Stable transition metal complexes tend to have a total of 18 valence electrons associated with the transition metal. Exceptions: 1. complexes of early transition metals (not enough d-electrons) 2. Late transition metals (too many d-electrons), particularly with weak sigma donors (more on this in a bit) 3. Square planar complexes these obey the 16 electron rule Note that we use the ionic model of M-L bonding, where formally anionic ligands are twoelectron donors (this is the model where we emphasize polar nature of the M-L bond). There is an alternative model for counting (mentioned in 24.3) in which M-L bonds are broken homolytically. We don t use this (but it s valid).

16 LN05-16 Pi bonding in Octahedral complexes H&S 20.4 t 2g a 1g + e g + t 1u a 1g + e g + t 1u As before: L is a σ donor L is a π donor (and still a σ donor)

17 LN05-17 Pi bonding in Octahedral complexes H&S 20.4 Recall that, in the absence of π orbitals on the ligands, t 2g molecular orbitals are nonbonding and are just the dxy, dxz, and dyz orbitals from M. When the L have π donor orbitals, the t 2g become t2g* - i.e. M-L (π) antibonding: t 2g (no ligand π orbitals) t 2g * (ligand π donor orbitals)

18 LN05-18 Pi bonding in Octahedral complexes H&S 20.4 t 2g a 1g + e g + t 1u a 1g + e g + t 1u As before: L is a σ donor L is a π acceptor (and still a σ donor)

19 LN05-19 Pi bonding in Octahedral complexes H&S 20.4 Recall that, in the absence of π orbitals on the ligands, t 2g orbitals are non-bonding and are just the dxy, dxz, and dyz orbitals from M. When the L have π donor orbitals, the t 2g become t2g* - i.e. M-L (π) antibonding: t 2g (no ligand π orbitals) t 2g (ligand π acceptor orbitals) A ligand group π-acceptor orbital:

20 LN05-20 Bonding in organometallic pi complexes So far we have discussed ligands which can be pi donors, pi acceptors, or neither but all (so far) are sigma donors in which the donor orbital is a lone pair on the ligand: BUT we have also seen a few ligands that don t appear to have a sigma donor orbital: 2 -ethylene 6 -benzene 5 -cyclopentadienide How do we understand metal-ligand bonding in pi complexes? What is the correct way to think about these ligands in terms of the metal s coordination number? the metal s valence electron count?

21 LN05-21 Bonding in organometallic pi complexes Metal-ligand bonding in ethylene complexes: the Dewar/Chatt/Duncanson model LUMO HOMO 1. sigma-type interaction involving ethylene HOMO. Ethylene is using is π bond (HOMO) as a σ donor

22 LN05-22 Bonding in organometallic pi complexes Metal-ligand bonding in ethylene complexes: the Dewar/Chatt/Duncanson model H&S Fig 24.5 LUMO HOMO 2. π-type interaction involving backbonding from a metal d-orbital to the ethylene LUMO.

23 LN05-23 Bonding in organometallic pi complexes There is a sigma donating part and a pi backbonding part to the bonding in metal-ethylene complexes. For the purposes of electron counting, we focus mainly on the sigma donating part: the pair of electrons in the sigma bond come from ethylene. Therefore ethylene contributes two electrons as a neutral ligand. In general, a two-carbon unit bonded to a metal in a pi complex is described as occupying one coordination site and contributes two electrons to the complex Ligand number of e- charge number of coord. sites 2 -ethylene butadiene benzene benzene cyclopentadienide 6-1 3

24 LN05-24 Bonding in organometallic pi complexes M-L bonding in benzene and Cp complexes is more complicated these rings have more π molecular orbitals. For these ligands we can focus on the electronic and structural similarities to traditional σ donor ligands: both benzene and Cp- are best described as occupying three mutually cis L type positions:

25 LN05-25 Bonding in organometallic pi complexes Bis( 6 -benzene)chromium(0) Bis( 5 -cyclopentiadienyl)iron(ii) ferrocene

26 LN05-26 Representing pi complexes Pseudo-6-coordinate (NOT 2-coordinate) 12-coordinate 6-coordinate NO OK but harder to draw Pseudo-6-coordinate (NOT 2-coordinate) 10-coordinate NO 6-coordinate OK but harder to draw

27 LN05-27 Spectrochemical series H&S 20.4 The spectrochemical series is an empirical ordering of ligands in terms of their effect on Δ O : I- < Br- < Cl- < F- < OH- < H 2 O < NH 3 < en < bipy < phen < CN- < CO The parameter Δ O is an important determinant of the overall electronic structure, and hence properties (colour, magnetism, reactivity) of transition metal complexes.

28 LN05-28 High spin vs low spin: octahedral H&S 20.1 Orbitals are populated based on Hunds rule d 0 -d 3 t 2g e g * d 4 -d 7 e g * e g * t 2g t 2g LOW SPIN HIGH SPIN e g * d 8 -d 10 t 2g

29 LN05-29 High spin vs low spin: octahedral The spetrochemical series allows for general predictions of preferences for HS vs LS configurations, particularly when comparing two complexes with different ligands. Generally the spectrochemical series cannot be used to absolutely determine the HS/LS preference of one compound, except for ligands at either end of the series.

30 LN05-30 High spin vs low spin: other geometries H&S 20.1 In general Δ t tends to be about half the magnitude of Δ o (assuming equivalent ligands etc.) As a result, tetrahedral complexes are nearly always high spin when there is a choice (d 3 -d 6 ) Only populate this orbital if necessary (> 8 d electrons) Within these for orbitals, use high spin confiugurations..

31 LN05-31 High spin vs low spin: other geometries H&S 20.1 Only populate this orbital if necessary (> 8 d electrons) Within these for orbitals, use high spin confiugurations..

32 LN05-32 Jahn-Teller distortions H&S 20.3 Sometimes the structures of octahedral complexes deviate in subtle but important ways: regular octahedron: All Ni-O bonds 2.07 Å distorted octahedron: Red Ni-O bonds 1.95 Å Blue Ni-O bonds 2.38 Å Ni(II) = d 8 Cu(II) = d 9

33 LN05-33 Jahn-Teller distortions H&S 20.3 The Jahn-Teller theorem: Electronically degenerate states are susceptible to structural changes which remove the degeneracy Cu(II) = d 9 or Regular octahedron Distorted octahedron

34 LN05-34 Jahn-Teller distortions H&S 20.3 Distortions can be elongation of z-axis, or compression:

35 LN05-35 Jahn-Teller distortions H&S 20.3 Distortions can be predicted for the following d-electron counts in octahedral complexes: d 1 d 2 d 4 (HS and LS) d 5 (LS) d 6 (HS) d 7 (HS and LS) d 9 Consequences of Jahn-Teller distortions: 1. Structures 2. spectroscopy (see later) 3. Reactivity (see later)

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Molecular Orbital Theory (MOT)

Molecular Orbital Theory (MOT) Molecular Orbital Theory (MOT) In this section, There are another approach to the bonding in metal complexes: the use of molecular orbital theory (MOT). In contrast to crystal field theory, the molecular

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

- an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes

- an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes 10.4 Angular Overlap - an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes - estimate the strength of interaction b/w ligand orbitals & metal d orbitals

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20 Coordination Chemistry: Bonding Theories Molecular Orbital Theory Chapter 20 Review of the Previous Lecture 1. Discussed magnetism in coordination chemistry and the different classification of compounds

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

The d-block elements. Transition metal chemistry is d-orbitals/electrons

The d-block elements. Transition metal chemistry is d-orbitals/electrons The d-block elements d-block elements include Sc-Zn, Y-Cd, a(or u)-hg. Transition metal chemistry is d-orbitals/electrons H&S, Fig 1.1, p. 15 Properties of transition metal ions are very sensitive to the

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

Crystal Field Theory History

Crystal Field Theory History Crystal Field Theory History 1929 Hans Bethe - Crystal Field Theory (CFT) Developed to interpret color, spectra, magnetism in crystals 1932 J. H. Van Vleck - CFT of Transition Metal Complexes Champions

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons B. Electron Deficient (less than an octet) e.g. BeH 2 H-Be-H Be does not need an octet Total of 4 valence electrons Not the same as unsaturated systems that achieve the 8e - (octet) through the formation

More information

A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry. Zachary Chin, Alex Li, Alex Liu

A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry. Zachary Chin, Alex Li, Alex Liu A Rigorous Introduction to Molecular Orbital Theory and its Applications in Chemistry Zachary Chin, Alex Li, Alex Liu Quantum Mechanics Atomic Orbitals and Early Bonding Theory Quantum Numbers n: principal

More information

Chemistry 1000 Lecture 26: Crystal field theory

Chemistry 1000 Lecture 26: Crystal field theory Chemistry 1000 Lecture 26: Crystal field theory Marc R. Roussel November 6, 18 Marc R. Roussel Crystal field theory November 6, 18 1 / 18 Crystal field theory The d orbitals z 24 z 16 10 12 8 0 0 10 10

More information

Coordination chemistry and organometallics

Coordination chemistry and organometallics Coordination chemistry and organometallics Double salt and Complex salt A salt that keeps its identity only in solid state is called a double salt. In solution they dissociate into component ions. E.g.:

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued Topics: 1. The three scenarios 2. Scenario 3: π-back bonding 1. The three scenarios for the MO energy

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Chapter 21 d-block metal chemistry: coordination complexes

Chapter 21 d-block metal chemistry: coordination complexes Chapter 21 d-block metal chemistry: coordination complexes Bonding: valence bond, crystal field theory, MO Spectrochemical series Crystal field stabilization energy (CFSE) Electronic Spectra Magnetic Properties

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

L L Ch112 Problem Set 3 Due: Thursday, October 22 before class. Problem 1 (3 points)

L L Ch112 Problem Set 3 Due: Thursday, October 22 before class. Problem 1 (3 points) Problem 1 (3 points) Part A. In problem set 2, the π-system of bicyclo[2.2.2]octa-2,5,7-triene was analyzed. 1. Starting from the MO diagram of the π-system of barrelene, show how the energy of each molecular

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Coordination Chemistry II: Bonding

Coordination Chemistry II: Bonding d x2-y2 b 1g e g d x2-y2 b 1g D 1 t 2 d xy, d yz, d zx D t d d z2, d x2-y2 D o d z2 a 1g d xy D 2 d z2 b 2g a 1g e d z2, d x2-y2 d xy, d yz, d zx d xy b 2g D 3 t 2g e g d yz, d zx e g d yz, d zx 10 Coordination

More information

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Chemistry Instrumental Analysis Lecture 11. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 11 Molar Absorptivities Range 0 to 10 5 Magnitude of e depends on capture cross section of the species and probability of the energy-absorbing transition. e

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 23 Study Guide Concepts 1. In the transition metals, the ns orbital fills before the (n-1)d orbitals. However, the ns orbital

More information

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points)

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points) Problem 1 (2 points) a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions (υ1 and

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

UNIT 9 Topic: Coordination Compounds

UNIT 9 Topic: Coordination Compounds UNIT 9 Topic: Coordination Compounds 1. State the postulates of Werner s theory of coordination compounds. Postulates: 1. Central metal ion in a complex shows two types of valences - primary valence and

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Lecture 11: Transition metals (1) Basics and magnetism

Lecture 11: Transition metals (1) Basics and magnetism Lecture 11: Transition metals (1) Basics and magnetism Oxidation states in transition metal compounds Ligand field theory Magnetism Susceptibility Temperature dependence Magnetic moments Figure: Wikipedia

More information

Chemical bonding in complexes of transition metals

Chemical bonding in complexes of transition metals Chemical bonding in complexes of transition metals Chem 202, Sept. 28, 2010 What are transition elements? Electronic structure of atoms Naming delocalized molecular orbitals: tetrahedral and octahedral

More information

Chapter 21. d-block metal chemistry: coordination complexes

Chapter 21. d-block metal chemistry: coordination complexes Inorganic Chemistry B Chapter 21 d-block metal chemistry: coordination complexes Dr. Said El-Kurdi 1 21.1 Introduction In this chapter, we discuss complexes of the d-block metals and we consider bonding

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding Bonding in Octahedral and Tetrahedral Metal Complexes 327 Molecular Orbital Theory and Crystal Field/Ligand Field Theory Predict how the d orbitals are affected by the Metal- Ligand Bonding d z 2, d x

More information

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Chem 324 Midterm 1 Fall 2011 Version 1 Page 1 of 9 Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Name: Answer all questions on the paper (use the back if necessary). There

More information

Other Crystal Fields

Other Crystal Fields Other Crystal Fields! We can deduce the CFT splitting of d orbitals in virtually any ligand field by " Noting the direct product listings in the appropriate character table to determine the ways in which

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Crystal Field Theory

Crystal Field Theory 6/4/011 Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability Induced dipole moment, polarisability in electric field: Van der Waals forces Intermolecular forces other than covalent bonds or other than electrostatic interactions of ions induced d. moment µ * = α

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Of The Following Cannot Accommodate More Than An Octet Of Electrons

Of The Following Cannot Accommodate More Than An Octet Of Electrons Of The Following Cannot Accommodate More Than An Octet Of Electrons This is most common example of exceptions to the octet rule. their empty d orbitals to accommodate additional electrons. A case where

More information

Review Outline Chemistry 1B, Fall 2012

Review Outline Chemistry 1B, Fall 2012 Review Outline Chemistry 1B, Fall 2012 -------------------------------------- Chapter 12 -------------------------------------- I. Experiments and findings related to origin of quantum mechanics A. Planck:

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond.

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond. Problem 1 (2 points) 1. Consider the MoMoCr heterotrimetallic complex shown below (Berry, et. al. Inorganica Chimica Acta 2015, p. 241). Metal-metal bonds are not drawn. The ligand framework distorts this

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

ORGANIC CHEMISTRY. Meaning of Organic?

ORGANIC CHEMISTRY. Meaning of Organic? ORGANIC CHEMISTRY Meaning of Organic? Initially scientists believed there was a special force in living organisms -this was assumed the unique component of organic material In 1828 Wöhler synthesized urea

More information

Chapter 25 Transition Metals and Coordination Compounds Part 1

Chapter 25 Transition Metals and Coordination Compounds Part 1 Chapter 25 Transition Metals and Coordination Compounds Part 1 Introduction The transition elements are defined as: those metallic elements that have a partially but incompletely filled d subshell or easily

More information

Chapter 3. Orbitals and Bonding

Chapter 3. Orbitals and Bonding Chapter 3. Orbitals and Bonding What to master Assigning Electrons to Atomic Orbitals Constructing Bonding and Antibonding Molecular Orbitals with Simple MO Theory Understanding Sigma and Pi Bonds Identifying

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Section 6 Questions from Shriver and Atkins

Section 6 Questions from Shriver and Atkins Section 6 Questions from Shriver and tkins 4.35 Remember, softness increases as you go down a group, and both Zn and Hg are in Group 12. Hg 2+ is a very soft acid, so it is only realistically able to form

More information

17/11/2010. Lewis structures

17/11/2010. Lewis structures Reading assignment: 8.5-8.8 As you read ask yourself: How can I use Lewis structures to account for bonding in covalent molecules? What are the differences between single, double and triple bonds in terms

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

Electron Configuration and Chemical Periodicity

Electron Configuration and Chemical Periodicity Electron Configuration and Chemical Periodicity The Periodic Table Periodic law (Mendeleev, Meyer, 1870) periodic reoccurrence of similar physical and chemical properties of the elements arranged by increasing

More information

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2. CdS Fe 2 3 Cr 2 3 Co 2 3 Ti 2 Mn 3 (P 4 ) 2 Fe 3+ Co 2+ Ni 2+ Cu 2+ Zn 2+ CHEMISTRY 1000 iron copper Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to 12.3 Cr 2 3 Cu 2 Co

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements Topic 2 2-1 Structure and Bonding Models of Covalent Compounds of p-block Elements Bonding 2-2 Many different approaches to describe bonding: Ionic Bonding: Elements with large electronegativity differences;

More information

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University Lecture Presentation Chapter 24 Transition Metals and Coordination Compounds Sherril Soman Grand Valley State University Gemstones The colors of rubies and emeralds are both due to the presence of Cr 3+

More information

Ch. 9- Molecular Geometry and Bonding Theories

Ch. 9- Molecular Geometry and Bonding Theories Ch. 9- Molecular Geometry and Bonding Theories 9.0 Introduction A. Lewis structures do not show one of the most important aspects of molecules- their overall shapes B. The shape and size of molecules-

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments Nuclear Quadrupole Resonance Spectroscopy Review nuclear quadrupole moments, Q A negative value for Q denotes a distribution of charge that is "football-shaped", i.e. a sphere elongated at the poles; a

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Dr. Fred O. Garces Chemistry 201

Dr. Fred O. Garces Chemistry 201 23.4 400! 500! 600! 800! The relationship between Colors, Metal Complexes and Gemstones Dr. Fred O. Garces Chemistry 201 Miramar College 1 Transition Metal Gems Gemstone owe their color from trace transition-metal

More information

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports I II III IV V VI VII VIII IX X Total This exam consists of several problems. Rough point values

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Molecular structure and bonding

Molecular structure and bonding Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Chapter 7: Chemical Bonding and Molecular Structure

Chapter 7: Chemical Bonding and Molecular Structure Chapter 7: Chemical Bonding and Molecular Structure Ionic Bond Covalent Bond Electronegativity and Bond Polarity Lewis Structures Orbital Overlap Hybrid Orbitals The Shapes of Molecules (VSEPR Model) Molecular

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout

TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout The energy of a covalent bond is largely the energy of resonance of two electrons between two atoms the resonance energy increases in magnitude with

More information

COPYRIGHTED MATERIAL. Inorganic Chemistry Basics. 1.1 Crystal field theory

COPYRIGHTED MATERIAL. Inorganic Chemistry Basics. 1.1 Crystal field theory 1 Inorganic Chemistry Basics No description of the metal-containing compounds that have found their way into medicine would be useful without first providing basic information on the bonding in metal complexes,

More information