Carbon Engineering Nanocarbon Structures

Size: px
Start display at page:

Download "Carbon Engineering Nanocarbon Structures"

Transcription

1 Carbon Engineering Nanocarbon Structures Diamond Fullerenes Carbon nanotubes (CNT) multiwalled (MNT) Diamond Like Carbon (DLC) Graphene Nanospheres

2 Allotropes of Carbon Crystalline Diamond Graphite Carbon Amorphous Coal Charcoal Lamp Black Coke Gas Carbon Plant Animal Wood Charcoal Sugar Charcoal None Charcoal Blood Charcoal Carbon Compounds and Materials The C atom: Atomic number Atomic mass Ground state electron configuration Ionization potential First excited state GS term - First excited state term s 2 2s 2 2p ev 4.18 ev 3 P 1s 2 2s2p 35 S

3 Carbon Compounds and Materials Forms what type of bonds? Valence electrons - Forms strong, directional covalent bonds Valence electrons - 2s 2 2p 2 Energy difference between 2s and 2p orbital is about 4 ev Bonds more easily from first excited state 2s2p 3 Bond energy is about 4 ev per bond Different hybridisation - different bonds Bonding in carbon One of the reasons why carbon is so interesting as an element and as an engineering material is that it has three rather different ways in which it can form bonds. The resulting properties vary widely. Shells & Orbitals Carbon has 6 electrons, so we would expect this electronic configuration

4 Hybridisation sp 3 fullerine Diamond like Carbon CNT sp sp 2 graphite carbynes Carbon Compounds and Materials Carbynes 1 dimensional solid Polymer of sp hybridised C chains Not very stable (high T and P) Reported for rapidly quenched carbons Carbon fibres 2-D solid Macroscopic analog of nanotubes Graphite related material Grown from thermal decomposition of hydrocarbons in gas phase in presence of transition metal catalyst particle Layered structure, but not a perfect structure

5 Carbon Compounds and Materials Diamond 3 dimensional solid Covalent network of sp 3 hybridised C atoms 109.5C bond angle Solid at room temperature High melting point Hard Clear Carbon Compounds and Materials Graphite Sheets of sp 2 hybridised C atoms 120 bond angle 2 dimensional solid Sheets weakly bonded by p orbitals Hexagonal crystal Lattice parameters a = nm, c = Density = 2.26 g/cm 3 C-C bond length nm Semi-metal Wide band gap semiconductor Bandgap = 5.47 ev Graphite

6 Graphene image : Wikipedia Graphene Possible applications: spintronics ultrafast photonic devices (non-linear optical property) sensors for gas molecules (surface area, effect on resistance argument) ribbons of graphene as interconnects? ballistic transistors (low on-off ratio and gain though <40) Feb.2010 IBM researchers switch graphene transistor at 100 GHz!!! transparent conducting electrodes/coatings ultra-capacitor electrodes lithium ion cell anodes

7 Graphene Graphene only one atom thick, optically transparent, chemically inert, and an excellent conductor. Some facts Strength No band gap Ballistic conduction Best at electricity? Transparency Elastic Thermal conductivity Impermeable Strongest material found Wonderful candidate for photovoltaics Absorb phonons at all frequencies Unimpeded flow of electrons at RT Similar to superconductivity but at RT the highest current density (10^6 that of copper) at RT highest intrinsic mobility (100 times more than in silicon) conducts electricity in the limit of no electrons Only absorbs 2.3% Good for solar cells and touch screens 20% elongation Beats diamond Best conductor known most impermeable material ever discovered Even helium atoms cannot squeeze through great material for building highly sensitive gas detectors

8 Where does all this lead? Perfect graphenes consist exclusively of hexagonal cells; pentagonal and heptagonal cells constitute defects. If an isolated pentagonal cell is present, then the plane warps into a cone shape; insertion of 12 pentagons would create a fullerene. Likewise, insertion of an isolated heptagon causes the sheet to become saddle-shaped. Controlled addition of pentagons and heptagons would allow a wide variety of complex shapes to be made, for instance carbon NanoBuds. Single-walled carbon nanotubes may be considered to be graphene cylinders; some have a hemispherical graphene cap (that includes 6 pentagons) at each end. Graphene production Graphene sheets in solid form (e.g. density > 1g/cc) is presently one of the most expensive materials on Earth. Researchers obtained relatively large graphene sheets (eventually, up to 100 micrometers in size and visible through a magnifying glass) by mechanical exfoliation (repeated peeling) of 3D graphite crystals. Another method is to heat silicon carbide to high temperatures (1100 C) to reduce it to graphene.

9 Properties of Graphene The resistivity of the graphene sheet is 10^6 cm, less than the resistivity of silver, the lowest resistivity substance known at room temperature. Graphene is the strongest substance known to man. Its Young's modulus is 0.5 TPa, which differs from bulk graphite. These intrinsic properties could lead to the possibility of utilizing Graphene for NEM systems applications such as pressure sensors, and resonators. Properties of Graphene Engineering professors at Columbia University tested graphene's strength at an atomic level by indenting a perfect sample of the material with a sharp probe made of diamond. Electrons move through graphene with almost no resistance, generating little heat. What's more, graphene is itself a good thermal conductor, allowing heat to dissipate quickly. Graphene and Applications By oxidizing graphene flakes, and then floating them in water, the graphene flakes form a single sheet and bond very powerfully called Graphene oxide paper. Applications: Membranes with controlled permeability Supercapacitors for energy applications. Graphene electronics could be useful for communications and imaging technologies that require ultrafast transistors.

10 How to grow graphene Two ways CVD Growth from a solid C source Typically from methane C 2 H 2 gas growth automatically stops after a single layer of graphene has formed at low P depositing a source of carbon on a metal catalyst substrate using an 800 furnace to grow the graphene across the catalyst The fast and the flexible: Graphene foam batteries charge quickly Capacity on par with existing lithium batteries, but charges in 15 minutes. A graphene FET, or fieldeffect transistor consists of a single ribbon of graphene with one side laid down on a positive electrode, the other laid down on a negative one. A third electrode, or gate, can then modulate the flow of electrons through the ribbon, turning the device into a switch

11 GRAPHENE GOODNESS might include: a flexible video display incorporated into a shower curtain, camouflage clothing, and a virtual-reality theatre in the round. Illustration: James Provost Defects? An artist's conception of a row of intentional molecular defects in a sheet of graphene. The defects effectively create a metal wire in the sheet. This discovery may lead to smaller yet faster computers in the future. Image Credit: Y. Lin, USF Synthetic Diamonds cannot reach actual conditions HPHT technique vs CVD use a catalyst, Ni Co or Fe very high pressure pressure current production, 5 to 10 GPa, usually < 1 carat (200 mg) brown due to nitrogen contamination can be removed using eg Al but growth is slower 6 weeks to grow a 25 carat diamond (5 g)

12 diamond-like coatings decompose a gas, eg CH 4 on a substrate secret projects in USA and Soviet Union in 1950s first reports in 1960 s (on diamond substrates) success on Si and other substrates 1970s explosion of interest in 1980s and onwards 27 KPa, C decompose feedgas methane + hydrogen stream energise with microwave, laser, electric arc, electron beam etc hydrogen etches away any non-diamond carbon not much industrial impact, mostly people in universities! Fullerenes somewhat accidental discovery, found in soot! buckminsterfullerene C60, made in 1985 by Robert Curl, Harold Kroto and Richard Smalley buckyballs any molecule composed entirely of carbon, in form of hollow sphere, ellipsoid or tube image : Wikipedia

13 Buckyballs Buckminsterfullerene, is composed entirely of carbon atoms. Each carbon atom on the cage surface is bonded to three carbon neighbors therefore is sp 2 hybridized. A total of 60 carbon atoms are present forming a sphere consisting of five-carbon and six-carbon atom rings arranged in the same pattern as a modern soccer ball. It is just less than a nanometer in size. As well as C 60, other sized balls have been created. Unlike other forms of carbon, fullerenes may be soluble, as shown in the photograph below. C 60 is pink and C 70 is red in solution. What are fullerenes? 38 Other relatively common clusters are C 70, C 72, C 74, C 76, C 80, C 82 and C 84 (plenty of others, higher or lower than C 60, exist too but less abundant in the experimentally produced mixture fullerene soot). What are fullerenes? (continued ) 39 C 60 C 70

14 Fullerenes how are they made? + - extract in toluene filter to remove impurities HPLC to purify fractions e - He image : Wikipedia Fullerenes applications? Michalitsch 2008 initial hype has died down 2% of all nanotech patent (vs 10% for carbon nanotubes) anti-oxidants, radical scavengers, L Oreal has many patents! but most patents point to use as ingredient on organic electronic devices e.g. photovoltaics, photodiodes absorb visible and UV light strongly drug delivery thermally stable lubricants fuel cell electrodes printable conductive inks electrically conducting polymers Fullerene Properties Symmetric shape lubricant Large surface area catalyst High temperature (~500 o C) High pressure Hollow caging particles Ferromagnet? - polymerized C 60 - up to 220 o C

15 Uses They have many chemical synthetic and pharmaceutical applications. Fascinating electrical and magnetic behaviour including superconductivity and ferromagnetismc 60 is an optical limiter. When light is shone on it, a solution of fullerene-60 turns darker instantly and the more intense the light, the darker it gets, so the intensity of transmitted light is limited to a maximum value. design of safety goggles in intense light situations e.g. people working with laser beams. Fullerenes may used in certain medical applications - nanomedicine The idea is to use the very small fullerene molecules to easily deliver drugs directly into cells in a highly controlled manner. The extremely small diameter of the nanoparticle fullerenes (which act like a cage to hold the drug) allows them to readily pass through cell membranes. Fullerenes are being developed that have excellent lubricating properties (maybe superior to lubrication oils) from reducing friction in moving metal parts of machines from cog wheels to ball bearings and maybe artificial joints after orthopedic operations on hips and knees! Nanocar Shirai, Y. et al. (2005). Nano Lett. 5: 2330 Don t forget poor old graphite!!!!!!

16 References Graphene on March, Graphene Confirmed the World s Stronged Known Material accessed on March, Nanotechnology Reserchers go Ballistic Over Graphene accessed on March 29, 2009 TR10: Graphene Transistors alsections&sc=emerging08&id=20242 accessed on March 29, 2009 Graphene: Charged Up accessed on March 29, 2009 Carbon

Carbon 1 of 19 Boardworks Ltd 2016

Carbon 1 of 19 Boardworks Ltd 2016 Carbon 1 of 19 Boardworks Ltd 2016 Carbon 2 of 19 Boardworks Ltd 2016 The carbon atom 3 of 19 Boardworks Ltd 2016 Carbon is a non-metallic element found in group 4 of the periodic table. It has 6 electrons,

More information

Unit 2: Structure and Bonding

Unit 2: Structure and Bonding Elements vs Compounds Elements are substances made of one kind of atom. There are around 100 elements, which are listed in the Periodic Table. Elements may chemically combine (bond) together in fixed proportions

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products June 17, 2015 October 31, 2014 The webinar will begin at 1pm Eastern Time Perform an audio check by going to Tools > Audio > Audio Setup Wizard Chat Box Chat Box Send

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes.

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes. OCR A GCSE Chemistry Topic 2: Elements, compounds and mixtures Properties of materials Notes C2.3a recall that carbon can form four covalent bonds C2.3b explain that the vast array of natural and synthetic

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

WJEC England GCSE Chemistry. Topic 5: Bonding, structure and properties. Notes. (Content in bold is for Higher Tier only)

WJEC England GCSE Chemistry. Topic 5: Bonding, structure and properties. Notes. (Content in bold is for Higher Tier only) WJEC England GCSE Chemistry Topic 5: Bonding, structure and properties Notes (Content in bold is for Higher Tier only) Chemical bonds Compounds - substances in which 2 or more elements are chemically combined.

More information

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad Ali Ahmadpour Fullerenes Ali Ahmadpour Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad 2014 World of Carbon Materials 2 Fullerenes 1985 Robert F. Curl Jr. Richard

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

Shapes of Molecules & Carbon Allotropes. By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration

Shapes of Molecules & Carbon Allotropes. By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration Shapes of Molecules & Carbon Allotropes By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration Please note that these guides are a collation of my personal

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

TEACHERS GUIDELINES BUCKYBALLS

TEACHERS GUIDELINES BUCKYBALLS NTSE - Nano Technology Science Education Project No: 511787-LLP-1-2010-1-TR-KA3-KA3MP TEACHERS GUIDELINES BUCKYBALLS Contents 1. Foreword for Teachers 2. Introduction 3. Learning Process 4. Conclusion

More information

AQA Chemistry GCSE. Topic 2 - Bonding, Structure and the Properties of Matter. Flashcards.

AQA Chemistry GCSE. Topic 2 - Bonding, Structure and the Properties of Matter. Flashcards. AQA Chemistry GCSE Topic 2 - Bonding, Structure and the Properties of Matter Flashcards What is ionic bonding? What is ionic bonding? Ionic bonding is the electrostatic attraction between positive and

More information

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014 Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date:13-1818 th July 2014 An electrochemical method for the synthesis of single and few layers graphene sheets for high temperature

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

554 Chapter 10 Liquids and Solids

554 Chapter 10 Liquids and Solids 554 Chapter 10 Liquids and Solids above 7376 kpa, CO 2 is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilmenau.de thomas.hannappel@tu-ilmenau.de http:///nanostruk/ Organic semiconductors Small-molecular materials Rubrene Pentacene Polymers PEDOT:PSS

More information

3. Carbon nanostructures

3. Carbon nanostructures 3. Carbon nanostructures [Poole-Owens 5, Wolf 6, own knowledge, Springer handbook ch. 3] Introduction to Nanoscience, 2005 1 3.1. Background: carbon bonding To understand the basic C nanostructures we

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction In our planet carbon forms the basis of all organic molecules which makes it the most important element of life. It is present in over 95% of the known chemical compounds overall

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

4.2.1 Chemical bonds, ionic, covalent and metallic

4.2.1 Chemical bonds, ionic, covalent and metallic 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

4.2 Bonding, structure and the properties of matter. GCSE Chemistry

4.2 Bonding, structure and the properties of matter. GCSE Chemistry 4.2 Bonding, structure and the properties of matter GCSE Chemistry 4.2.1 Chemical bonds, ionic, covalent and metallic There are three types of strong chemical bond ionic, covalent and metallic. There are

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

4.2 Bonding, structure, and the properties of matter

4.2 Bonding, structure, and the properties of matter 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

Molecular Geometry. Introduction

Molecular Geometry. Introduction Molecular Geometry Introduction In this lab, you will explore how the geometry and structure of molecules are influenced by the number of bonding electron pairs and lone pairs of electrons around different

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING

Session V: Graphene. Matteo Bruna CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING Session V: Graphene Matteo Bruna Graphene: Material in the Flatland Graphite Graphene Properties: Thinnest imaginable material Good(and tunable) electrical conductor Strongest ever measured Stiffest known

More information

The Chemistry of Everything Kimberley Waldron. Chapter topics

The Chemistry of Everything Kimberley Waldron. Chapter topics The Chemistry of Everything Kimberley Waldron Chapter 3 Diamonds Carbon allotropes, covalent bonding and the structure of simple organic molecules Richard Jarman, College of DuPage 2007 Pearson Prentice

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 Lattice: Primitive Cubic 1ReO 3 per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0, 0), (0, 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 octahedra share

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

Chapter 12. Solids and Modern Materials

Chapter 12. Solids and Modern Materials Lecture Presentation Chapter 12 Solids and Modern Materials Graphene Thinnest, strongest known material; only one atom thick Conducts heat and electricity Transparent and completely impermeable to all

More information

Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 )

Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 ) Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 ) Undergraduate project in solid state physics Supervisor: Dr. Eugene Katz Dept. of Solar Energy and Environmental Physics

More information

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1 Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples Lecture 21, p 1 Act 1 The Pauli exclusion principle applies to all fermions in all situations (not just to electrons

More information

The Periodic Table and Chemical Reactivity

The Periodic Table and Chemical Reactivity The and Chemical Reactivity Noble gases Less electronegative elements More electronegative elements Then what is electronegativity? The tendency of an atom to attract an electron (or electron density)

More information

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel Chemistry 1000 Lecture 22: Group 14 and Boron Marc R. Roussel Group 14 In this group again, we see a full range of nonmetallic to metallic behavior: C is a nonmetal. Si and Ge are metalloids. Sn and Pb

More information

Molecular Geometry. Introduction

Molecular Geometry. Introduction Molecular Geometry Introduction In this lab, you will explore how the geometry and structure of molecules are influenced by the number of bonding electron pairs and lone pairs of electrons around different

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University Graphene The Search For Two Dimensions Christopher Scott Friedline Arizona State University What Is Graphene? Single atomic layer of graphite arranged in a honeycomb crystal lattice Consists of sp 2 -bonded

More information

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral 7. Carbon Nanotubes 1. Overview: Global status market price 2. Types MWNT / SWNT zig-zag / armchair / chiral 3. Properties electrical others 4. Synthesis arc discharge / laser ablation / CVD 5. Applications

More information

What are Carbon Nanotubes? What are they good for? Why are we interested in them?

What are Carbon Nanotubes? What are they good for? Why are we interested in them? Growth and Properties of Multiwalled Carbon Nanotubes What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? - our vision Where do we stand - our

More information

For more information, please contact: or +1 (302)

For more information, please contact: or +1 (302) Introduction Graphene Raman Analyzer: Carbon Nanomaterials Characterization Dawn Yang and Kristen Frano B&W Tek Carbon nanomaterials constitute a variety of carbon allotropes including graphene, graphene

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

SWCNTs Single Wall Carbon Nanotubes

SWCNTs Single Wall Carbon Nanotubes Carbon Nanotubes - CNTs 1 SWCNTs Single Wall Carbon Nanotubes 2 Carbon Nanotubes - Growth 3 Carbon Nanotubes Building Principles 4 Carbon Nanotubes Building Principle 5 Carbon Nanotubes Building Principle

More information

Carbon nanotubes synthesis. Ing. Eva Košťáková KNT, FT, TUL

Carbon nanotubes synthesis. Ing. Eva Košťáková KNT, FT, TUL Carbon nanotubes synthesis Ing. Eva Košťáková KNT, FT, TUL Basic parameters: -Temperature (500, 1000 C ) -Pressure (normal, vacuum ) -Gas (ambient, inert atmosphere nitrogen, argon ) -Time (duration, time

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

6. Computational Design of Energy-related Materials

6. Computational Design of Energy-related Materials 6. Computational Design of Energy-related Materials Contents 6.1 Atomistic Simulation Methods for Energy Materials 6.2 ab initio design of photovoltaic materials 6.3 Solid Ion Conductors for Fuel Cells

More information

Summerschool 2014 Nanophysics

Summerschool 2014 Nanophysics Summerschool 2014 Nanophysics For numerical applications one may (crudely) assume the following values: Reduced Planck constant hbar=h/2π=10-34 S.I. Electron charge e=10-19 C Boltzmann constant k B =10-23

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light? Bonding in Solids: Metals, Insulators, & CHEM 107 T. Hughbanks Delocalized bonding in Solids Think of a pure solid as a single, very large molecule. Use our bonding pictures to try to understand properties.

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

Fabrication Methods: Chapter 4. Often two methods are typical. Top Down Bottom up. Begins with atoms or molecules. Begins with bulk materials

Fabrication Methods: Chapter 4. Often two methods are typical. Top Down Bottom up. Begins with atoms or molecules. Begins with bulk materials Fabrication Methods: Chapter 4 Often two methods are typical Top Down Bottom up Begins with bulk materials Begins with atoms or molecules Reduced in size to nano By thermal, physical Chemical, electrochemical

More information

CHAPTER 11 Semiconductor Theory and Devices

CHAPTER 11 Semiconductor Theory and Devices CHAPTER 11 Semiconductor Theory and Devices 11.1 Band Theory of Solids 11.2 Semiconductor Theory 11.3 Semiconductor Devices 11.4 Nanotechnology It is evident that many years of research by a great many

More information

Carbon Nanotube: Property, application and ultrafast optical spectroscopy

Carbon Nanotube: Property, application and ultrafast optical spectroscopy Carbon Nanotube: Property, application and ultrafast optical spectroscopy Yijing Fu 1, Qing Yu 1 Institute of Optics, University of Rochester Department of Electrical engineering, University of Rochester

More information

Final Reading Assignment: Travels to the Nanoworld: pages pages pages

Final Reading Assignment: Travels to the Nanoworld: pages pages pages Final Reading Assignment: Travels to the Nanoworld: pages 152-164 pages 201-214 pages 219-227 Bottom-up nanofabrication Can we assemble nanomachines manually? What are the components (parts)? nanoparticles

More information

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1 When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking Lecture 21, p 1 Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples Lecture 21, p 2 Act

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

Chapter 7 Chemical Bonding and Molecular Geometry

Chapter 7 Chemical Bonding and Molecular Geometry Chapter 7 Chemical Bonding and Molecular Geometry 347 Chapter 7 Chemical Bonding and Molecular Geometry Figure 7.1 Nicknamed buckyballs, buckminsterfullerene molecules (C60) contain only carbon atoms.

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Shedding New Light on Materials Science with Raman Imaging

Shedding New Light on Materials Science with Raman Imaging Shedding New Light on Materials Science with Raman Imaging Robert Heintz, Ph.D. Senior Applications Specialist 1 The world leader in serving science Raman Imaging Provides More Information Microscope problems

More information

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and Vice-president, NanoTech Inc. Lexington, Kentucky, USA

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

DocumentToPDF trial version, to remove this mark, please register this software.

DocumentToPDF trial version, to remove this mark, please register this software. PAPER PRESENTATION ON Carbon Nanotube - Based Nonvolatile Random Access Memory AUTHORS M SIVARAM PRASAD Sivaram.443@gmail.com B N V PAVAN KUMAR pavankumar.bnv@gmail.com 1 Carbon Nanotube- Based Nonvolatile

More information

Chemistry 1000 Lecture 24: Group 14 and Boron

Chemistry 1000 Lecture 24: Group 14 and Boron Chemistry 1000 Lecture 24: Group 14 and Boron Marc R. Roussel November 2, 2018 Marc R. Roussel Group 14 and Boron November 2, 2018 1 / 17 Group 14 In this group again, we see a full range of nonmetallic

More information

Chapter 16. Aromatic Compounds

Chapter 16. Aromatic Compounds Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Carbon nanotubes in a nutshell

Carbon nanotubes in a nutshell Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

Revision Checklist : 4.2 Bonding and Structure

Revision Checklist : 4.2 Bonding and Structure Revision Checklist : 4.2 Bonding and Structure States of Matter The three states of matter are solid, liquid and gas. Melting and freezing between solid and liquid take place at the melting point. Boiling

More information

Learning Model Answers Year 11 Double Chemistry

Learning Model Answers Year 11 Double Chemistry 1 Describe ionic bonding Describe covalent bonding Occurs between metals and non-metals. Electrons are transferred. There is an electrostatic force of attraction between oppositely charged ions. Occurs

More information

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M)

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Nano-mechatronics is currently used in broader spectra, ranging from basic applications in robotics, actuators, sensors,

More information

The Young s Modulus of Single-Walled Carbon Nanotubes

The Young s Modulus of Single-Walled Carbon Nanotubes The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating

More information

OTHER FORMS OF CARBON

OTHER FORMS OF CARBON OTHER FORMS OF CARBON Diamond is just one form in which elemental carbon can be found. Other forms include graphite, lonsdaleite and fullerenes. Graphite Graphite is a mineral that, like diamond, is composed

More information

Personalised Learning Checklists AQA Chemistry Paper 1

Personalised Learning Checklists AQA Chemistry Paper 1 AQA Chemistry (8462) from 2016 Topics C4.1 Atomic structure and the periodic table State that everything is made of atoms and recall what they are Describe what elements and compounds are State that elements

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4, Lecture 1 Introduction to Electronic Materials Reading: Pierret 1.1, 1.2, 1.4, 2.1-2.6 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements

More information

TECHNICAL INFORMATION. Quantum Dot

TECHNICAL INFORMATION. Quantum Dot Quantum Dot Quantum Dot is the nano meter sized semiconductor crystal with specific optical properties originates from the phenomenon which can be explained by the quantum chemistry and quantum mechanics.

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

IMG: CORE-Materials Graphene tubes can be added into all three battery parts; anode, cathode and electrolyte. It improves different attributes of the device including speed of charging and discharging

More information

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids Ch 12: Solids and Modern Materials Learning goals and key skills: Classify solids base on bonding/intermolecular forces and understand how difference in bonding relates to physical properties Know the

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Overview of Nanotechnology Applications and Relevant Intellectual Property NANO POWER PATENTS

Overview of Nanotechnology Applications and Relevant Intellectual Property NANO POWER PATENTS Overview of Nanotechnology Applications and Relevant Intellectual Property NANO POWER PATENTS Jeffrey H. Rosedale, Ph.D., J.D. Registered Patent Attorney Partner, Woodcock Washburn, LLP ~ 9000 Issued U.S.

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Structure-Property Correlation [2] Atomic bonding and material properties

Structure-Property Correlation [2] Atomic bonding and material properties MME 297: Lecture 05 Structure-Property Correlation [2] Atomic bonding and material properties Dr. A. K. M. Bazlur Rashid Professor, Department of MME BUET, Dhaka Topics to discuss today... Review of atomic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information