Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

Size: px
Start display at page:

Download "Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number"

Transcription

1 The Plant Journal (2002) 32, Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number Eric van der Graaff 1,,y, Paul J.J. Hooykaas 2 and Beat Keller 1 1 Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland, and 2 Clusius Laboratory, Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, the Netherlands Received 14 May 2002; revised 30 July 2002; accepted 2 September For correspondence (fax þ ; E.Graaff@uni-koeln.de). y Current address: University of Cologne, Botanical Institute II, Gyrhofstrasse 15, Cologne, Germany. Summary The complex dominant Arabidopsis thaliana mutant lettuce (let) shows the conversion of the leaf petiole into a leaf blade caused by an ectopic leaf blade formation. This is the result of the activation tagging of the LEAFY PETIOLE (LEP) gene encoding an AP2/EREBP-like transcription factor. Here, we report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR TISSUE SIZE (VAS) and LEP. These genes are closely linked and arranged in tandem. Activation tagging of LEP only caused a specific increase in the number of xylem cells. This increased xylem cell number, together with the ectopic leaf blade formation, indicates that LEP functions as a cell division-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wildtype vascular development, indicating the relevance of activation tagging for functional analysis of novel genes involved in plant development. Keywords: cell division, LEP, lettuce, VAS, vascular tissue. Introduction Plant vascular tissue consists mainly of xylem, responsible for the transport of water and dissolved nutrients and phloem, responsible for transporting photosynthetic products. Vascular tissue is also important for the transport of signal transducing molecules and confers mechanical strength to the plant (Fukuda, 1997). During the growth of plants, xylem and phloem cells differentiate from new cells that are continuously produced from the meristematic (pro)cambial cells by the process of cell division (Aloni, 1987). After the elongation of organs ceases, the differentiation of the primary phloem and xylem is completed and secondary thickening is initiated (Shininger, 1979). A panel of the meristematic tissue between the primary phloem and xylem does not differentiate and prolongs its mitotic activity, thereby forming the cambium. In stems, the meristematic activity can spread laterally from the vascular bundles into the interfascicular parenchyma creating a closed sheet of meristematic tissue (Dengler, 2001; Shininger, 1979). The continuous cell division activity in the cambium serves for its self-maintenance and the derivatives on its flanks differentiate into secondary phloem and xylem (Dengler, 2001; Savidge, 2001). In leaves, the cell division activity of the procambium cells are limited to the early stages of primordium development (Aloni, 2001) and, like in species lacking secondary vascular growth, all procambial cells are consumed during vascular differentiation (Dengler, 2001). The study of the development of vascular tissue in plants and in the Zinnia tracheary element differentiation system (reviewed in Aloni, 2001; Kuriyama and Fukuda, 2001) showed that many plant hormones are involved in vascular tissue formation. Auxin seems to be one of the major controlling signals for vascular tissue differentiation (Aloni, 2001) and the pre-patterning of vascular strands (reviewed ß 2002 Blackwell Publishing Ltd 819

2 820 Eric van der Graaff et al. in Berleth and Mattson, 2000; Dengler, 2001), while brassinosteroids (BR) play an important role in tracheary element differentiation (Yamamoto et al., 2001). In Arabidopsis mutants defective in BR synthesis, the number of xylem cells is decreased, whereas that of phloem can be either normal or increased compared to wild type (Choe et al., 1999; Szekeres et al., 1996). In addition, the interfascicular parenchyma cells can be reduced in number or lacking (Choe et al., 1999). This suggests that BR can initiate vascular tissue specification and/or regulate the balance between xylem and phloem cell number in the vascular bundles (Kuriyama and Fukuda, 2001). Despite the importance of vascular tissue for plant development, our understanding of the processes in vascular tissue formation is limited and few genes have been characterised that influence the cell number in vascular tissue without compromising its proper functioning. Recently, genes have been identified, which are expressed specifically at distinct phases of vascular tissue differentiation or in a subset of vascular tissue cell types (Hertzberg et al., 2001; Kuriyama and Fukuda, 2001; Zhao et al., 2000). The subsequent functional analysis of such genes and mutants displaying an altered vascular tissue formation will lead to a better understanding of the molecular mechanisms underlying vascular tissue development. Mutant analysis and transgene studies showed that genes belonging to the HD-ZIP family of transcription factors are important for vascular tissue formation. The expression of the Arabidopsis ATHB-8 gene (Baima et al., 1995) was shown to be associated with provascular/procambial tissue. Loss-of-function mutants for the Arabidopsis IFL1 gene lacked the formation of xylem fibres and vessel elements in inflorescence stems (Zhong and He, 1999), while the overexpression of ATHB-8 and IFL1 (Baima et al., 2001; Zhong and He, 2001) caused an increased xylem and interfascicular fibre formation. Interestingly, the activation tagging of the patatin-like gene STURDY resulted in an increased xylem cell number and interfascicular fibre formation (Huang et al., 2001) similar to the phenotype conferred by overexpression of ATHB-8 and IFL1. The increase in xylem cell number caused by overexpression of ATHB8, ILF1 and STURDY took place without a significant effect on phloem cell number and therefore does not occur at the expense of the cell number in another vascular cell type like observed for several BR mutants (Choe et al., 1999; Szekeres et al., 1996). This suggests that the ATHB8, ILF1 and STURDY genes act on the regulation of cell division activity in vascular tissue development. Increased expression of another type of HD-ZIP gene, ATHB-2, resulted in a decreased secondary vascular tissue growth, whereas reduced expression levels promoted secondary growth (Steindler et al., 1999). Therefore, ATHB-2 also acts on the regulation of cell division activity in vascular tissue development, but in contrast to ATHB8, ILF1 and STURDY as a negative regulator. The rice OSHOX1 gene (Scarpella et al., 2000) is expressed specifically in provascular/procambial tissue like the Arabidopsis ATHB-8 gene (Baima et al., 1995). However, overexpression of OSHOX1 led to premature vascular differentiation without an alteration in vascular cell number (Scarpella et al., 2000). This indicates that not all the HD-ZIP genes involved in vascular tissue formation act on the control of cell division activity. Previously, we reported that activation tagging of the AP2/EREBP-like transcription factor LEAFY PETIOLE (LEP) causes the leafy petiole phenotype displayed by the dominant lettuce (let) mutant (van der Graaff et al., 2000). Here, we report that the size of the vascular bundles is increased in all aerial organs in let, as a result of an increase in the number of xylem, phloems (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR TISSUE SIZE (VAS) and LEP. These genes are closely linked and arranged in tandem. The activation tagging of VAS and LEP independently affects vascular tissue development, with VAS specifically affecting phloem (pro)cambial and pericycle cell number and LEP specifically affecting that of xylem. Results The lettuce mutant exhibits an altered vascular tissue formation The dominant lettuce (let) mutant was initially isolated because of its conspicuous leafy petiole phenotype (van der Graaff et al., 2000). Histological analysis of let now revealed that the mutant displays an increased size of the vascular bundles in the leaf midrib, young hypocotyls, bracts, inflorescence stem, cotyledons and floral organs due to an increased vascular cell number (Figure 1a n; Table 1; data not shown). The leaf venation pattern is unaffected in the mutant leaves (data not shown). The increased cell number is specific for the vasculature and the cell number in other tissues is not altered. However, due to the increased vascular bundle size, the cell shape and size in the cell layers surrounding the vasculature can be affected in let. This is most prominent for the parenchyma cells surrounding the main vascular bundle in the mutant leaves (Figure 1c f). The vascular phenotype of let is specific for aerial organs, since vascular tissue formation in roots is similar to wild type (Figure 1o,p), even for much older roots exhibiting secondary thickening (data not shown). We conclude from these results that the increase in vascular tissue size in let is caused by an increase in xylem, phloem (pro)cambial and pericycle cell number. The transformation of the 35SDE-LEP-VAS construct, which harbours the activation-tagged LEAFY PETIOLE (LEP) and VASCULAR TISSUE SIZE (VAS) genes (Figure 2a),

3 Activation tagging affects vascular cell number 821 Figure 1. Vascular tissue size is affected in aerial organs of let. Transverse sections of different organs of wild type (a,c,e,g,i,k,m,o) and let (b,d,f,h,j,l,n,p).(a,b) Leaf 6 taken from 21-day-old plants was sectioned at 25% (c,d) and 75% (e,f) of the leaf length measured from the leaf base. (g,h) One-week-old hypocotyls. (i,j) Bracts. (k,i) First node of inflorescence stem 2 weeks after the onset of bolting. (m,n) Cotyledons. (o,p) Top 5 mm from 1-week-old roots. (q) Leaf 6 from 35SDE-LEP-VAS transgenic (21- day-old) exhibiting a strong leafy petiole phenotype, compare panel (f) for position of section and vascular tissue size in let. Scale bars: 50 mm. phenocopied let (van der Graaff et al., 2000), including the mutant leaf vascular tissue phenotype (Figure 1f,q; Table 1). The size of the main vascular bundles in leaves was analysed for four independent 35SDE-LEP-VAS transgenics exhibiting the leafy petiole phenotype at different strengths. This showed a positive correlation between the strength of the leafypetiolephenotype, increased LEPexpressionlevels(van der Graaff et al., 2000), increased vascular cell number (Table 1) and increased VAS expression levels (Figure 3a). Activation tagging of VAS influences phloem (pro)cambial and pericycle cell number The possible role of the VAS gene in vascular tissue formation was studied in a vas knock-out line and by the transformation of two different VAS overexpressor constructs to wild type. In the Wisconsin knock-out facility (Sussman et al., 2000), a vas insertional mutant was isolated harbouring an inverted T-DNA repeat insert (LB- RB:RB-LB) 268 bp downstream of the protein translation start site (Figure 2a,b). RT-PCR analysis confirmed complete loss-of-function for VAS, while LEP expression was unaffected. The development of the homozygous vas knock-out line was indistinguishable from Wassilewskija wild type. Furthermore, histological analysis showed similar cell numbers in the vascular tissue of roots and hypocotyls of 7- and 16-day-old plants compared to wild type (data not shown). The transformation of the VAS overexpressor constructs resulted in a specific effect on vascular cell number, while Table 1 Vascular cell number is increased in the leaves of let and 35SDE-LEP-VAS transgenics Petiole width a Leaf blade width a Line n b Xylem c Phloem c n Xylem Phloem C (1.1) d 20.6 (3.2) (0.7) 12.9 (1.7) lettuce (1.4) 55.6 (5.7) (2.9) 36.6 (7.0) Weak e (0.7) 31.3 (1.9) (1.2) 24.3 (3.0) Intermediate e (1.1) 37.3 (4.4) (0.8) 26.3 (1.9) Intermediate/strong e (2.2) 48.3 (5.3) (1.1) 34.5 (3.6) Strong e (1.0) 52.5 (1.5) (1.6) 38.5 (2.3) a Petioles and leaf blades were analysed for the largest leaves (leaf 5 and 6) from 21-day-old soil-grown plants. Petioles were sectioned at 25% and leaf blades at 75% (see Figure 1a,b for position). b Number of plants analysed. c Number of cells counted over the width of the main vascular bundle at the height of the xylem and phloem. d Standard deviation is given in parenthesis. e Strength of the leafy petiole phenotype displayed by the 35SDE-LEP-VAS transgenics.

4 822 Eric van der Graaff et al. Figure 2. Schematic representation of the plant DNA flanking the RB of the activator T-DNA insert in let, the T-DNA constructs derived from this flanking plant DNA and the T-DNA insertion sites in the vas and lep knock-out lines. (a) Part of the plant DNA directly flanking the RB of the T-DNA insert is shown in detail. On this fragment, two genes are located: LEP ( , At5g13910) and VAS ( , At5g13900, GenBank AF463514). Numbers indicate the location on the BAC clone MAC12 and asterisks, the T-DNA insertion sites in the lep and vas T-DNA insertional mutants. The small arrows indicate the position of the primers used in this study. 1 and 2, RTL2F and RTL2R; 3 and 4, VAS5 0 -race and VAS3 0 -race; 5 and 6, LEP5 0 -race and LEP3 0 -race; 7 and 8, WKO-LEP and WKO-VAS. Open boxes: LEP, VAS and GUS coding region. The boxed 3 0 indicates part of the LEP 3 0 coding region and its 3 0 UTR. Black box: CaMV 35S minimal promoter ( 90 to 0) with AMV leader sequence. Hatched box: 35S-enhancer region ( 393 to 95). Dotted box: 5 0 UTR and 3 0 UTR regions of LEP and VAS, determined by RACE-PCR. Arrows indicate the different transcripts generated by the T-DNA constructs. (b,c) T-DNA insertion site in the vas and lep knock-out lines. On the top row, the sequences flanking the T-DNA insertion and on the bottom row, the wildtype sequences are depicted. In bold, the T-DNA and in italic, the filler DNA sequences are shown. Wild-type sequences deleted in the T-DNA insertional mutants are underlined. In brackets, the position relative to the protein translation start site of the wild-type 5 0 and 3 0 nucleotides flanking the T-DNA insert are given. (b) vas knock-out line in which 3 bp of wild-type sequences were deleted upon T-DNA insertion and 21 bp of filler DNA was inserted. The T-DNA insert is composed of a LB-RB:RB-LB inverted repeat. Dashes were introduced to align the sequences from wild-type and the knock-out line. (c) lep knock-out line in which 52-bp wild-type sequence ( ) was deleted upon T-DNA insertion. other aspects of plant development detectable by morphological and histological analysis were not affected (data not shown). For eight out of 19 35SDE-VAS transgenics, an increased vascular cell number was detected. In four lines, Figure 3. VAS expression in wild-type, let and the different transgenic lines used in this study. Northern blots were probed with the VAS coding sequence amplified from cdna using the RTL2 primers (upper panels), stripped and probed with the GapC coding region amplified from cdna using the GapC primers for loading control (lower panels). (a,b,d,e) 20 mg and (c) 15 mg total RNA. (a) VAS expression in 35SDE-LEP-VAS transgenics (harbouring the activation-tagged LEP and VAS genes), exhibiting either a wild-type leaf development or a weak, intermediate and strong leafy petiole phenotype, respectively. (b) VAS expression in independent 35SDE-VAS transgenic lines (harbouring the ectopically expressed VAS gene), exhibiting a wild-type vascular development, weak increase (two independent lines) or strong increase (three independent lines) in vascular tissue size. (c) VAS expression in wild type, let and the 3 DE-VAS transgenics (lines 22-3, 36-4 and 52-4, harbouring the activation-tagged VAS gene) used for the developmental analysis. (d) VAS expression in wild type at different developmental stages.rna was isolated from 1-week-old complete seedlings, the aerial part from 1-weekold and 2-week-old seedlings and roots from 2-week-old seedlings. The latter were grown in liquid culture. (e) VAS expression in different organs from wild type and let. RNA was isolated from cotyledons, expanded leaves, inflorescence stems or flowers from soil-grown plants. only a weak increase in vascular cell number was observed in the hypocotyls, while the remaining four lines showed a strong increase in vascular cell number for both hypocotyls and petioles (data not shown). Northern blot analysis showed a correlation between increased VAS expression levels and increased vascular cell number in the T 2 generation of 35SDE-VAS transgenics (Figure 3b). However, the progeny from these transgenics display a wild-type vascular development despite the presence of high VAS

5 Activation tagging affects vascular cell number 823 expression levels (data not shown). Therefore, the vascular phenotype conferred by ectopic VAS overexpression from the 35SDE-VAS transgene is unstable, probably because of gene silencing specifically in the vasculature. The activation-tagged DE-VAS construct (Figure 2a) conferred an increased VAS expression level for 37 out of the 46 independent DE-VAS lines analysed. The analysis of vascular tissue development in hypocotyls for 13 DE-VAS lines displaying different strengths of VAS expression revealed a correlation between increased VAS expression and increased vascular cell number. In contrast to the 35SDE- VAS transgenics, both the increased VAS expression and increased vascular cell number proved to be stable in the T 3 generation of these activation-tagged DE-VAS transgenics (data not shown). Vascular tissue development was studied in more detail in wild-type, let and three independent homozygous T 3 DE- VAS lines (22-3, 36-4 and 52-4) that display a clear vascular phenotype but different strengths of increased VAS expression (Figures 3c and 4). The cell number in the vascular tissue of hypocotyls was comparable for the three independent DE-VAS lines at all stages analysed, and therefore the data from these lines was combined. The DE-VAS overexpressors showed a significant increase in cell number for the outer cell layers of hypocotyls (phloem (pro)cambium and pericycle) compared to wild type (Figure 4b,c,f). Subsequent analysis of vascular tissue in roots, leaf petioles and inflorescence stems showed that the DE-VAS transgenics displayed an increased phloem (pro)cambial and pericycle cell number in aerial organs (data not shown). The increase in cell number for the outer cell layers of hypocotyls is similar for the DE-VAS overexpressors and let (Figure 4b). However, in contrast to let, the DE-VAS overexpressors did not exhibit a significantly increased xylem cell number in either hypocotyls (Figure 4a) or other aerial organs (data not shown). Figure 4. Cell number in the vascular tissue of hypocotyls from wild type, let, DE-VAS and 35SDE-LEP transgenics. The cell number was counted in vascular tissue from hypocotyls over the axis from phloem to phloem pole (length direction) for 7-, 10-, 12-, 14- and 21-day-old plants (this path is indicated in c f by arrows). Similar results were obtained when cells were counted in the width direction of the vascular tissue in hypocotyls (data not shown). The significance for the difference in the number of vascular cells in let, 35SDE-LEP and DE-VAS transgenics compared to wild type was tested by one-sided Student s t-test with: P < 0.05, P < 0.01 and P < n ¼ Number of plants analysed per developmental stage. (a) Xylem cell number. (b) Outer cell number (phloem (pro)cambium, and pericycle). (c f) Representative vascular tissue sections from 21-day-old (c) wild-type (x: 17, o: 21), (d) let (x: 31, o: 29), (e) 35SDE-LEP (x: 22, o: 26) and (f) DE-VAS (x: 25, o: 33) plants, respectively. Between brackets, the cell count is indicated for xylem (x) and the outer cell layers (o), counted along the path indicated by the arrows. The two inner arrows indicate the border between xylem and (pro)cambium based on difference in cell (wall) morphology. The upper and lower arrows indicatethe perimeter of the vascular tissue. Scale bars: 50 mm.

6 824 Eric van der Graaff et al. VAS shares weak similarity with plant non-specific lipid transfer proteins The VAS gene (At5g13900; GenBank AF463514) encodes a small putative protein of 151 amino acids (Figure 5) with a molecular weight of 16.5 kda and a pi of 8.8. Analysis of the VAS protein sequence using the SMART analysis tool (Schultz et al., 1998, 2000) revealed that VAS contains an N-terminal 22-amino acid signal peptide for the secretory pathway, a putative 22-amino acid transmembrane region at the C-terminus and an AAI domain (amino acids ). This AAI domain is found in several protein families, including plant (non-specific) lipid transfer proteins (nsltps), (2S) seed storage proteins and the family of trypsin/alpha-amylase inhibitors. According to Southern blot analysis and database searches (data not shown), VAS is a single-copy gene, which shares 100% sequence identity with three expressed sequence tags (EST: AI99385, T46734 and N37786) and a weak similarity with nsltps, based on the conserved distribution of eight cysteines characteristic for the AAI domain. The position of the putative transcription start and polyadenylation site of VAS was determined using RACE-PCR (Figure 2a). This showed that VAS contains a small intron of 75 bp, a 38-bp 5 0 UTR and a 165-bp 3 0 UTR, resulting in a transcript of 659 nucleotides. VAS is expressed in vascular tissue VAS expression in wild-type plants was detected in roots and young seedlings using Northern blot analysis (Figure 3d,e). In addition, RT-PCR analysis was performed to study organ specificity of VAS expression. This showed that VAS is expressed in all wild-type organs (data not shown). VAS expression is significantly increased in aerial organs of let (Figure 3e). Attempts to analyse VAS expression using in situ RNA hybridisation proved to be without success, even for wildtype roots in which VAS expression is highest. Therefore, uida fusion constructs were used to examine tissue specificity conferred by the VAS promoter. Transformation of the pvas-gus construct (Figure 2a) showed that the VAS promoter confers expression to the central stele of roots and Figure 5. DNA and protein sequence of VAS. Part of the LEP 3 0 UTR (until 41880) and the 5 0 UTR ( ) and 3 0 UTR ( ) of VAS are shown in bold. The predicted amino acid sequence encoded by VAS is shown below the nucleotide sequence with the eight conserved cysteine residues of the AAI domain in bold and the stop codon indicated by an asterisk. The intron present in the VAS gene is indicated in lower case. The N-terminal signal peptide and C-terminal transmembrane region are underlined. Numbers indicate the location on the BAC clone MAC12.

7 Activation tagging affects vascular cell number 825 Figure 6. Expression pattern of VAS and LEP. (a i) uida analysis of VAS promoter activity with (a,b) pvas-gus and (c i) DEpVAS-GUS transgenics. (j p) RNA in situ hybridisation of wild-type LEP expression. (a) 3-day-old seedling, (b) Detail from 5-day-old root showing GUS activity specific for the central stele, (c) 7-day-old seedling, (d) Detail from 5-day-old seedling showing GUS activity in emerging leaf, (e,f) Young leaves, (g) cotyledon from 10-day-old seedling, (h) flower, (i) bract, (j l) Longitudinal sections through hypocotyl from 7-day-old seedling hybridised with LEP sense probe (j) and antisense probe (k,l), respectively, (m,n) transverse sections through hypocotyl from 10-day-old seedling hybridised with LEP sense (m) and antisense probe (n), respectively and (o,p) transverse sections through the leaf blade from a young leaf hybridised with LEP sense (o) and antisense probes (p), respectively. Arrows indicate in situ signals in (n) and (p). Scale bars: (a i) 1 mm, except (b,d) 0.2 mm and (j o) 50 mm. the lower part of the hypocotyl (Figure 6 a,b). Histological analysis showed that GUS activity is detectable in endodermal cells and very weak in vascular tissue, while GUS staining is absent from cortex and epidermis (data not shown). In order to analyse the altered VAS expression caused by activation tagging of the VAS gene, the doubled enhancer region (DE) of the CaMV 35S promoter used as activator tag was cloned in front of the VAS promoter region in the pvas- GUS construct. Thus, this promoter driving uida expression in the resulting DEpVAS-GUS construct (Figure 2a) is identical to the one used for overexpression of VAS in the DE-VAS construct that conferred a stable increased vascular cell number. Analysis of more than 100 primary transformants and the progeny of 54 transgenics showed that transformation of the DEpVAS-GUS construct resulted in two classes of transgenics. The minority of the transgenics display weak, patchy expression in vascular tissue and cells throughout all plant organs (data not shown). In the majority of transgenics, this activation-tagged uida fusion construct confers expression specifically to the vascular tissue of all organs analysed (Figure 6c i). Histological analysis of such plants showed that GUS staining is restricted to vascular tissue including the endodermis (data not shown). These results show that the activation-tagged VAS promoter activity as conferred by this DEpVAS-GUS construct correlates with the vascular phenotype displayed by the DE-VAS transgenics. Activation tagging of LEP influences xylem cell number In let, the cell number for xylem, phloem (pro)cambium, and pericycle is increased, whereas activation tagging of VAS (DE-VAS transgenics) results in a specific increase in the cell number for the outer cell layers only (Figure 4). Therefore, vascular tissue development was studied in a lep insertional mutant and LEP overexpressors (35SDE-LEP transgenics) to understand this difference in vascular phenotype. In the Wisconsin knock-out facility (Sussman et al., 2000), a lep insertional mutant was isolated harbouring a T-DNA insert 424 bp downstream of the protein translation start site (Figure 2a,c). RT-PCR analysis confirmed complete

8 826 Eric van der Graaff et al. loss-of-function for LEP, while VAS expression was unaffected. The homozygous lep knock-out line exhibited a wild-type development. Histological analysis showed similar cell numbers in the vascular tissue of roots and hypocotyls of 7- and 16-day-old plants compared to Wassilewskija wild-type plants (data not shown). The vascular cell number was analysed for seven independent 35SDE-LEP transgenics displaying different strengths of increased LEP expression and the leafy petiole phenotype. This analysis showed that those lines exhibiting both a clear leafy petiole phenotype and an increased LEP expression also display an increased vascular cell number. Three of such 35SDE-LEP transgenics were analysed in more detail. Despite clear differences in the levels of LEP expression between them, the number of cells in the vascular tissue was comparable for all stages analysed (data not shown) and the data from the three lines was combined. The 35SDE-LEP transgenics displayed a specific increase in xylem cell number in hypocotyls (Figure 4a,c,e) and other aerial organs (data not shown). This increase in xylem cell number for hypocotyls is similar for the 35SDE-LEP overexpressors and let (Figure 4a). However, in contrast to the DE-VAS transgenics and let, the cell number in the outer cell layers is not significantly affected (Figure 4b). LEP is expressed in xylem Analysis of LEP expression with in situ RNA hybridisation using Paraplast embedded tissue detected wild-type LEP expression in vascular tissue of young leaves, petioles and hypocotyls (Figure 6) in addition to previously reported expression in leaf primordia and developing leaf blades (van der Graaff et al., 2000). Using sense probes, no significant signals were obtained (Figure 6j,m,o). The staining in the vascular tissue was always observed for cells associated with tracheary elements and could not be observed in cells located outside the xylem and therefore appears to be xylem specific (Figure 6k,l,n,p). In let and 35SDE-LEP transgenics, a similar xylem-specific expression pattern was observed (data not shown), indicating that the activation tagging of LEP caused cell type-specific upregulated LEP expression. Discussion Activation tagging has been successfully employed to isolate novel genes involved in plant development (reviewed in Weigel et al., 2000), even genes for which loss-of-function lines did not show an altered development (Ito and Meyerowitz, 2000; Li et al., 2001). This lack of loss-of-function phenotypes for insertional mutants of the cytochrome P450 CYP78A9 and the serine carboxypeptidase BRS1 is apparently caused by functional redundancy, since several highly similar genes for CYP78A9 and BRS1 are present in the genome of Arabidopsis (Ito and Meyerowitz, 2000; Li et al., 2001). Here, we report that in addition to the previously reported leafy petiole phenotype (van der Graaff et al., 2000), the activation-tagged let mutant exhibits an increased vascular cell number in all aerial tissues. This increased vascular cell number was caused by the activation tagging of the tandemly arranged LEP and VAS genes. Initial analysis of 35SDE-VAS transgenics indicated that VAS overexpression conferred the vascular phenotype displayed by let; hence, this gene was named VASCULAR TISSUE SIZE (VAS). However, more detailed analysis of 35SDE-VAS, DE-VAS and 35SDE-LEP transgenics showed that VAS and LEP independently affect vascular tissue development, with VAS specifically affecting cell number in phloem (pro)cambium, and pericycle and LEP specifically affecting that of xylem. VAS affects the cell number in phloem (pro)cambium and pericycle Using uida fusion constructs, we showed that the VAS promoter confers expression associated with vascular tissue in roots and the lower part of the hypocotyl region, corroborating Northern blot analysis. The VAS protein contains an N-terminal signal peptide for the secretory pathway and an AAI domain. This AAI domain is present in the families of plant non-specific lipid transfer proteins (nsltps) (Clark and Bohnert, 1999; Gausing, 1994; Vignols et al., 1997), (2S) seed storage proteins (Chatthai and Misra, 1998; Scarafoni et al., 2001) and trypsin/alpha amylase inhibitors (Gomez-Leyva and Blanco-Labra, 2001; Grosset et al., 1997; Huber et al., 1996). In addition, the AAI domain is present in a group of proteins that supposedly anchor the plasma membrane to the cell wall (Neuteboom et al., 1999). This AAI domain is characterised by the conserved spacing of cysteine residues, responsible for the formation of intramolecular disulphide bridges important for secondary protein structure and function (Baud et al., 1993; Oda et al., 1997; Shin et al., 1995). Both on DNA and amino acid level, VAS shares weak similarity to nsltps only. In contrast to nsltps, VAS contains a C-terminus that is 40 amino acids longer and in which the last 22 amino acids putatively encode a transmembrane domain. This indicates that VAS could be anchored in the plasma membrane after secretion. Plant nsltps use a broad range of lipophilic compounds as substrate (Hollenbach et al., 1997), contain an N-terminal signal peptide, are transported across membranes in vitro and are secreted in vivo (Gausing, 1994). The nsltp TED4 was shown to function as a protease inhibitor protecting living cells during maturation of tracheary elements, indicating an additional role for nsltps as specific protease inhibitors (Endo et al., 2001 and references therein). Recently, in a microarray study, the expression of the poplar orthologue of VAS was specifically increased

9 Activation tagging affects vascular cell number 827 during the expansion and maturation phase of xylem formation (Hertzberg et al., 2001). This temporal expression pattern would be in agreement with a role as protease inhibitor. However, the activation tagging of VAS did not significantly affect xylem formation and, in contrast, increased phloem (pro)cambial and pericycle cell number. Therefore, it is more likely that VAS functions in the transfer of a lipophilic compound to the cell exterior, which subsequently could act as a signal molecule influencing vascular tissue growth. LEP affects xylem cell number Previously, we showed that LEP functions in leaf blade formation and hypothesised that LEP might act as a general cell division-promoting factor, which could be specified through interaction with other tissue-specific factors (van der Graaff et al., 2000). Detailed analysis of vascular tissue development in 35SDE-LEP transgenics showed that the activation tagging of LEP furthermore causes a specific increase in xylem cell number. This role is corroborated by in situ RNA hybridisation analysis, which showed that LEP is expressed in cells associated with tracheary elements. The xylem-specific expression and the preferential increase in the number of xylem cells in vascular tissue indicates that LEP functions in xylem formation in addition to its role in leaf blade formation. In both processes, LEP could act as a positive factor in cell division activity. The role of LEP and VAS in vascular tissue formation In let, the complex situation occurred where the insertion of the activator T-DNA element caused an altered expression of two closely linked genes, LEP and VAS. Furthermore, the separate activation tagging of LEP and VAS independently affects a different subset of cells in vascular tissue. These activation-tagged phenotypes indicate that LEP and VAS have reciprocal functions in the development of the vascular tissue. This might explain why LEP and VAS are positioned adjacent to each other. Their close proximity could allow co-ordinated regulation of LEP and VAS expression. Neither lep nor vas knock-out plants display a vascular phenotype distinct from wild type. Given the fact that LEP is a member of a large gene family, it can be expected that genetic redundancy or degeneracy caused by overlapping expression patterns and function from AP2/EREBP family members can compensate for the loss of LEP activity. However, VAS is a unique gene and therefore a loss-offunction phenotype could be expected. The lack of an altered phenotype for vas knock-out plants indicates that VAS is not essential for plant development or that parallel pathways regulating vascular cell number exist. Given the importance of vascular tissue for plant development, the latter is not unlikely. Because of the lack of loss-of-function phenotypes for LEP and VAS, the possible role of LEP and VAS in plant development can only be deduced from their wild-type expression pattern and overexpression analysis. The increased vascular cell number caused by the activation tagging of LEP and VAS did not occur at the expense of the cell number in other vascular cell types, like observed for several BR mutants (Choe et al., 1999; Szekeres et al., 1996) in which increased phloem cell number was accompanied by a decrease in that of xylem. Therefore, the LEP and VAS activation-tagged phenotypes are most likely caused by a stimulation of the formation of new cells by cell division rather than a stimulation of vascular differentiation or a shift in the balance of the number of (pro)cambial cells available for phloem and xylem differentiation. The HD-ZIP transcription factor ATHB8 is the earliest available marker for provascular/procambial cells (Baima et al., 1995) and its expression can be observed in the stele bordering the initial cells of the root apical meristem. The expression of VAS is absent from the root tips of primary and lateral roots (Figure 6a,b), suggesting that VAS is expressed at a later vascular developmental stage than ATHB8. LEP expression is only observed in xylem parenchyma cells and appears to be absent from (pro)cambial cells. This suggests that both VAS and LEP do not directly influence the number of procambial cells. The cell number for all vascular cell types correlated with the expression levels of the HD-ZIP transcription factor ATHB-2 (Steindler et al., 1999) and therefore ATHB-2 appears to regulate overall (pro)cambial activity. In contrast, only specific vascular cell types are affected by the activation tagging of LEP or VAS. Thus, it is most likely that LEP and VAS either asymmetrically stimulate (pro)cambial activity or stimulate cell division activity of the derivatives from the (pro)cambium. The pericycle is ontogenetically part of the vascular cylinder (Scheres et al., 1995) and, consequently, the pericycle cell number would also be increased by the activation tagging of VAS, since it lies on the phloem side of the (pro)cambium. Because of the difficulty to morphologically distinguish the (pro)cambial cells from their parenchymatic derivatives, it is not certain whether the activation tagging of VAS actually influences the number of initial cells in the (pro)cambium. The xylem phenotype resulting from activation tagging of LEP resembles the overexpression of ATHB8, ILF1 and STURDY, giving rise to an increased xylem cell number (Baima et al., 2001; Huang et al., 2001; Zhong and Ye, 2001) without a significant effect on that of phloem. However, in contrast to the increased interfascicular fibre formation displayed by the overexpression of ATHB8, ILF1 and STURDY, no obvious effect on interfascicular fibre formation was observed for 35DE-LEP transgenics and let. This suggests that LEP functions in a pathway that is different from ATHB8, ILF1 and STURDY or that LEP functions

10 828 Eric van der Graaff et al. downstream of ATHB8 and IFL1 and regulates a subset of the pathway(s) regulated by ATHB8 and IFL1. Since LEP displays tissue and cell type-specific enhanced expression due to the activation tagging and the expression of LEP correlates with the overexpression phenotype, a conclusive deduction of its role in plant development could be made from the LEP activation-tagged phenotype. Unfortunately, the exact cell specificity of both wild-type VAS and its activation-tagged expression could not be determined because of too low expression levels. Therefore, the VAS activation-tagged phenotype might be neomorphic. However, the VAS transcript is present in wild-type aerial tissues and the activation-tagged DEpVAS-GUS construct conferred vascular specific activity in aerial organs, comparable to its activity in wild-type roots. This suggests that VAS is also involved in vascular tissue formation in aerial organs. More detailed analysis using VAS protein localisation studies will be required to prove its proposed role in vascular tissue development. Experimental procedures Plant materials and growth conditions Seeds of the transgenic lines and wild type (all Arabidopsis thaliana ecotype C24, except for the Wisconsin knock-out lines that were in the Wassilewskija background) were grown as described before (van der Graaff et al., 2000) unless otherwise stated. The 35SDE-LEP-VAS, 35SDE-LEP and 35SDE-VAS constructs (Figure 2a) were transformed to Arabidopsis using a root transformation protocol (Vergunst et al., 1998) and the DE-VAS, pvas-gus and DEpVAS-GUS constructs (Figure 2a) were transformed using the floral dip method (Clough and Bent, 1988). The constructs 35SDE- LEP-VAS and 35SDE-LEP were described before (van der Graaff et al., 2000). The 35SDE-VAS construct was made by cloning the CaMV 35SDE activator tag in the AccI restriction site at position (numbers refer to the position on the BAC clone MAC12), 63 bp upstream of the VAS coding region. DE-VAS was obtained by cloning the CaMV 35S promoter doubled enhancer region (DE) of the activator tag upstream of the genomic region from the EcoRI restriction site at position to the HindIII site at position Fusing the region from (EcoRI) to (fragment generated using the Promega Erase-a-Base kit) transcriptionally to the uida reporter gene of pgptv-bar (Becker et al., 1992) resulted in the pvas-gus construct. DEpVAS-GUS was made by fusing the doubled enhancer (DE) in front of the VAS promoter region of the pvas-gus construct. In the DE-VAS, pvas-gus and DEpVAS- GUS constructs, the VAS promoter region was extended with part of the 3 0 region of the LEP gene located directly upstream of this VAS promoter to ensure that the full-length VAS promoter was present. Oligonucleotide primers for PCR The following oligonucleotide primers (Figure 2a) were used: RTL2F (42337), 5 0 -GAT AAA TGG GCA GAG CGT-3 0 ; RTL2R (42733), 5 0 -CAA TAG GAC TGA GAA AAG GT-3 0 ; VAS5 0 -race (42565), 5 0 -ATG TTC TCC ACA TCG AGC AGG CAA C-3 0 ; VAS3 0 - race (42328), 5 0 -GGG ATG CGG ATA AAT GGG CAG AGC-3 0 ; LEP5 0 - race (41607), 5 0 -GAC GAG TAG TCG TCA CCG GTC CAG-3 0 ; LEP3 0 - race (41294), 5 0 -TGC CTC CTT CCT CAT CCG TCA CC-3 0 ; WKO-LEP (41003), 5 0 -TCG GAC ATT TAT TGA TCT GTG TAT GCA TA-3 0 ; WKO- VAS (42827), 5 0 -CAA AGC TGC TAT AGA CAA TGA GAG ATT CA-3 0 ; GapCF, 5 0 -AGC TCG TCG CTG TCA ACG-3 0 ; GapCR, 5 0 -GAC AGC CTT GGC AGC TCC T-3 0. The numbers between brackets indicate the position of the primers on the BAC clone MAC12. Analysis of gene expression Total RNA isolation, Northern blotting, RT-PCR and in situ RNA hybridisation was performed as described before (van der Graaff et al., 2000). Expression of VAS was detected using the RTL2 primers amplifying a 322-bp fragment from cdna and a 396-bp fragment from genomic DNA. RT-PCR was performed on cdna samples prepared with an oligo dt15 primer for 20, 25, 30 and 35 cycles. After gel electrophoresis, VAS expression was detected using Southern blotting for the samples amplified at 20 or 25 cycles. Isolation and molecular characterisation of T-DNA insertional mutants for LEP and VAS The primers WKO-LEP and WKO-VAS were used to screen for T- DNA insertional mutants of LEP and VAS in the Wisconsin knockout facility (Sussman et al., 2000). Siblings of the lep and vas knockout lines were genotyped by PCR using either the LEP-race primers or the VAS-race primers in combination with the T-DNA border primers of the Wisconsin knock-out facility. The same primers were used to isolate the T-DNA border/plant DNA junctions of the T-DNA insertions in the lep and vas lines. The resulting PCR fragments were sequenced to determine exact T-DNA integration sites in lep and vas. The expression of LEP and VAS was analysed using cdna prepared from homozygous lep and vas lines using the RTL1 (van der Graaff et al., 2000) and the RTL2 primers, respectively. RACE-PCR The SMART RACE cdna amplification kit (Clontech) was used for 5 0 and 3 0 RACE-PCR with the VAS5 0 -race and VAS3 0 -race primers for analysis of the VAS transcription start and polyadenylation site and confirmation of the intron size and position, respectively. The resulting PCR products were cloned in the pgem-t-easy vector (Promega, Switzerland) and at least 10 independent clones were sequenced. Vascular tissue analysis The plants used for the analysis of root and hypocotyl vascular tissue were grown in tissue culture under continuous light. For initial analysis of vascular cell number, the seeds from hemizygous 35SDE-VAS and DE-VAS transgenics were grown on antibiotic selective medium to identify the transgenic siblings. For the detailed analyses of vascular tissue (Figure 4), seeds from the homozygous DE-VAS transgenics were grown without antibiotic selection. The seeds from the hemizygous lettuce mutant and 35SDE-LEP transgenics were grown without antibiotic selection and transgenics siblings were identified because of their leafy petiole phenotype. Plant material was fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (ph 7.2) for 8 h at room temperature, dehydrated through an ethanol series and embedded

11 Activation tagging affects vascular cell number 829 in epon. Sections (1 mm) were stained with toluidine blue and mounted in epon. The number of cells was counted in transverse sections as follows. For hypocotyls, the number of cells was counted over the axis from phloem to phloem pole (length direction) and over the perpendicular axis (width direction). Phloem, (pro)cambial, and pericycle cells were classified as outer cell layers. In petioles and leaves, the total width of the main vascular bundle was represented by the number of cells counted at the height of the xylem (dorsal region) and those counted at the height of the phloem (ventral region). Significance for difference in the number of cells compared to wild type was tested by one-sided Student s t-test. GUS staining Plants were stained for 8 or 24 h in GUS staining buffer (Jefferson et al., 1987) and either cleared in 70% ethanol or fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (ph 7.2) for 8 h at room temperature. The fixed plants were dehydrated through an ethanol series and embedded in LR white for histological analysis of GUS activity (2 3-mm sections). Acknowledgements We would like to thank Gerda Lamers, Amke Den Dulk-Ras and Tonny Regensburg-Tuink for assistance with the anatomical analysis, Thorsten Schnurbusch for valuable assistance on statistical analysis, Jean-Jacques Pittet for assistance with the digital processing of the figures and Dr Christoph Ringli and Dr Bert van der Zaal for critical reading of the manuscript. E.v.d.G was supported by grants from the Leiden University (Stichting BVS) and the Swiss National Science Foundation ( ). References Aloni, R. (1987) Differentiation of vascular tissues. Ann. Rev. Plant Physiol. 38, Aloni, R. (2001) Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J. Plant Growth Regul. 20, Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Rubert, I. and Morelli, G. (1995) The expression of the ATHB-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development, 121, Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M.M., Ruberti, I. and Morelli, G. (2001) The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 126, Baud, F., Pebay-Peyroula, E., Cohen-Addad, C., Odani, S. and Lehmann, M.S. (1993) Crystal structure of hydrophobic protein from soybean: a member of a new cysteine-rich family. J. Mol. Biol. 231, Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol. Biol. 20, Berleth, T. and Mattson, J. (2000) Vascular development: tracing signals along veins. Curr. Opin. Plant Biol. 3, Chatthai, M. and Misra, S. (1998) Sequence and expression of embryogenesis-specific cdnas encoding 2S seed storage proteins in Pseudotsuga menziesii [Mirb.] Franco. Planta, 206, Choe, S., Nogochi, T., Fujioka, S. et al. (1999) The Arabidopsis dwf7/ste1 mutant is defective in the d 7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell, 11, Clark, A.M. and Bohnert, H.J. (1999) Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana. Plant Cell Physiol. 40, Clough, S.J. and Bent, A.F. (1988) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, Dengler, N.G. (2001) Regulation of vascular development. J. Plant Growth Regul. 20, Endo, S., Demura, T. and Fukuda, H. (2001) Inhibition of proteasome activity by the TED4 protein in extracellular space: a novel mechanism for protection of living cells from injury caused by dying cells. Plant Cell Physiol. 42, Fukuda, H. (1997) Tracheary element differentiation. Plant Cell, 9, Gausing, K. (1994) Lipid transfer protein genes specifically expressed in barley leaves and coleoptiles. Planta, 192, Gomez-Leyva, J.F. and Blanco-Labra, A. (2001) Bifunctional a- amylase/trypsin inhibitor activity previously ascribed to the 22-kDa Tl protein, resides in a contaminant protein of 14 kda. J. Plant Physiol. 158, van der Graaff, E., den Dulk-Ras, A., Hooykaas, P.J.J. and Keller, B. (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development, 127, Grosset, J., Alary, R., Gautier, M.-F., Menossi, M., Martinez- Izquierdo, J.A. and Joudrier, P. (1997) Characterisation of a barley gene coding for an a-amylase inhibitor subunit (CMd) protein and analysis of its promoter in transgenic tobacco plants in maize kernels by microprojectile bombardment. Plant Mol. Biol. 34, Hertzberg, M., Aspeborg, H., Schrader, J. et al. (2001) A transcriptional roadmap to wood formation. Proc. Natl Acad. Sci. USA, 98, Hollenbach, B., Schreiber, L., Hartung, W. and Dietz, K.-J. (1997) Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly. Planta, 203, Huang, S., Cerny, R.E., Bhat, D.S. and Brown, S.M. (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T- DNA tagging. Plant Physiol. 125, Huber, M.K., Wunderlich, M. and Glockshuber, R. (1996) RBI, a onedomain alpha-amylase/trypsin inhibitor with completely independent binding sites. FEBS Lett. 397, Ito, T. and Meyerowitz, E.M. (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell, 12, Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, Kuriyama, H. and Fukuda, H. (2001) Regulation of tracheary element differentiation. J. Plant Growth Regul. 20, Li, J., Lease, K.A., Tax, F.E. and Walker, J.C. (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signalling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 98, Neuteboom, L.W., Ng, J.M.Y., Kuyper, M., Clijdesdale, O.R., Hooykaas, P.J.J. and Van der Zaal, B.J. (1999) Isolation and characterisation of cdna clones corresponding with mrnas that accumulate during auxin-induced lateral root formation. Plant Mol. Biol. 39, Oda, Y., Matsunaga, T., Fukuyama, K., Miyazaki, T. and Morimoto, T. (1997) Tertiary and quaternary structures of 0.19 a-amylase

SUPPORTING INFORMATION FOR. SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA

SUPPORTING INFORMATION FOR. SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA SUPPORTING INFORMATION FOR SEquence-Enabled Reassembly of β-lactamase (SEER-LAC): a Sensitive Method for the Detection of Double-Stranded DNA Aik T. Ooi, Cliff I. Stains, Indraneel Ghosh *, David J. Segal

More information

SUPPLEMENTARY DATA - 1 -

SUPPLEMENTARY DATA - 1 - - 1 - SUPPLEMENTARY DATA Construction of B. subtilis rnpb complementation plasmids For complementation, the B. subtilis rnpb wild-type gene (rnpbwt) under control of its native rnpb promoter and terminator

More information

Practical Bioinformatics

Practical Bioinformatics 5/2/2017 Dictionaries d i c t i o n a r y = { A : T, T : A, G : C, C : G } d i c t i o n a r y [ G ] d i c t i o n a r y [ N ] = N d i c t i o n a r y. h a s k e y ( C ) Dictionaries g e n e t i c C o

More information

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology Outline 1. Leaf Structure: Morphology & Anatomy 2. Leaf Development A. Anatomy B. Sector analysis C. Leaf Development Leaf Structure - Morphology Leaf Structure - Morphology 1 Leaf Structure - Morphology

More information

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots BOT 3015L (Outlaw/Sherdan/Aghoram); Page 1 of 6 Chapter 6 Biology of Flowering Plants Anatomy Seedlings, Meristems, Stems, and Roots Objectives Seedling germination and anatomy. Understand meristem structure

More information

Supplemental data. Pommerrenig et al. (2011). Plant Cell /tpc

Supplemental data. Pommerrenig et al. (2011). Plant Cell /tpc Supplemental Figure 1. Prediction of phloem-specific MTK1 expression in Arabidopsis shoots and roots. The images and the corresponding numbers showing absolute (A) or relative expression levels (B) of

More information

GFP GAL bp 3964 bp

GFP GAL bp 3964 bp Supplemental Data. Møller et al. (2009) Shoot Na + exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na + transport in Arabidopsis Supplemental Figure 1. Salt-sensitive

More information

Advanced topics in bioinformatics

Advanced topics in bioinformatics Feinberg Graduate School of the Weizmann Institute of Science Advanced topics in bioinformatics Shmuel Pietrokovski & Eitan Rubin Spring 2003 Course WWW site: http://bioinformatics.weizmann.ac.il/courses/atib

More information

Supplemental Data. Wang et al. (2014). Plant Cell /tpc

Supplemental Data. Wang et al. (2014). Plant Cell /tpc Supplemental Figure1: Mock and NPA-treated tomato plants. (A) NPA treated tomato (cv. Moneymaker) developed a pin-like inflorescence (arrowhead). (B) Comparison of first and second leaves from mock and

More information

Plant Structure, Growth, and Development

Plant Structure, Growth, and Development Plant Structure, Growth, and Development Plant hierarchy: Cells Tissue: group of similar cells with similar function: Dermal, Ground, Vascular Organs: multiple kinds of tissue, very diverse function Organ

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS 1 Prokaryotes and Eukaryotes 2 DNA and RNA 3 4 Double helix structure Codons Codons are triplets of bases from the RNA sequence. Each triplet defines an amino-acid.

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

Supplemental Table 1. Primers used for cloning and PCR amplification in this study

Supplemental Table 1. Primers used for cloning and PCR amplification in this study Supplemental Table 1. Primers used for cloning and PCR amplification in this study Target Gene Primer sequence NATA1 (At2g393) forward GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC GCC TCC AAC CGC AGC

More information

Roots and Soil Chapter 5

Roots and Soil Chapter 5 Roots and Soil Chapter 5 Plant Organs Plant organs are groups of several types of tissues that together perform a particular function. Vegetative organs roots, stems, leaves make and use food, absorb water

More information

Lipid transfer proteins confer resistance to trichothecenes

Lipid transfer proteins confer resistance to trichothecenes Lipid transfer proteins confer resistance to trichothecenes John McLaughlin and Anwar Bin-Umer Tumer Laboratory National Fusarium Head Blight Forum December 6th, 2012 FY09-11: Identify trichothecene resistance

More information

SSR ( ) Vol. 48 No ( Microsatellite marker) ( Simple sequence repeat,ssr),

SSR ( ) Vol. 48 No ( Microsatellite marker) ( Simple sequence repeat,ssr), 48 3 () Vol. 48 No. 3 2009 5 Journal of Xiamen University (Nat ural Science) May 2009 SSR,,,, 3 (, 361005) : SSR. 21 516,410. 60 %96. 7 %. (),(Between2groups linkage method),.,, 11 (),. 12,. (, ), : 0.

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Evolutionary conservation of codon optimality reveals hidden signatures of co-translational folding Sebastian Pechmann & Judith Frydman Department of Biology and BioX, Stanford

More information

Chapter 29: Plant Tissues

Chapter 29: Plant Tissues Chapter 29: Plant Tissues Shoots and Roots Shoots (Leaves and Stem) Produce food by photosynthesis Carry out reproductive functions Roots Anchor the plant Penetrate the soil and absorb water and dissolved

More information

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems.

Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Topic 2: Plant Structure & Growth Ch. 35 Angiosperms are the most complex plants. They are composed of cells, tissues, organs and organ systems. Fig. 35.8 Plant Cells pp.798-802 Types of plant cells Include:

More information

Clay Carter. Department of Biology. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.

Clay Carter. Department of Biology. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Clay Carter Department of Biology QuickTime and a TIFF (LZW) decompressor are needed to see this picture. Ornamental tobacco

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Directed self-assembly of genomic sequences into monomeric and polymeric branched DNA structures

More information

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family GENES & DEVELOPMENT (2000) 14: 108 117 INTRODUCTION Flower Diagram INTRODUCTION Abscission In plant, the process by which a plant

More information

Anatomy of Plants Student Notes

Anatomy of Plants Student Notes Directions: Fill in the blanks. Anatomy of Plants Student Notes Plant Cell Biology Segment 1. Plants Plants are organisms are incapable of movement produce food through 2. Animals Animals are multicellular

More information

NOTES: CH 35 - Plant Structure & Growth

NOTES: CH 35 - Plant Structure & Growth NOTES: CH 35 - Plant Structure & Growth In their evolutionary journey, plants adapted to the problems of a terrestrial existence as they moved from water to land ANGIOSPERMS (flowering plants) -most diverse

More information

From DNA to protein, i.e. the central dogma

From DNA to protein, i.e. the central dogma From DNA to protein, i.e. the central dogma DNA RNA Protein Biochemistry, chapters1 5 and Chapters 29 31. Chapters 2 5 and 29 31 will be covered more in detail in other lectures. ph, chapter 1, will be

More information

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated form by recombinant UGT74E2. The naturally occurring auxin

More information

Plant Structure And Growth

Plant Structure And Growth Plant Structure And Growth The Plant Body is Composed of Cells and Tissues Tissue systems (Like Organs) made up of tissues Made up of cells Plant Tissue Systems Ground Tissue System Ø photosynthesis Ø

More information

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip Topic 14. The Root System Introduction. This is the first of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

Crick s early Hypothesis Revisited

Crick s early Hypothesis Revisited Crick s early Hypothesis Revisited Or The Existence of a Universal Coding Frame Ryan Rossi, Jean-Louis Lassez and Axel Bernal UPenn Center for Bioinformatics BIOINFORMATICS The application of computer

More information

Regulation of Phosphate Homeostasis by microrna in Plants

Regulation of Phosphate Homeostasis by microrna in Plants Regulation of Phosphate Homeostasis by microrna in Plants Tzyy-Jen Chiou 1 *, Kyaw Aung 1,2, Shu-I Lin 1,3, Chia-Chune Wu 1, Su-Fen Chiang 1, and Chun-Lin Su 1 Abstract Upon phosphate (Pi) starvation,

More information

23-. Shoot and root development depend on ratio of IAA/CK

23-. Shoot and root development depend on ratio of IAA/CK Balance of Hormones regulate growth and development Environmental factors regulate hormone levels light- e.g. phototropism gravity- e.g. gravitropism temperature Mode of action of each hormone 1. Signal

More information

High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm

High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature12791 Supplementary Figure 1 (1/3) WWW.NATURE.COM/NATURE 1 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 1 (2/3) 2 WWW.NATURE.COM/NATURE SUPPLEMENTARY

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Zn 2+ -binding sites in USP18. (a) The two molecules of USP18 present in the asymmetric unit are shown. Chain A is shown in blue, chain B in green. Bound Zn 2+ ions are shown as

More information

Plant Structure. Objectives At the end of this sub section students should be able to:

Plant Structure. Objectives At the end of this sub section students should be able to: Name: 3.2 Organisation and the Vascular Structures 3.2.1 Flowering plant structure and root structure Objectives At the end of this sub section students should be able to: 1. Label a diagram of the external

More information

Electronic supplementary material

Electronic supplementary material Applied Microbiology and Biotechnology Electronic supplementary material A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and

More information

Supplemental Figure 1. Phenotype of ProRGA:RGAd17 plants under long day

Supplemental Figure 1. Phenotype of ProRGA:RGAd17 plants under long day Supplemental Figure 1. Phenotype of ProRGA:RGAd17 plants under long day conditions. Photo was taken when the wild type plant started to bolt. Scale bar represents 1 cm. Supplemental Figure 2. Flowering

More information

NSCI Basic Properties of Life and The Biochemistry of Life on Earth

NSCI Basic Properties of Life and The Biochemistry of Life on Earth NSCI 314 LIFE IN THE COSMOS 4 Basic Properties of Life and The Biochemistry of Life on Earth Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ WHAT IS LIFE? HARD TO DEFINE,

More information

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS 6.1 Plant Tissues A tissue is a group of cells with common function, structures or both. In plants we can find 2 types of tissues: Meristem Permanent tissues Meristem is found in regions with continuous

More information

Dof5.6/HCA2, a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in Arabidopsis W OA

Dof5.6/HCA2, a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in Arabidopsis W OA The Plant Cell, Vol. 21: 3518 3534, November 2009, www.plantcell.org ã 2009 American Society of Plant Biologists Dof5.6/HCA2, a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation

More information

Ginkgo leaf. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts.

Ginkgo leaf. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts. Ginkgo leaf Figure 22-30 Ginkgo tree. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts. The vein pattern is dichotomous: Divided

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1. HSP21 expression in 35S:HSP21 and hsp21 knockdown plants. (a) Since no T- DNA insertion line for HSP21 is available in the publicly available T-DNA collections,

More information

Nature Genetics: doi: /ng Supplementary Figure 1. The phenotypes of PI , BR121, and Harosoy under short-day conditions.

Nature Genetics: doi: /ng Supplementary Figure 1. The phenotypes of PI , BR121, and Harosoy under short-day conditions. Supplementary Figure 1 The phenotypes of PI 159925, BR121, and Harosoy under short-day conditions. (a) Plant height. (b) Number of branches. (c) Average internode length. (d) Number of nodes. (e) Pods

More information

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy

Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy Supporting Information Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy Cuichen Wu,, Da Han,, Tao Chen,, Lu Peng, Guizhi Zhu,, Mingxu You,, Liping Qiu,, Kwame Sefah,

More information

A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development

A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development Xuemei Chen Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. E-mail: xuemei@waksman.rutgers.edu Plant

More information

Chapter 35~ Plant Structure and Growth

Chapter 35~ Plant Structure and Growth Chapter 35~ Plant Structure and Growth Plant Organization Plant morphology is based on plant s evolutionary history Need to draw in nutrients from the ground and the air Plant Organs Root system = roots

More information

Last time: Obtaining information from a cloned gene

Last time: Obtaining information from a cloned gene Last time: Obtaining information from a cloned gene Objectives: 1. What is the biochemical role of the gene? 2. Where and when is the gene expressed (transcribed)? 3. Where and when is the protein made?

More information

Supporting Information for. Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)-

Supporting Information for. Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)- Supporting Information for Initial Biochemical and Functional Evaluation of Murine Calprotectin Reveals Ca(II)- Dependence and Its Ability to Chelate Multiple Nutrient Transition Metal Ions Rose C. Hadley,

More information

Supplemental Figure 1.

Supplemental Figure 1. A wt spoiiiaδ spoiiiahδ bofaδ B C D E spoiiiaδ, bofaδ Supplemental Figure 1. GFP-SpoIVFA is more mislocalized in the absence of both BofA and SpoIIIAH. Sporulation was induced by resuspension in wild-type

More information

Topic 15. The Shoot System

Topic 15. The Shoot System Topic 15. The Shoot System Introduction. This is the second of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

Chapter #35~ Plant Structure and Growth

Chapter #35~ Plant Structure and Growth Chapter #35~ Plant Structure and Growth What part of a plant is represented by each of these: Carrot Celery Red Pepper Tomato Lettuce Garbanzo Bean Angiosperm structure Three basic organs: Roots (root

More information

Actions of auxin. Hormones: communicating with chemicals History: Discovery of a growth substance (hormone- auxin)

Actions of auxin. Hormones: communicating with chemicals History: Discovery of a growth substance (hormone- auxin) Hormones: communicating with chemicals History- discovery of plant hormone. Auxin Concepts of hormones Auxin levels are regulated by synthesis/degradation, transport, compartmentation, conjugation. Polar

More information

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions

Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions Lecture 4 Root Put line under your answer! There is only one correct answer in the multiple choice questions 1. The perception of gravity by a root is thought to take place in a) root hairs b) the region

More information

The three principal organs of seed plants are roots, stems, and leaves.

The three principal organs of seed plants are roots, stems, and leaves. 23 1 Specialized Tissues in Plants Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. 1 of 34 23 1 Specialized Tissues in Plants Seed Plant Structure Roots: absorb

More information

Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter

Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter 9/10/2008 1 Learning Objectives Explain similarities and differences between fungal, mammalian and plant cell cycles Explain

More information

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E The development of a plant the series of progressive changes that take place throughout its life is regulated in complex ways. Factors take part

More information

Plant Anatomy and Tissue Structures

Plant Anatomy and Tissue Structures Plant Anatomy and Tissue Structures The Two Major Plant Systems Reproductive shoot (flower) Terminal bud Node Internode Angiosperm plants have threse major organs: Roots Stems Leaves & Flowers Terminal

More information

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA CHASE BALLARD LINDA EAN HECTOR LOPEZ DR. JOANNA WERNER-FRACZEK IN COLLABORATION WITH DR. PATRICIA SPRINGER S LAB AT UCR AND ROBERT KOBLE PURPOSE OF RESEARCH

More information

The mode of development in animals and plants is different

The mode of development in animals and plants is different The mode of development in animals and plants is different Outcome of animal embryogenesis is a mini edition of the adult Outcome of plant embryogenesis is a simple structure with -root apical meristem

More information

The Shoot System: Primary Stem Structure - 1

The Shoot System: Primary Stem Structure - 1 The Shoot System: Primary Stem Structure - 1 Shoot System The shoot system comprises the leaves and stems of plants. Leaves are located at nodes on the stem; the distance along the stem between nodes is

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1121356/dc1 Supporting Online Material for Polar PIN Localization Directs Auxin Flow in Plants Justyna Wiśniewska, Jian Xu, Daniela Seifertová, Philip B. Brewer, Kamil

More information

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, )

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, ) BIOL 221 Concepts of Botany Fall 2007 Topic 07: Primary Plant Body: The Root System (Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, 9.5 9.23) A. Introduction The root has the primary functions of

More information

Plant Structure and Growth

Plant Structure and Growth Plant Structure and Growth A. Flowering Plant Parts: The flowering plants or are the most diverse group of plants. They are divided into 2 classes and. Examples of monocots: Examples of dicots: The morphology

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark Cytokinin Abundant in young, dividing cells Shoot apical meristem Root apical meristem Synthesized in root tip, developing embryos, young leaves, fruits Transported passively via xylem into shoots from

More information

Plant transformation

Plant transformation Plant transformation Objectives: 1. What is plant transformation? 2. What is Agrobacterium? How and why does it transform plant cells? 3. How is Agrobacterium used as a tool in molecular genetics? References:

More information

Plant Anatomy Lab 7 - Stems II

Plant Anatomy Lab 7 - Stems II Plant Anatomy Lab 7 - Stems II This exercise continues the previous lab in studying primary growth in the stem. We will be looking at stems from a number of different plant species, and emphasize (1) the

More information

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid Plant Hormones Lecture 9: Control Systems in Plants What is a Plant Hormone? Compound produced by one part of an organism that is translocated to other parts where it triggers a response in target cells

More information

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals:

The plant body has a hierarchy of organs, tissues, and cells. Plants, like multicellular animals: Chapter 28 The plant body has a hierarchy of organs, tissues, and cells Plants, like multicellular animals: o Have organs composed of different tissues, which are in turn composed of cells 3 basic organs:

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

evoglow - express N kit distributed by Cat.#: FP product information broad host range vectors - gram negative bacteria

evoglow - express N kit distributed by Cat.#: FP product information broad host range vectors - gram negative bacteria evoglow - express N kit broad host range vectors - gram negative bacteria product information distributed by Cat.#: FP-21020 Content: Product Overview... 3 evoglow express N -kit... 3 The evoglow -Fluorescent

More information

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach

Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach Characterisation of abiotic stress inducible plant promoters and bacterial genes for osmotolerance using transgenic approach ABSTRACT SUBMITTED TO JAMIA MILLIA ISLAMIA NEW DELHI IN PARTIAL FULFILMENT OF

More information

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups:

Plants. Plant Form and Function. Tissue Systems 6/4/2012. Chapter 17. Herbaceous (nonwoody) Woody. Flowering plants can be divided into two groups: Monocots Dicots 6/4/2012 Plants Plant Form and Function Chapter 17 Herbaceous (nonwoody) In temperate climates, aerial parts die back Woody In temperate climates, aerial parts persist The Plant Body Functions

More information

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL Kelsey Hoth 1 Dr. Maria Ivanchenko 2 Bioresourse Research 1, Department of Botany and Plant Physiology 2, Oregon State University, Corvallis,

More information

Biological Roles of Cytokinins

Biological Roles of Cytokinins Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme By Kurakawa et. Al. Published in Nature Presented by Boyana Grigorova Biological Roles of Cytokinins Cytokinins are positive regulators

More information

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1

SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 SESSION 6: SUPPORT AND TRANSPORT SYSTEMS IN PLANTS PART 1 KEY CONCEPTS In this session we will focus on summarising what you need to know about: - Anatomy of dicotyledonous plants Root and stem: distribution

More information

Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles

Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles Illegitimate translation causes unexpected gene expression from on-target out-of-frame alleles created by CRISPR-Cas9 Shigeru Makino, Ryutaro Fukumura, Yoichi Gondo* Mutagenesis and Genomics Team, RIKEN

More information

Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark the regions where active cell division and rapid division

More information

Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed

Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed Supplementary Figure S1. Amino acid alignment of selected monocot FT-like and TFL-like sequences. Sequences were aligned using ClustalW and analyzed using the Geneious software. Accession numbers of the

More information

Biology Slide 1 of 36

Biology Slide 1 of 36 Biology 1 of 36 2 of 36 Types of Roots Types of Roots What are the two main types of roots? 3 of 36 Types of Roots The two main types of roots are: taproots, which are found mainly in dicots, and fibrous

More information

Supplemental Data. Hou et al. (2016). Plant Cell /tpc

Supplemental Data. Hou et al. (2016). Plant Cell /tpc Supplemental Data. Hou et al. (216). Plant Cell 1.115/tpc.16.295 A Distance to 1 st nt of start codon Distance to 1 st nt of stop codon B Normalized PARE abundance 8 14 nt 17 nt Frame1 Arabidopsis inflorescence

More information

Plant Anatomy: roots, stems and leaves

Plant Anatomy: roots, stems and leaves Plant Anatomy: roots, stems and leaves The plant body has a hierarchy of organs, tissues and cells Plants, like animals, have organs composed of different tissues, which are composed of cells. Tissue is

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants The Science of Plants in Agriculture Pl.Sci 102 Getting to Know Plants Growth and Development of Plants Growth and Development of Plants Why it s important to have knowledge about plant development. What

More information

Reproduction, Seeds and Propagation

Reproduction, Seeds and Propagation Reproduction, Seeds and Propagation Diploid (2n) somatic cell Two diploid (2n) somatic cells Telophase Anaphase Metaphase Prophase I One pair of homologous chromosomes (homologues) II Homologues condense

More information

evoglow - express N kit Cat. No.: product information broad host range vectors - gram negative bacteria

evoglow - express N kit Cat. No.: product information broad host range vectors - gram negative bacteria evoglow - express N kit broad host range vectors - gram negative bacteria product information Cat. No.: 2.1.020 evocatal GmbH 2 Content: Product Overview... 4 evoglow express N kit... 4 The evoglow Fluorescent

More information

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23 Plant Histology Early development, cells & tissues Chapters 22 & 23 Early Development Formation of the embryo The Mature Embryo & Seed Requirements for seed germination Embryo to Adult Apical meristems

More information

Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation

Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation RESEARCH ARTICLE 975 Development 137, 975-984 (2010) doi:10.1242/dev.047662 2010. Published by The Company of Biologists Ltd Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular

More information

Supporting Information

Supporting Information Supporting Information T. Pellegrino 1,2,3,#, R. A. Sperling 1,#, A. P. Alivisatos 2, W. J. Parak 1,2,* 1 Center for Nanoscience, Ludwig Maximilians Universität München, München, Germany 2 Department of

More information

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1 AP BIOLOGY PLANTS FORM AND FUNCTION ACTIVITY #1 NAME DATE HOUR PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY Plant Form & Function Activity #1 page 1 PART II: ROOTS 1. Examine the examples of the two root

More information

23 2 Roots Slide 2 of 36

23 2 Roots Slide 2 of 36 2 of 36 Types of Roots Types of Roots What are the two main types of roots? 3 of 36 Types of Roots The two main types of roots are: taproots, which are found mainly in dicots, and fibrous roots, which

More information

Number-controlled spatial arrangement of gold nanoparticles with

Number-controlled spatial arrangement of gold nanoparticles with Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Number-controlled spatial arrangement of gold nanoparticles with DNA dendrimers Ping Chen,*

More information

The secondary meristem result in growth in a lateral direction, such as the increase in girth of a tree.

The secondary meristem result in growth in a lateral direction, such as the increase in girth of a tree. Chapter 9b-Stems and Material Transport Woody plants produce wood tissue and bark through the activity of secondary meristems: The secondary meristem result in growth in a lateral direction, such as the

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-6 ANATOMY OF FLOWERING PLANTS Chapter-6 ANATOMY OF FLOWERING PLANTS POINTS TO REMEMBER Anatomy : Anatomy is the study of internal structure of organisms. Plant anatomy includes organisation and structure of tissues. Tissue : A group

More information

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc

Supplemental Data. Perrella et al. (2013). Plant Cell /tpc Intensity Intensity Intensity Intensity Intensity Intensity 150 50 150 0 10 20 50 C 150 0 10 20 50 D 0 10 20 Distance (μm) 50 20 40 E 50 F 0 10 20 50 0 15 30 Distance (μm) Supplemental Figure 1: Co-localization

More information

Class XI Chapter 6 Anatomy of Flowering Plants Biology

Class XI Chapter 6 Anatomy of Flowering Plants Biology Class XI Chapter 6 Anatomy of Flowering Plants Biology Question 1: State the location and function of different types of meristem. Meristems are specialised regions of plant growth. The meristems mark

More information

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves

Forms strands that conduct water, minerals, and organic compounds. Much of the inside of nonwoody parts of plants. Includes roots, stems, and leaves Biology II Vascular plants have 3 tissue systems: Dermal Protective outer layer of plant Vascular Forms strands that conduct water, minerals, and organic compounds Ground Much of the inside of nonwoody

More information