3. Carbon nanostructures

Size: px
Start display at page:

Download "3. Carbon nanostructures"

Transcription

1 3. Carbon nanostructures [Poole-Owens 5, Wolf 6, own knowledge, Springer handbook ch. 3] Introduction to Nanoscience,

2 3.1. Background: carbon bonding To understand the basic C nanostructures we have to recall basics of C bonding, well known from structure of matter and chemistry courses. - C has 4 outer electrons, one s and three p electrons - The energetically preferred arrangements of these electrons is to form so called sp-hybridized electron wavefunctions, which can then form covalent chemical bonds with other atoms. - sp hybridization: 2 bonds, bond angle 180 o. Example: Acetylene C 2 H 2 - sp 2 hybridization: 3 bonds in plane, bond angle 120 o. Example: Ethylene C 2 H 4 - sp 3 hybridization: 4 bonds in 3D, bond angle cos 1 ( 1/3) o. Example: Methane CH 4. Introduction to Nanoscience,

3 - If you draw out the 4 bonds to equal length, then draw planes through the ends, you will get an ideal tetrahedron pyramid shape. The carbon bonds are very strong, typical energy/bond is of the order of 4 ev if they are to other carbon atoms Bulk phases - What happens if we form a solid out of these bonding types? - sp: linear chain of C, possible but can not easily form a solid (would tend to suck in H from the surrounding) - sp 2 : since the bonds are all in same plane, it is natural to assume these all form a single 2D carbon plane. With an angle of 120 o between bonds this forms naturally a honeycomb (chickenwire/open hexagon) network: Introduction to Nanoscience,

4 - This is a called a graphene sheet. - If you stack many of these on top of each other, you get graphite, which is the ground state structure of carbon. Introduction to Nanoscience,

5 The bonding structure of graphite is highly unusual, and key to understanding the remaining properties of graphite. The sp2 bonds in the graphene planes are very strong, and carry almost all of the cohesion of the material. The interatomic separation within the plane is about 1.4 Å. The different graphene planes on the other hand are bonded only by a weak van der Waals interaction which is only about 1/100 as strong as the in-plane covalent bonds. Moreover, the separation between atoms in the planes is about 3.4 Å, i.e. more than twice that of the in-plane atom separation. This highly peculiar bonding configuration leads to numerous interesting properties of graphite, e.g: - A single graphene sheet is very strong, but since the interplane interaction is weak, the sliding friction is very low - The sheets are electrically conductive in the in-plane direction: electrons can move easily in the planar direction - sp 3 : The tetrahedral sp 3 bonding arrangement can be arranged into a 3D solid in the diamond Introduction to Nanoscience,

6 crystal structure, which looks like follows (both figures are the same structure, just from different viewpoints): - The cohesive energy of diamond is almost as large as that of graphite, for both the cohesive energy per atom is about 7.4 ev/atom. This is among the highest of any element. Introduction to Nanoscience,

7 Because the sp 2 and sp 3 solids have almost the same energy, it is possible to form amorphous networks of these bonds which lead to amorphous carbon structures with almost the same cohesion as the crystalline forms Here is a sample structure (red atoms sp 3 bonded, blue atoms sp 2 ): [ knordlun/carbon/] Introduction to Nanoscience,

8 - Approaches diamond if strength of H-free and has a high fraction of sp 3 bonds Unusual bonding types The ideal bonding types are by no means the only possible ones. From molecular structures it is Introduction to Nanoscience,

9 well known that it is possible to form quite stable C bonding types which do no have exactly the bonding angles described above. - 5-fold member rings of C (e.g. in molecules with N) - cubane: C 8 H 8 : - carbon dodecahedron C 20 H 20 : Introduction to Nanoscience,

10 3.2. Fullerenes History and structure [ and Poole-Owens] Even though the ball-like C 20 H 20 was already found in 1983, it still came as a big surprise when Harold Kroto, James Heath, Sean O Brien, Robert Curl, and Richard Smalley in 1985 (Nature 318, 162) found the C 60 molecule, which consists of pure carbon and is almost perfectly spherical. Soon after hearing it was discussed in the British House of Lords as follows. The answers of Lord Reay are actually quite accurate, and do answer some of the basic questions on fullerenes. Hearing in the House of Lords with the Parliamentary Under-Secretary of State, Department of Trade and Industry, Lord Reay (Excerpt) Baroness Seear: My Lords, forgive my ignorance, but can the noble Lord say whether this thing is animal, vegetable or mineral? Lord Reay: My Lords, I am glad the noble Baroness asked that question. I can say that Buckminsterfullerene is a molecule composed of 60 carbon atoms known to chemists as C60. Those atoms form a closed cage made up of 12 pentagons and 20 hexagons that fit together like the surface of a football. Introduction to Nanoscience,

11 Lord Renton: My Lords, is it the shape of a rugger football or a soccer football? Lord Reay: My Lords, I believe it is the shape of a soccer football. Professor Kroto, whose group played a significant part in the development of Buckminsterfullerenes, described it as bearing the same relationship to a football as a football does to the earth. In other words, it is an extremely small molecule. Lord Campbell of Alloway: My Lords, what does it do? Lord Reay: My Lords, it is thought that it may have several possible uses; for batteries, as a lubricant or as a semi-conductor. All that is speculation. It may turn out to have no uses at all. Lord Russell: My Lords, can one say that it does nothing in particular and does it very well? Lord Reay: That may well be the case. Lord Callaghan of Cardiff: My Lords, where does the name come from? Lord Reay: My Lords, it is named after the American engineer and architect, Buckminster Fuller, who developed the geodesic dome, which bears a close resemblance to the structure of the molecule. I.e. it really has the shape of a traditional football, containing 5- and 6-membered C rings. Introduction to Nanoscience,

12 This molecule is exceptionally stable and strong due to its high symmetry, and the fact that the C bonds are still pretty close to the ideal sp 2 bonding arrangement. - Initially the names bucky ball and buckminsterfullerene were used a lot, but nowadays most people use just fullerene. - As in graphene, the bonding is primarily in strong covalent bonds - Hence there is no H-termination of the C s at the surface, which makes it differ significantly from the previously known C 20 H 20. But C 60 is by no means the only fullerene, in fact there is a whole spectrum of cage-like C molecules: Introduction to Nanoscience,

13 - Not all of these are spherical, and the smallest ones may not even be closed Manufacturing fullerenes The initial manufacturing of fullerenes was pretty much an accident. The authors were interested of peculiar features of absorption in interstellar dust, and used high-power laser to produce hot vapors of carbon to mimic the conditions in interstellar space. In the course of this research they found the Introduction to Nanoscience,

14 fullerene (they actually failed to answer the question they first set out to study, but since they got the Nobel prize for the fullerene this probably does not bother them too much). - Later on people realized that fullerenes are regularly present in amounts of a few % in ordinary carbon soot - no-one had just thought of looking for it there... Nowadays fullerenes can be made in a multitude of ways, and also mass-produced very cheaply. Here are the key points from a recipe on how to make them from Sussex university [ - Essentially a hot carbon vapor/plasma is formed where the clusters condense in a He atmosphere. Akin to gas phase condensation of nanoparticles Describe growth steps: C20 precursor, bowl-shaped... Introduction to Nanoscience,

15 Pump down the system and introduce Helium gas into the chamber. Repeat (purge). Finally fill the bell-jar with about 100 Torr of Helium. Connect up the welding kit power supply. Turn the on / off switch on the supply to the on position for 10 to 15 seconds. Afterwards there should be plenty of black soot like material produced inside the bell-jar. After a 5-10 min cool down period fill the bell-jar to atmospheric pressure. Take the bell-jar off and scrape the glass surfaces clean, collect all the material. Believe it or not, 10 % of the soot should be made up of C 60. Place as much of the collected soots as you can into a small flask. Add ml of toluene and stopper the flask. Shake gently. [The colour changes] You have just extracted the fullerenes from the soot. The coloured solution is due to a mixture of C 60, C 70 and larger fullerene cage molecules. Introduction to Nanoscience,

16 Strength of single fullerene The elastic strength of a single fullerene is enormous due to the strength of the C-C bonds - An experimental bulk modulus of 1 TPa has been reported for fullerenes [J Expt. and Theor. Physics 87 (1998) p.741-6] - This can be compered with the bulk modulus of diamond, 442 GPa. - But strength of a single fullerence does not mean it is possible to manufacture a solid of them with the same strength! Fullerene solids When fullerenes are allowed to condense, they do form a solid. - Since they are spherical, they form a solid corresponding to close packing of hard spheres: a face-centered cubic (FCC) lattice. - Same structure as e.g. noble metals, but now spheres are fullerenes instead of single atoms. Introduction to Nanoscience,

17 - The bonding between the fullerenes is now, however, essentially the same weak van der Waals bonding as that between sheets of graphene. - Hence the fullerene crystal is actually quite weak. Its bulk modulus is only about 14 GPa [PRL 68 (1992) 2046] and melting/evaporation temperature some 300 o C [?]. These are very low values compared to those of graphite and diamond. - But at the melting temperature the fullerenes themselves stay intact, it is only the crystal of them which melts Superconducting C 60 films One of the interesting aspects of C 60 crystals is that they can be made superconducting by inserting alkali metals into them. 26% is free space - Impurity atoms fit well into the empty space between the fullerenes. They are intercalated in there. - Prototypical example: K 3 C 60 Introduction to Nanoscience,

18 Looks like BCC but note elongation, probably 4 FCC neighbours are left undrawn... - The K atoms make the crystal electrically conducting - K act as donors by giving electrons to the C 60 : K + and C Moreover, the crystal becomes superconducting below about 18.4 K: Introduction to Nanoscience,

19 - Other kinds of C 60 doping has produced superconducting C materials with even higher transition temperatures: Rubidium-thallium doped C 60 has been observed to have T c = 45 K [Z. Iqbal et al., Science, 8 November 1991; E. Dagatto, Science 239, 2410 (2001)]. (- There was even a report of 117 K by Schön et al, which is now however discredited) - This is a lot more than any traditional metal superconductor, and comparable to those of the high-tc superconducting oxides. Mechanism a mystery: if you want the Nobel prize just solve it... Introduction to Nanoscience,

20 Fullerene chemistry - Despite its stability, it is possible to form molecules of fullerenes - The discovery of C 60 has stimulated a lot of activity in Fullerene chemistry. - By 1997 about 9000 Fullerene compounds were known Endohedral fullerenes [ chem.html] - Inside of fullerenes is empty - Natural idea to insert atoms or molecules there - Such a material is called an endohedral fullerene - Enables interesting basic science studies of electronic structure of the enclosed molecules - May have optoelectronic and medical applications - Example: N endohedral to C 60 : Introduction to Nanoscience,

21 Introduction to Nanoscience,

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

OTHER FORMS OF CARBON

OTHER FORMS OF CARBON OTHER FORMS OF CARBON Diamond is just one form in which elemental carbon can be found. Other forms include graphite, lonsdaleite and fullerenes. Graphite Graphite is a mineral that, like diamond, is composed

More information

Molecular Geometry. Introduction

Molecular Geometry. Introduction Molecular Geometry Introduction In this lab, you will explore how the geometry and structure of molecules are influenced by the number of bonding electron pairs and lone pairs of electrons around different

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 )

Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 ) Growth of fullerene thin films and oxygen diffusion in fullerites (C 60 and C 70 ) Undergraduate project in solid state physics Supervisor: Dr. Eugene Katz Dept. of Solar Energy and Environmental Physics

More information

Nano-1. Nanoscience I: Hard nanostructures. Kai Nordlund Faculty of Science Department of Physics Division of Materials Physics

Nano-1. Nanoscience I: Hard nanostructures. Kai Nordlund Faculty of Science Department of Physics Division of Materials Physics Nanoscience I: Hard nanostructures Kai Nordlund 10.10.2010 Faculty of Science Department of Physics Division of Materials Physics Contents Carbon nanostructures Background Graphene Fullerenes Nanotubes

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

SHAPES OF MOLECULES AND IONS

SHAPES OF MOLECULES AND IONS SAPES MLECULES AND INS The shape of a molecule depends upon its electronic structure. It is the outer shell or valence shell electrons which are responsible for forming bonds and it is the arrangement

More information

Molecular Geometry. Introduction

Molecular Geometry. Introduction Molecular Geometry Introduction In this lab, you will explore how the geometry and structure of molecules are influenced by the number of bonding electron pairs and lone pairs of electrons around different

More information

Carbon 1 of 19 Boardworks Ltd 2016

Carbon 1 of 19 Boardworks Ltd 2016 Carbon 1 of 19 Boardworks Ltd 2016 Carbon 2 of 19 Boardworks Ltd 2016 The carbon atom 3 of 19 Boardworks Ltd 2016 Carbon is a non-metallic element found in group 4 of the periodic table. It has 6 electrons,

More information

Sussex Fullerene Group. University of Sussex

Sussex Fullerene Group. University of Sussex 1 of 6 5/14/2013 7:08 AM 60 Sussex Fullerene Group University of Sussex Workshop contents: Making Fullerenes - The Carbon Arc Purifying Fullerenes - Chromatography The story of the discovery of C60 and

More information

4.2.1 Chemical bonds, ionic, covalent and metallic

4.2.1 Chemical bonds, ionic, covalent and metallic 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Index. C 60 buckminsterfullerene 87 C 60 buckminsterfullerene formation process

Index. C 60 buckminsterfullerene 87 C 60 buckminsterfullerene formation process Index acetone 64 aluminum 64 65 arc-discharged carbon 25 argon ion laser 43 aromaticity 2D 99 3D 89 90, 98 planar 89 spherical 90 astronomy 113, 125, 127, 131 atoms chlorine 107 108 titanium 161 162 benzene

More information

Unit 2: Structure and Bonding

Unit 2: Structure and Bonding Elements vs Compounds Elements are substances made of one kind of atom. There are around 100 elements, which are listed in the Periodic Table. Elements may chemically combine (bond) together in fixed proportions

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes.

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes. OCR A GCSE Chemistry Topic 2: Elements, compounds and mixtures Properties of materials Notes C2.3a recall that carbon can form four covalent bonds C2.3b explain that the vast array of natural and synthetic

More information

4.2 Bonding, structure, and the properties of matter

4.2 Bonding, structure, and the properties of matter 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

The Chemistry of Everything Kimberley Waldron. Chapter topics

The Chemistry of Everything Kimberley Waldron. Chapter topics The Chemistry of Everything Kimberley Waldron Chapter 3 Diamonds Carbon allotropes, covalent bonding and the structure of simple organic molecules Richard Jarman, College of DuPage 2007 Pearson Prentice

More information

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

AQA Chemistry GCSE. Topic 2 - Bonding, Structure and the Properties of Matter. Flashcards.

AQA Chemistry GCSE. Topic 2 - Bonding, Structure and the Properties of Matter. Flashcards. AQA Chemistry GCSE Topic 2 - Bonding, Structure and the Properties of Matter Flashcards What is ionic bonding? What is ionic bonding? Ionic bonding is the electrostatic attraction between positive and

More information

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has?

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has? Bonding in Solids Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with

More information

There are four types of solid:

There are four types of solid: Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with very high melting

More information

Structure of Crystalline Solids

Structure of Crystalline Solids Structure of Crystalline Solids Solids- Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon Network-Covalent solid Molecular solid Does not flow

More information

Final Reading Assignment: Travels to the Nanoworld: pages pages pages

Final Reading Assignment: Travels to the Nanoworld: pages pages pages Final Reading Assignment: Travels to the Nanoworld: pages 152-164 pages 201-214 pages 219-227 Bottom-up nanofabrication Can we assemble nanomachines manually? What are the components (parts)? nanoparticles

More information

Structure and Types of Solids

Structure and Types of Solids Properties, type and strength of bonding: Properties could be physical or chemical Structure and Types of Solids Physical Properties M.p., b.p., latent heat, solubility in water and other solvents, conductivity

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 Lattice: Primitive Cubic 1ReO 3 per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0, 0), (0, 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 octahedra share

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Shapes of Molecules & Carbon Allotropes. By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration

Shapes of Molecules & Carbon Allotropes. By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration Shapes of Molecules & Carbon Allotropes By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration Please note that these guides are a collation of my personal

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 22, November 16, 2016 Graphite, graphene, bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Buckyballs. ChemMatters December 1992 Page 7

Buckyballs. ChemMatters December 1992 Page 7 CLICK HERE FOR MAGAZINE PAGES ChemMatters December 1992 Page 7 Copyright 1992, American Chemical Society Buckyballs by Clair Wood Buckyballs the soccer ball-shaped molecules that have taken the scientific

More information

Solid State. Subtopics

Solid State. Subtopics 01 Solid State Chapter 01: Solid State Subtopics 1.0 Introduction 1.1 Classification of solids 1.2 Classification of crystalline solids 1.3 Unit cell, two and three dimensional lattices and number of atoms

More information

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids

Crystalline Solids have atoms arranged in an orderly repeating pattern. Amorphous Solids lack the order found in crystalline solids Ch 12: Solids and Modern Materials Learning goals and key skills: Classify solids base on bonding/intermolecular forces and understand how difference in bonding relates to physical properties Know the

More information

Chemistry: Synthesis and Modification Carbon-based Materials

Chemistry: Synthesis and Modification Carbon-based Materials Chemistry: Synthesis and Modification Carbon-based Materials The chemists are a strange class of mortals, impelled by an almost insane impulse to seek their pleasures amid smoke and vapour, soot and flame,

More information

Chemistry States of Matter Lesson 9 Lesson Plan David V. Fansler

Chemistry States of Matter Lesson 9 Lesson Plan David V. Fansler Chemistry States of Matter Lesson 9 Lesson Plan David V. Fansler States of Matter The Nature of Gases Objectives: Describe the motion of gas particles according to the kinetic theory; Interpret gas pressure

More information

Stability of Na metal clusters inside C 84

Stability of Na metal clusters inside C 84 Trade Science Inc. January 009 Volume 5 Issue MSAIJ, 5(), 009 [6-67] ABSTRACT Stability of Na metal clusters inside C 84 Ranjan Kumar *, Harkiran Kaur Deptt. of Physics, Panjab University, Chandigarh,

More information

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure.

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Pressure - the vapor pressure at the critical temperature. Properties

More information

Chapter 7 Chemical Bonding and Molecular Geometry

Chapter 7 Chemical Bonding and Molecular Geometry Chapter 7 Chemical Bonding and Molecular Geometry 347 Chapter 7 Chemical Bonding and Molecular Geometry Figure 7.1 Nicknamed buckyballs, buckminsterfullerene molecules (C60) contain only carbon atoms.

More information

Properties of Liquids and Solids. Vaporization of Liquids. Vaporization of Liquids. Aims:

Properties of Liquids and Solids. Vaporization of Liquids. Vaporization of Liquids. Aims: Properties of Liquids and Solids Petrucci, Harwood and Herring: Chapter 13 Aims: To use the ideas of intermolecular forces to: Explain the properties of liquids using intermolecular forces Understand the

More information

Properties of Liquids and Solids. Vaporization of Liquids

Properties of Liquids and Solids. Vaporization of Liquids Properties of Liquids and Solids Petrucci, Harwood and Herring: Chapter 13 Aims: To use the ideas of intermolecular forces to: Explain the properties of liquids using intermolecular forces Understand the

More information

Carbon Engineering Nanocarbon Structures

Carbon Engineering Nanocarbon Structures Carbon Engineering Nanocarbon Structures Diamond Fullerenes Carbon nanotubes (CNT) multiwalled (MNT) Diamond Like Carbon (DLC) Graphene Nanospheres Allotropes of Carbon Crystalline Diamond Graphite Carbon

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel

Chemistry 1000 Lecture 22: Group 14 and Boron. Marc R. Roussel Chemistry 1000 Lecture 22: Group 14 and Boron Marc R. Roussel Group 14 In this group again, we see a full range of nonmetallic to metallic behavior: C is a nonmetal. Si and Ge are metalloids. Sn and Pb

More information

CHEM. Ch. 12 Notes ~ STATES OF MATTER

CHEM. Ch. 12 Notes ~ STATES OF MATTER CHEM. Ch. 12 Notes ~ STATES OF MATTER NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 12.1 topics States of Matter: SOLID, LIQUID, GAS, PLASMA I. Kinetic Theory

More information

C2 Quick Revision Questions. C2 for AQA GCSE examination 2018 onwards

C2 Quick Revision Questions. C2 for AQA GCSE examination 2018 onwards C2 Quick Revision Questions Question 1... of 50 What are the 3 main types of chemical bond? Answer 1... of 50 Ionic, Covalent & Metallic. Question 2... of 50 What force bonds atoms in an ionic bond? Answer

More information

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion. UNIT-1 SOLID STATE 1 MARK QUESTIONS Q. 1. Name a liquefied metal which expands on solidification. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

TEACHERS GUIDELINES BUCKYBALLS

TEACHERS GUIDELINES BUCKYBALLS NTSE - Nano Technology Science Education Project No: 511787-LLP-1-2010-1-TR-KA3-KA3MP TEACHERS GUIDELINES BUCKYBALLS Contents 1. Foreword for Teachers 2. Introduction 3. Learning Process 4. Conclusion

More information

Solids / Crystal Structure

Solids / Crystal Structure The first crystal analysis proved that in the typical inorganic salt, NaCl, there is no molecular grouping. The inference that the structure consists of alternate ions of sodium and chlorine was an obvious

More information

Chapter 12. Solids and Modern Materials

Chapter 12. Solids and Modern Materials Lecture Presentation Chapter 12 Solids and Modern Materials Graphene Thinnest, strongest known material; only one atom thick Conducts heat and electricity Transparent and completely impermeable to all

More information

Chapter 11: Intermolecular Forces. Lecture Outline

Chapter 11: Intermolecular Forces. Lecture Outline Intermolecular Forces, Liquids, and Solids 1 Chapter 11: Intermolecular Forces Lecture Outline 11.1 A Molecular Comparison of Gases, Liquids and Solids Physical properties of substances are understood

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

M1.(a) (i) giant lattice allow each carbon atom is joined to three others 1

M1.(a) (i) giant lattice allow each carbon atom is joined to three others 1 M.(a) (i) giant lattice allow each carbon atom is joined to three others atoms in graphene are covalently bonded max. 2 marks if any reference to wrong type of bonding and covalent bonds are strong or

More information

Ceramics. Ceramic Materials. Ceramics / Introduction. Classifications of Ceramics

Ceramics. Ceramic Materials. Ceramics / Introduction. Classifications of Ceramics Ceramic Materials Outline Structure and Properties of Ceramics Introduction Classifications of Ceramics Crystal Structures Silicate Ceramics Ceramic Phase Diagram Carbon based materials Why study ceramic

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Bonding and structure of ceramic materials as compared with metals Chapter 12-1 Atomic Bonding in Ceramics Bonding: -- Can be ionic

More information

Crystalline Solids. Amorphous Solids

Crystalline Solids. Amorphous Solids Crystal Structure Crystalline Solids Possess rigid and long-range order; atoms, molecules, or ions occupy specific positions the tendency is to maximize attractive forces Amorphous Solids lack long-range

More information

Chemistry 1000 Lecture 24: Group 14 and Boron

Chemistry 1000 Lecture 24: Group 14 and Boron Chemistry 1000 Lecture 24: Group 14 and Boron Marc R. Roussel November 2, 2018 Marc R. Roussel Group 14 and Boron November 2, 2018 1 / 17 Group 14 In this group again, we see a full range of nonmetallic

More information

WJEC England GCSE Chemistry. Topic 5: Bonding, structure and properties. Notes. (Content in bold is for Higher Tier only)

WJEC England GCSE Chemistry. Topic 5: Bonding, structure and properties. Notes. (Content in bold is for Higher Tier only) WJEC England GCSE Chemistry Topic 5: Bonding, structure and properties Notes (Content in bold is for Higher Tier only) Chemical bonds Compounds - substances in which 2 or more elements are chemically combined.

More information

Chapter 10: Liquids, Solids, and Phase Changes

Chapter 10: Liquids, Solids, and Phase Changes Chapter 10: Liquids, Solids, and Phase Changes In-chapter exercises: 10.1 10.6, 10.11; End-of-chapter Problems: 10.26, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36, 10.39, 10.40, 10.42, 10.44, 10.45, 10.66,

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Important Engineering Materials

Important Engineering Materials Important Engineering Materials i) Nanomaterials: Structure, properties, applications of CNTs, Fullerenes, Graphite. ii) Liquid Crystals: Definition, classification, properties with applications. Nanomaterials:

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products June 17, 2015 October 31, 2014 The webinar will begin at 1pm Eastern Time Perform an audio check by going to Tools > Audio > Audio Setup Wizard Chat Box Chat Box Send

More information

554 Chapter 10 Liquids and Solids

554 Chapter 10 Liquids and Solids 554 Chapter 10 Liquids and Solids above 7376 kpa, CO 2 is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively

More information

So far we have followed the book chapter by chapter: it is now (unfortunately) time where we have to skip ahead

So far we have followed the book chapter by chapter: it is now (unfortunately) time where we have to skip ahead So far we have followed the book chapter by chapter: it is now (unfortunately) time where we have to skip ahead you will cover the chapters/material that we miss later in the program but for now you don't

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Chapter 16 Aromatic Compounds. Discovery of Benzene

Chapter 16 Aromatic Compounds. Discovery of Benzene Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C: ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

The Golden Section, the Pentagon and the Dodecahedron

The Golden Section, the Pentagon and the Dodecahedron The Golden Section, the Pentagon and the Dodecahedron C. Godsalve email:seagods@hotmail.com July, 009 Contents Introduction The Golden Ratio 3 The Pentagon 3 4 The Dodecahedron 8 A few more details 4 Introduction

More information

Chemical bonding & structure

Chemical bonding & structure Chemical bonding & structure Ionic bonding and structure Covalent bonding Covalent structures Intermolecular forces Metallic bonding Ms. Thompson - SL Chemistry Wooster High School Topic 4.3 Covalent structures

More information

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113 Chapter 10 Liquids and Solids Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, 104-106, 113 Recall: Intermolecular vs. Intramolecular Forces Intramolecular: bonds between

More information

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad Ali Ahmadpour Fullerenes Ali Ahmadpour Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad 2014 World of Carbon Materials 2 Fullerenes 1985 Robert F. Curl Jr. Richard

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

The Periodic Table and Chemical Reactivity

The Periodic Table and Chemical Reactivity The and Chemical Reactivity Noble gases Less electronegative elements More electronegative elements Then what is electronegativity? The tendency of an atom to attract an electron (or electron density)

More information

More Bonding. Metals

More Bonding. Metals Yet More Bonding Chemistry, Life, the Universe & Everything Cooper & Klymkowsky Shiny Conduct electricity Malleable Metals May be colored (gold, copper, etc) silver is colorless How does bonding in metals

More information

The OTHER TWO states of matter

The OTHER TWO states of matter ` The OTHER TWO states of matter LIQUIDS A decrease in the average kinetic energy of gas particles causes the temperature to decrease. As it cools, the particles tend to move more slowly if they slow down

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook CHAPTER 13 States of Matter States that the tiny particles in all forms of matter are in constant motion. Kinetic = motion A gas is composed of particles, usually molecules or atoms, with negligible volume

More information

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n. University of Groningen Fullerenes for organic electronics Kooistra, Floris Berend IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

How minerals form. September 20, Mineral families and formation.notebook

How minerals form. September 20, Mineral families and formation.notebook How minerals form Minerals form (primarily) in 3 different ways: 1. From the cooling and hardening of magma and lava Oct 20 7:06 AM Whether the rock melt cools quickly or slowly, ions and elements within

More information

Part 6- Chemistry Paper 1 Bonding Application Questions Triple Science

Part 6- Chemistry Paper 1 Bonding Application Questions Triple Science Part 6- Chemistry Paper 1 Bonding Application Questions Triple Science How bonding and structure are related to the properties of substances A simple model of the atom, symbols, relative atomic mass, electronic

More information

Lecture 4! ü Review on atom/ion size! ü Crystal structure (Chap 4 of Nesseʼs book)!

Lecture 4! ü Review on atom/ion size! ü Crystal structure (Chap 4 of Nesseʼs book)! Lecture 4! ü Review on atom/ion size! ü Crystal structure (Chap 4 of Nesseʼs book)! 15 C 4+ 42 Si 4+ Size of atoms! Hefferan and O Brien, 2010; Earth Materials Force balance! Crystal structure (Chap. 4)!

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

Bonding SL/HL Network/Metallic HL Topics Hybrid Orbitals. IB Chemistry Topic 04 - Bonding

Bonding SL/HL Network/Metallic HL Topics Hybrid Orbitals. IB Chemistry Topic 04 - Bonding Bonding SL/HL Network/Metallic HL Topics Hybrid Orbitals IB Chemistry Topic 04 - Bonding Bond Type Properties Hydrocarbon C 2 H 6 Ethane C 2 H 4 Ethene C 2 H 2 Ethyne Structural Formula H H H H H H H H

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

1. Introduction to Clusters

1. Introduction to Clusters 1. Introduction to Clusters 1.1 The Field of Clusters Atomic clusters are aggregates of atoms containing from few to a few thousand atoms. Due to their small size, the properties of the clusters are, in

More information

Gases and States of Matter: Unit 8

Gases and States of Matter: Unit 8 Gases and States of Matter: Unit 8 States of Matter There are three states (also called phases) of matter. The picture represents the same chemical substance, just in different states. There are three

More information

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018 Chemistry Day 5 Friday, August 31 st Tuesday, September 4 th, 2018 Do-Now Title: BrainPOP: States of Matter 1. Write down today s FLT 2. List two examples of gases 3. List two examples of things that are

More information

Shapes of Molecules VSEPR

Shapes of Molecules VSEPR Shapes of Molecules In this section we will use Lewis structures as an introduction to the shapes of molecules. The key concepts are: Electron pairs repel each other. Electron pairs assume orientations

More information