Important Engineering Materials

Size: px
Start display at page:

Download "Important Engineering Materials"

Transcription

1

2 Important Engineering Materials i) Nanomaterials: Structure, properties, applications of CNTs, Fullerenes, Graphite. ii) Liquid Crystals: Definition, classification, properties with applications. Nanomaterials: Materials whose sizes of individual building blocks are less than 100 nm, at least in one dimension are called nanomaterials. Creation of nanostructures, functional materials, devices and components through control of matter on the nanometer length scale is nanotechnology. Nanomaterials are defined as a set of substances where at least one dimension is < 100 nm. 1 nanometer = 10-9 meter; 1 billionth of a meter which is analogous to 10,000X smaller than the diameter of human hair. Nanomaterials are of interest because at this scale unique optical, magnetic, electrical, and other properties emerge. Three types of Nanomaterials are described: a) Zero dimensional: metallic, semiconducting and ceramic nanoparticles (Spheres and Clusters); b) One dimensional: nanowires, nanotubes, nanorods; c) Two dimensional: Thin films (plates, and networks); and 4) 3-D: Nanomaterials. Structural Features of nanomaterials: Nanomaterials have structural features in between of those of atoms and bulk materials. While most microstructured materials have similar properties to the corresponding bulk materials, the properties of materials with nanometer dimensions are significantly different from those of atoms and bulk materials. This is mainly due to the nanometer size of materials which render them: (i) large fraction of surface atoms; (ii) high surface energy; (iii) spatial confinement; and (iv) reduced imperfections Novel applications of nanomaterials rose from these properties as shown in the table below: Properties at nanoscale Higher surface to volume ratio with enhanced reactivity Increased hardness with decreasing grain size Narrower band gap with decreasing grain size Light in weight with great strength Applications Catalysis, solar cells & batteries Hard coatings & thin protection layers Electronics Sports goods 2) Structural features and properties of Nanomaterials (CNTs, Graphite, Fullerenes) A) Carbon nanotubes (CNTs): In 2004, Geim, Novoselov and co-workers delicately cleaved a sample of graphite with sticky tape. They produced something that was long considered impossible: a sheet of crystalline carbon just one atom thick, known as graphene. Single-layered honeycomb structure of graphene makes it the mother of all carbon-based systems: Graphite in our pencils is simply a stack of graphene layers; Carbon nanotubes are made of rolled-up sheets of graphene; and buckminsterfullerene molecules, or buckyballs, are nanometer size spheres of wrapped-up graphene. Honeycomb atomic structure 1

3 of graphene cause electrons moving in the material to behave as if they have no mass. Electrons in graphene move at an effective speed of light 300 times less than the speed of light in a vacuum. Electrons in graphene can travel large distances without being scattered, making it a promising material for fast electronic components. CNTs are rolled up crystalline sheets of graphene thousand times thinner than a human hair. Their large length (up to several microns) and small diameter (a few nanometers) result in a large aspect ratio. They can be seen as one-dimensional form of fullerenes. Therefore, these materials are expected to possess additional interesting electronic, mechanical and molecular properties. Single Walled Nanotubes (SWCNTs) are long wrapped graphene sheets. These nanotubes generally have a length to diameter ratio of 1000 so they can be considered as nearly onedimensional structures. Multi Walled Nanotubes (MWCNTs) consists of concentric SWCNTs with different diameters with an interlayer spacing of 3.4 A 0. Length and diameter of these structures differ a lot from those of SWCNTs and their properties are also very different. Properties of Carbon Nanotubes: 1. Atomic arrangement determines mechanical and electronic properties of CNTs. 2. They have outstanding electrical properties surpassing standard conductors & semiconductors 3. Tubes with helical twists in their structures have semiconducting properties; achiral tubes are metallic. 2

4 4. CNTs have structural & electronic defects which allow SWCNTs to act as transistors. Conductivity measurements on aligned MWCNTs show that the material behaves as a nanoconductor. 5. They are so strong that it can act as satellite tethers & space elevators. 6. Exhibit superconductivity below 20 0 C. CNTs are extraordinarily flexible & do not break upon mechanical deformation. B) Graphite: Graphite is a stack of graphene layers. Graphite consists of network of hexagonal carbon rings arranged over each other held by Vander Waals forces separated by 3.35 Å, C-C distance is 1.42 Å. Each sp 2 hybridized carbon atom is linked by covalent bonds to three other carbon atoms. Distance from fourth carbon is more resulting in flexible fourth valency, thereby weakening the bonds between different layers. This results in soft and lubricating property of graphite. Properties: High electrical conductivity, High strength, chemically stable, High thermal conductivity, High resistance to thermal shock, Good lubricant. Applications: i) It is used in heating elements for electrical furnaces high temperature refractories and insulators, in chemical reactor vessels. ii) It can be used as electrode for arc welding, in metallurgical crucibles, in casting moulds for metal alloys and ceramics. iii) It is used for electrical contacts and resistors. iv) It can be used as electrodes in batteries and in air purification devices. C) Fullerenes: Allotrope of carbon, which is conceptually graphene sheet rolled into spheres called as fullerene. It is named after architect Buckminster Fuller resembling geodesic domes, also known as bucky ball. It consists of perfect hollow spherical cages of 60 carbon atoms arranged in interlocking 20 hexagons & 12 pentagons. Number of hexagonal faces can vary. Each carbon is bounded to their other carbons in pseudo-spherical arrangement consisting of alternating pentagonal and hexagonal rings similar to a soccer ball as shown in the figure. Properties: Fullerenes are extremely strong, able to resist great pressures-- they bounce back to original shape after subjected to extreme pressures (< 3000 Atm). Fullerenes do not bond to each other chemically rather they stick together thro' weaker Vander-Waals forces. They exhibit superconductivity & ferromagnetic-- Intercalation of alkali metal atoms leads to its metallic behavior. They are aromatic molecules which are stable yet not totally unreactive. Fullerenes are sparingly soluble in most solvents giving marvellous colors. 3

5 Applications: i) Fullerenes & related substances have shown considerable potential as catalysts e.g, Conversion of ethylbenzene into styrene. ii) Fullerene can be used in LEDs in different electronic equipments and computing. iii) It is used as rocket fuel. iv) Due to its non-reactive behavior, radioactive material can be introduced inside, thus avoiding dangerous leaks. v) Ultra-thin layers of fullerenes act as data storage devices in flexible organic solar cells, photodetectors for X-rays. Applications of Nanomaterials in Medicine and Catalysis Medicine: 1. Nanorobots carry out a very specific function and are just several nanometers wide. Nanorobots can also be used to prevent heart-attacks. 2. Quantum dots are nanomaterials that glow brightly when illuminated by UV light. Quantum dots bind themselves to proteins unique to cancer cells, literally bringing tumors to light and killing it. 3. Ferromagnetic nanoparticles have been developed and optimized for targeted delivery of therapeutic drugs, genes or radionuclides. Catalysis: Nanomaterial-based catalysts are heterogeneous catalysts. Nanomaterials are more effective than conventional catalysts due to their extremely small size (10-80 nm) thereby having a huge surface area-to-volume ratio. 1. One dimensional nanomaterials like nanowires, nanotubes, nanorods and nanocubes exhibit excellent catalytic activity. 2. Nano-TiO 2 in photocatalysis, the one containing more defects exhibits higher photocatalytic activity. Liquid Crystals: The study of liquid crystals began in 1888, when an Austrian botanist named Friedrich Reinitzer observed that the material known as cholesteryl benzoate had two distinct melting points. He increased the temperature of a solid sample and watched the crystal change into a hazy liquid. As he increased the temperature further, material changed again into clear transparent liquid. Reinitzer is credited with discovering a new phase of matter- liquid crystal phase. Cholesteryl benzoate (C 6 H 5 COOC 27 H 45 ) when heated undergoes two sharp phase transformations one after the other. It fuses sharply at 145 C to give a turbid liquid which on further heating changes suddenly in to clear liquid at 178 C. These changes reversed on cooling. 145 C 178 C p-cholesteryl benzoate p-cholesteryl benzoate p-cholesteryl benzoate (solid) (liquid crystal) (liquid) Mesomorphic state This turbid liquid show anisotropy (direction dependent-tendency to point along a common axis-properties of material depends on direction in which they are measured). True liquid, on the contrary are isotropic. Since anisotropic properties are associated with crystalline state, the turbid liquids are called Liquid crystals. Liquid crystal is an intermediate state of matter, in between the liquid & a crystal. It must possess some typical properties of a liquid (eg, fluidity, formation & coalescence of droplets) as well as crystalline properties (anisotropy in optical, electrical, magnetic properties, periodic arrangement). Temperature is a measure of randomness of the molecules and therefore the 4

6 higher the temperature, lesser the order exists and increasing temperature will cause transition from solid to liquid state through the intermediate liquid crystal state. A liquid crystal may flow like a liquid, but have the molecules arranged and/or oriented in a crystal-like way. When viewed under a microscope using a polarized light source, different liquid crystal phases will appear to have a distinct texture. Liquid crystal materials have several common characteristics. Among these are rod-like molecular structure, rigidness of the long axis, and strong dipoles and/or easily polarizable. Liquid Crystal Phases (a) Positional order (whether molecules are arranged in any sort of ordered lattice) and (b) Orientational order (whether molecules are mostly pointing in the same direction). Mesogen:It is the fundamental unit of a liquid crystal that induces structural order in the crystals. Liquid crystals (LCs) are orientationally ordered liquids or positionally disordered crystals that combine the properties of both crystalline (optical and electrical anisotropy) and liquid (molecular mobility and fluidity) states. Classification of Liquid Crystals: (A) Thermotropic LCs :Thermotropic LCs exhibit a variety of phases (smectic or nematic) as temperature is changed. 5

7 At high temperatures, thermal motion destroys delicate cooperative ordering, pushing the material into a conventional liquid phase. At much low temperature, most LC materials will form a crystal. Eg, p-azoxy anisole (B) Lyotropic LCs: They exhibit phase transitions as a function of concentration of the mesogen in a solvent (typically water) as well as temperature. It consists of a flexible hydrophobic chain (the tail) and a polar, hydrophilic (ionic or non-ionic) head group Amphiphilic molecules. Liquid crystals which are prepared by mixing two or more substances, of which one is a polar molecule, are known as lyotropic liquid crystals. Eg. Soap in water, biological and cell membranes Smectic LCs: Smectic liquid crystals have layered structure but a variety of molecular arrangements are possible within each layer. Inter layer attractions are weak as compared to lateral forces of attraction between molecules. When a stress is applied or allowed to flow, layers slide over one another like soap (e.g. Ethyl p-azoxy benzoate) but still retain their parallelism. There is a very large number of different smectic phases, all characterized by different types and degrees of positional and orientational order. In the Smectic A phase, mesogen are oriented along the normal layer In the Smectic C phase they are tilted away from the layer. 6

8 Nematic LCs: Thread-like, parallel or nearly parallel arrangement to each other along the axis. They are mobile in 3 directions & rotate in one direction. Nematics have fluidity similar to that of ordinary (isotropic) liquids but they can be easily aligned by an external magnetic or electric field. An aligned nematic has the optical properties of a crystal and this makes them extremely useful in liquid crystal displays (LCD). On heating they loose periodicity and long range order, retain orientation. The molecules can move parallel to each other. (Smectic LCs move in layers). Nematic liquid crystal have more fluidity than smectic types. When these crystals viewed along lines of force in a strong magnetic field, the turbidity disappears and if field is removed they appear again turbid. e.g. p-azoxy phenetole ( C), dibenzal benzidine ( C). Rod like molecules tend to align parallel to each other with their long axes all pointing roughly in same direction. Fluidity of mesophase is due to the ease with which the molecules can slide past one another and still remaining parallel. It has dielectric anisotropy i.e. different dielectric constant in the different direction of orientation. Cholesteric LCs: This phase is called the cholesteric because it was first observed for cholesterol derivatives These are optically active and similar to nematic kind in arrangement but show strong colour effect in polarised light. Optical activity of these crystal is many times higher than of its solid crystalline variety. As in nematic phase, there is no long range order in cholesteric phase. Only those chiral molecules that lack inversion symmetry, can give rise to such a phase. Molecules are twisted about an axis. The twist may be right / left handed depending upon the conformation. 7

9 Liquid Crystalline Behavior and Chemical Structure Molecular structures play an important role in determining the phase, transition temperatures, optical and electro-optical properties of liquid crystals. Liquid crystal structure have weak intermolecular forces of attraction, hence when an electric field is applied, they exhibit various patterns and textures. In general, liquid crystals have chemical structure represented as R is the side chain group, Z is the linking group and X is terminal group. R: It can be alkyl, alkoxy or alkenyl groups. The length and flexibility of side chain affect the phase transition temperature and the type of liquid crystal phase. If number of carbon atoms are 3 to 7, nematic phase occurs. If carbon atoms are 8 or higher in R, then smectic phase appears. A and B : Aromatic ring A and B may be same or different. The substitution over the rings by CN, F, Cl polar groups change the dielectric properties of liquid crystals. Z : Linking group makes contribution to phase transition temperature and other physical properties. Linking group can be like, Ester ( CO O ), Ethylene ( CH 2 CH 2 ), azo N = N etc. The linking groups like N = N, CH = CH help for delocalization or resonance at longer length and the electronic transitions take place at longer wavelength. X : Terminal group X, contributes to dielectric anisotropy. The X may be like CN, OR, R, CNO, CF 3, Cl etc. The stronger electron attracting ( I effect) groups increase the dielectric property to larger extent. 8

10 Applications of Liquid Crystals: 1. Orientation of nematic liquid crystal is easily changed by electric field or pressure and the changed orientation have different light transmission and reflection. 2. When an electric field is applied, on a thin LC film with the help of electrodes, the patterns of molecules becomes visible. This principle is used for in LCD in calculators, reading displays, computer and mobile screen etc. 3. Cholesteric liquid crystals are used for detecting tumors in human body. 4. Liquid-crystals are used as solvents for spectroscopic study of anisotropic solids. 5. Liquid crystal memory units with extensive capacity were used in Space Shuttle navigation equipment. 6. Recording /Sensing temperature changes: Thermotropic chiral LCs whose pitch varies strongly with temperature can be used as crude thermometers, since colour of the materials will change as the pitch is changed. Liquid crystal color transitions are used on many aquarium and pool thermometers. 7. Liquid crystal materials change color when stretched or stressed. Thus, liquid crystal sheets are often used in industry to look for hot spots, map heat flow, measure stress distribution patterns, and so on. 9

11

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

ME 210 MATERIAL SCIENCE LIQUID CRYSTALS

ME 210 MATERIAL SCIENCE LIQUID CRYSTALS BOĞAZİÇİ UNIVERSITY ME 210 MATERIAL SCIENCE LIQUID CRYSTALS BY AHMET GÖKHAN YALÇIN Submitted to: Ercan BALIKÇI FALL 2005 A NEW PHASE OF MATTER: LIQUID CRYSTALS ABSTRACT: Liquid crystals have different

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Carbon 1 of 19 Boardworks Ltd 2016

Carbon 1 of 19 Boardworks Ltd 2016 Carbon 1 of 19 Boardworks Ltd 2016 Carbon 2 of 19 Boardworks Ltd 2016 The carbon atom 3 of 19 Boardworks Ltd 2016 Carbon is a non-metallic element found in group 4 of the periodic table. It has 6 electrons,

More information

Unit 2: Structure and Bonding

Unit 2: Structure and Bonding Elements vs Compounds Elements are substances made of one kind of atom. There are around 100 elements, which are listed in the Periodic Table. Elements may chemically combine (bond) together in fixed proportions

More information

CHM 6365 Chimie supramoléculaire Partie 8

CHM 6365 Chimie supramoléculaire Partie 8 CHM 6365 Chimie supramoléculaire Partie 8 Liquid crystals: Fourth state of matter Discovered in 1888 by Reinitzer, who observed two melting points for a series of cholesterol derivatives Subsequent studies

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Chapter 12 Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping. Doping yields different

More information

WJEC England GCSE Chemistry. Topic 5: Bonding, structure and properties. Notes. (Content in bold is for Higher Tier only)

WJEC England GCSE Chemistry. Topic 5: Bonding, structure and properties. Notes. (Content in bold is for Higher Tier only) WJEC England GCSE Chemistry Topic 5: Bonding, structure and properties Notes (Content in bold is for Higher Tier only) Chemical bonds Compounds - substances in which 2 or more elements are chemically combined.

More information

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes.

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes. OCR A GCSE Chemistry Topic 2: Elements, compounds and mixtures Properties of materials Notes C2.3a recall that carbon can form four covalent bonds C2.3b explain that the vast array of natural and synthetic

More information

4.2.1 Chemical bonds, ionic, covalent and metallic

4.2.1 Chemical bonds, ionic, covalent and metallic 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

AQA Chemistry GCSE. Topic 2 - Bonding, Structure and the Properties of Matter. Flashcards.

AQA Chemistry GCSE. Topic 2 - Bonding, Structure and the Properties of Matter. Flashcards. AQA Chemistry GCSE Topic 2 - Bonding, Structure and the Properties of Matter Flashcards What is ionic bonding? What is ionic bonding? Ionic bonding is the electrostatic attraction between positive and

More information

Ceramics. Ceramic Materials. Ceramics / Introduction. Classifications of Ceramics

Ceramics. Ceramic Materials. Ceramics / Introduction. Classifications of Ceramics Ceramic Materials Outline Structure and Properties of Ceramics Introduction Classifications of Ceramics Crystal Structures Silicate Ceramics Ceramic Phase Diagram Carbon based materials Why study ceramic

More information

Chapter 10: Liquids, Solids, and Phase Changes

Chapter 10: Liquids, Solids, and Phase Changes Chapter 10: Liquids, Solids, and Phase Changes In-chapter exercises: 10.1 10.6, 10.11; End-of-chapter Problems: 10.26, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36, 10.39, 10.40, 10.42, 10.44, 10.45, 10.66,

More information

4.2 Bonding, structure and the properties of matter. GCSE Chemistry

4.2 Bonding, structure and the properties of matter. GCSE Chemistry 4.2 Bonding, structure and the properties of matter GCSE Chemistry 4.2.1 Chemical bonds, ionic, covalent and metallic There are three types of strong chemical bond ionic, covalent and metallic. There are

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

DocumentToPDF trial version, to remove this mark, please register this software.

DocumentToPDF trial version, to remove this mark, please register this software. PAPER PRESENTATION ON Carbon Nanotube - Based Nonvolatile Random Access Memory AUTHORS M SIVARAM PRASAD Sivaram.443@gmail.com B N V PAVAN KUMAR pavankumar.bnv@gmail.com 1 Carbon Nanotube- Based Nonvolatile

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

4.2 Bonding, structure, and the properties of matter

4.2 Bonding, structure, and the properties of matter 4.2 Bonding, structure, and the properties of matter Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

554 Chapter 10 Liquids and Solids

554 Chapter 10 Liquids and Solids 554 Chapter 10 Liquids and Solids above 7376 kpa, CO 2 is a supercritical fluid, with properties of both gas and liquid. Like a gas, it penetrates deep into the coffee beans; like a liquid, it effectively

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad Ali Ahmadpour Fullerenes Ali Ahmadpour Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad 2014 World of Carbon Materials 2 Fullerenes 1985 Robert F. Curl Jr. Richard

More information

Introduction to Liquid Crystals

Introduction to Liquid Crystals http://www.google.com/intl/ar/ http://plc.cwru.edu/tutorial/enhanced/files/textbook.htm Introduction to Liquid Crystals Definition: Liquid crystals are substances that exhibit a phase of matter that has

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Liquid State S.Y.B.Sc Characteristics of the liquid state Properties exhibited by liquid state.

Liquid State S.Y.B.Sc Characteristics of the liquid state Properties exhibited by liquid state. Liquid State S.Y.B.Sc 2016-2017 1 haracteristics of the liquid state. a) A liquid is made up of tiny particles called molecules or atoms (inert gas elements). b) A liquid has a definite volume but no definite

More information

Chapter 12. Solids and Modern Materials

Chapter 12. Solids and Modern Materials Lecture Presentation Chapter 12 Solids and Modern Materials Graphene Thinnest, strongest known material; only one atom thick Conducts heat and electricity Transparent and completely impermeable to all

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

In the name of Allah

In the name of Allah In the name of Allah Nano chemistry- 4 th stage Lecture No. 1 History of nanotechnology 16-10-2016 Assistance prof. Dr. Luma Majeed Ahmed lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq Nano chemistry-4

More information

SHAPES OF MOLECULES AND IONS

SHAPES OF MOLECULES AND IONS SAPES MLECULES AND INS The shape of a molecule depends upon its electronic structure. It is the outer shell or valence shell electrons which are responsible for forming bonds and it is the arrangement

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Structure and Types of Solids

Structure and Types of Solids Properties, type and strength of bonding: Properties could be physical or chemical Structure and Types of Solids Physical Properties M.p., b.p., latent heat, solubility in water and other solvents, conductivity

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

The microscopic world Multy-atomic systems

The microscopic world Multy-atomic systems Electron clouds of the individual carbon atoms The microscopic world Multy-atomic systems Irén Bárdos-Nagy 12 6C Interaction between the atoms chemical binding Primer (strong) chemical bonds (binding energy

More information

The Chemistry of Everything Kimberley Waldron. Chapter topics

The Chemistry of Everything Kimberley Waldron. Chapter topics The Chemistry of Everything Kimberley Waldron Chapter 3 Diamonds Carbon allotropes, covalent bonding and the structure of simple organic molecules Richard Jarman, College of DuPage 2007 Pearson Prentice

More information

Polar Molecules. Textbook pg Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule

Polar Molecules. Textbook pg Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule Textbook pg. 251-283 Polar Molecules Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule Electronegativity and Polar Molecules Pauling realized that electron

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

TEACHERS GUIDELINES BUCKYBALLS

TEACHERS GUIDELINES BUCKYBALLS NTSE - Nano Technology Science Education Project No: 511787-LLP-1-2010-1-TR-KA3-KA3MP TEACHERS GUIDELINES BUCKYBALLS Contents 1. Foreword for Teachers 2. Introduction 3. Learning Process 4. Conclusion

More information

Chapter 7 Chemical Bonding and Molecular Geometry

Chapter 7 Chemical Bonding and Molecular Geometry Chapter 7 Chemical Bonding and Molecular Geometry 347 Chapter 7 Chemical Bonding and Molecular Geometry Figure 7.1 Nicknamed buckyballs, buckminsterfullerene molecules (C60) contain only carbon atoms.

More information

3. Carbon nanostructures

3. Carbon nanostructures 3. Carbon nanostructures [Poole-Owens 5, Wolf 6, own knowledge, Springer handbook ch. 3] Introduction to Nanoscience, 2005 1 3.1. Background: carbon bonding To understand the basic C nanostructures we

More information

Nanostrukturphysik. Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik

Nanostrukturphysik. Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Nanostrukturphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de (3748), yang.xu@tuilmenau.de (4902) Office: Gebäude V202, Unterpörlitzer

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Option C: Chemistry in industry and technology

Option C: Chemistry in industry and technology Option C: Chemistry in industry and technology As one of the most important roles of chemistry is to make forms of matter that have never existed before, it plays a central role in any material revolution.

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light?

So why is sodium a metal? Tungsten Half-filled 5d band & half-filled 6s band. Insulators. Interaction of metals with light? Bonding in Solids: Metals, Insulators, & CHEM 107 T. Hughbanks Delocalized bonding in Solids Think of a pure solid as a single, very large molecule. Use our bonding pictures to try to understand properties.

More information

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved.

IMFA s. intermolecular forces of attraction Chez Chem, LLC All rights reserved. IMFA s intermolecular forces of attraction 2014 Chez Chem, LLC All rights reserved. **London Dispersion Forces Also know as Van der Waals forces A momentary non symmetrical electron distribution that can

More information

Shapes of Molecules & Carbon Allotropes. By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration

Shapes of Molecules & Carbon Allotropes. By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration Shapes of Molecules & Carbon Allotropes By: Mahmoud Taha Special thanks to Ms Williams and Ms Matrella for their constant support and inspiration Please note that these guides are a collation of my personal

More information

PHYS 3313 Section 001 Lecture #24 Monday, Apr. 21, 2014

PHYS 3313 Section 001 Lecture #24 Monday, Apr. 21, 2014 PHYS 3313 Section 001 Lecture #24 Monday, Apr. 21, 2014 Liquid Helium Superconductivity Theory, The Cooper Pair Application of Superconductivity Nano-technology Graphene 1 Announcements Reminder Homework

More information

Revision Checklist : 4.2 Bonding and Structure

Revision Checklist : 4.2 Bonding and Structure Revision Checklist : 4.2 Bonding and Structure States of Matter The three states of matter are solid, liquid and gas. Melting and freezing between solid and liquid take place at the melting point. Boiling

More information

Solid State. Subtopics

Solid State. Subtopics 01 Solid State Chapter 01: Solid State Subtopics 1.0 Introduction 1.1 Classification of solids 1.2 Classification of crystalline solids 1.3 Unit cell, two and three dimensional lattices and number of atoms

More information

Rationale: Phase diagrams are standard in all high school chemistry textbooks and therefore are considered prior knowledge.

Rationale: Phase diagrams are standard in all high school chemistry textbooks and therefore are considered prior knowledge. Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them. Material Covered (Y or N) and Location

More information

Tips and warming up words

Tips and warming up words FIRST TRANSISTOR Tips and warming up words 1) Band theory of solids (Eg) Eg = 0 Eg 1eV Eg > 6eV 2) Resistivity of : Metals 10-2 to 10-8 Ωm Semiconductors 10 5 to 10 0 Ωm Insulators 10 8 Ωm 3) There are

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Chapter 1 Introduction

Chapter 1 Introduction Since application of thermotropic liquid crystals has always been of wide interest, discovery of bent-shaped (banana, boomerang, bow) liquid crystals [1] opened a very promising field concerning new mesophases.

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

OTHER FORMS OF CARBON

OTHER FORMS OF CARBON OTHER FORMS OF CARBON Diamond is just one form in which elemental carbon can be found. Other forms include graphite, lonsdaleite and fullerenes. Graphite Graphite is a mineral that, like diamond, is composed

More information

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and

PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and PV Tutorial Allen Hermann, Ph. D. Professor of Physics Emeritus, and Professor of Music Adjunct, University of Colorado, Boulder, Colorado, USA and Vice-president, NanoTech Inc. Lexington, Kentucky, USA

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

for sodium ion (Na + )

for sodium ion (Na + ) 3.4 Unit 2 Chemistry 2 Throughout this unit candidates will be expected to write word equations for reactions specified. Higher tier candidates will also be expected to write and balance symbol equations

More information

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials 29: Nanotechnology What is Nanotechnology? Properties Control and Understanding Nanomaterials Making nanomaterials Seeing at the nanoscale Quantum Dots Carbon Nanotubes Biology at the Nanoscale Some Applications

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

IB Chemistry HL Notes according to official criteria/checkpoints. IB Chemistry. Year 2016 Mark 7.00 Pages 58 Published Jan 11, 2017

IB Chemistry HL Notes according to official criteria/checkpoints. IB Chemistry. Year 2016 Mark 7.00 Pages 58 Published Jan 11, 2017 IB Chemistry Year 2016 Mark 7.00 Pages 58 Published Jan 11, 2017 IB Chemistry HL Notes according to official criteria/checkpoints By Anya (99.95 ATAR) Powered by TCPDF (www.tcpdf.org) Your notes author,

More information

Summerschool 2014 Nanophysics

Summerschool 2014 Nanophysics Summerschool 2014 Nanophysics For numerical applications one may (crudely) assume the following values: Reduced Planck constant hbar=h/2π=10-34 S.I. Electron charge e=10-19 C Boltzmann constant k B =10-23

More information

The chemical building blocks of life Carbon, water and possible alternatives. Carbon. Hybridization of carbon valence orbitals

The chemical building blocks of life Carbon, water and possible alternatives. Carbon. Hybridization of carbon valence orbitals ybridization of carbon valence orbitals sp orbitals: two atomic orbitals are mixed to form two hybrid orbitals The chemical building blocks of life Carbon, water and possible alternatives Planets and Astrobiology

More information

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline

Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Intermolecular Forces and States of Matter AP Chemistry Lecture Outline Name: Chemical properties are related only to chemical composition; physical properties are related to chemical composition AND the

More information

Alignment of Liquid Crystal Director Fields Using Monolayers. Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh

Alignment of Liquid Crystal Director Fields Using Monolayers. Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh Alignment of Liquid Crystal Director Fields Using Monolayers Angel Martinez, Cal Poly Pomona, REU Dr. Ivan I. Smalyukh 5CB Liquid Crystals (LCs) CN Flow like liquids; Anisotropic like solid crystals; Crystal

More information

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 Lattice: Primitive Cubic 1ReO 3 per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0, 0), (0, 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6 octahedra share

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

3. Bonding Ionic Bonding

3. Bonding Ionic Bonding 3. Bonding Ionic Bonding Metal atoms lose electrons to form +ve ions. on-metal atoms gain electrons to form -ve ions. Mg goes from 1s 2 2s 2 2p 6 3s 2 to Mg 2+ 1s 2 2s 2 2p 6 goes from 1s 2 2s 2 2p 4 to

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs) LIQUIDS / SOLIDS / IMFs Intermolecular Forces (IMFs) Attractions BETWEEN molecules NOT within molecules NOT true bonds weaker attractions Represented by dashed lines Physical properties (melting points,

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

Describe the ionic bond as the electrostatic attraction between oppositely charged ions

Describe the ionic bond as the electrostatic attraction between oppositely charged ions 4.1 Ionic Bonding 4.1.1 - Describe the ionic bond as the electrostatic attraction between oppositely charged ions Ions are formed when electrons are transferred from a metal atom to a non-metal atom in

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

MP5: Soft Matter: Physics of Liquid Crystals

MP5: Soft Matter: Physics of Liquid Crystals MP5: Soft Matter: Physics of Liquid Crystals 1 Objective In this experiment a liquid crystal display (LCD) is built and its functionality is tested. The light transmission as function of the applied voltage

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

Liquids and Intermolecular Forces. Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson UNIT I STUDY GUIDE

Liquids and Intermolecular Forces. Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson UNIT I STUDY GUIDE UNIT I STUDY GUIDE Liquids and Intermolecular Forces Course Learning Outcomes for Unit I Upon completion of this unit, students should be able to: 1. Identify the intermolecular attractive interactions

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

C2 Quick Revision Questions. C2 for AQA GCSE examination 2018 onwards

C2 Quick Revision Questions. C2 for AQA GCSE examination 2018 onwards C2 Quick Revision Questions Question 1... of 50 What are the 3 main types of chemical bond? Answer 1... of 50 Ionic, Covalent & Metallic. Question 2... of 50 What force bonds atoms in an ionic bond? Answer

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction In our planet carbon forms the basis of all organic molecules which makes it the most important element of life. It is present in over 95% of the known chemical compounds overall

More information

The Solid State CHAPTER ONE. General Characteristics of Solid State. Chapter Checklist TOPIC 1

The Solid State CHAPTER ONE. General Characteristics of Solid State. Chapter Checklist TOPIC 1 CHAPTER ONE The Solid State TOPIC 1 General Characteristics of Solid State As we know, matter can exist in three states namely solid, liquid and gas. For different applications, we need solids with widely

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A nanometer (nm) is one billionth (10-9 ) of a meter. Nanoscience can be defined as the science of objects and phenomena occurring at the scale of 1 to 100 nm. The range of 1 100

More information

Electro-conductive properties of cadmium octanoate composites with CdS nanoparticles

Electro-conductive properties of cadmium octanoate composites with CdS nanoparticles PACS 81.07.-b, 81.16.-c Electro-conductive properties of cadmium octanoate composites with CdS nanoparticles D.S. Zhulay 1, D.V. Fedorenko 1, A.V. Koval chuk 2, S.A. Bugaychuk 1, G.V. Klimusheva 1, T.A.

More information

Scale, structure and behaviour

Scale, structure and behaviour Scale, structure and behaviour Lecture 2 MTX9100 Nanomaterjalid OUTLINE -How are crystals structured? -Why and how does nanoworld differ from the world we live in? -When does size matter? What is the smallest

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products June 17, 2015 October 31, 2014 The webinar will begin at 1pm Eastern Time Perform an audio check by going to Tools > Audio > Audio Setup Wizard Chat Box Chat Box Send

More information

States of Matter SM VI. Liquids & Solids. Liquids. Description of. Vapor Pressure. if IMF then VP, b.p.

States of Matter SM VI. Liquids & Solids. Liquids. Description of. Vapor Pressure. if IMF then VP, b.p. chem101/3, wi2010 po 20 1 States of Matter SM VI Description of Liquids & Solids chem101/3, wi2010 po 20 2 Liquids molecules slide along in close contact attraction due to various IMF s can diffuse, but

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Chapter Outline: Ceramics. Chapter 13: Structure and Properties of Ceramics

Chapter Outline: Ceramics. Chapter 13: Structure and Properties of Ceramics Chapter Outline: Ceramics Chapter 13: Structure and Properties of Ceramics Crystal Structures Silicate Ceramics Carbon Imperfections in Ceramics Optional reading: 13.6 13.10 University of Virginia, Dept.

More information