12. Finite State Machine Design

Size: px
Start display at page:

Download "12. Finite State Machine Design"

Transcription

1 EECS 7 Winter 3. Finite State Machine esign Profs. Kang Shin & Valeria Bertacco EECS epartment University of Michigan, nn rbor Copyright Frank Vahid Instructors of courses requiring Vahid's igital esign textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities, subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means. Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. ny other use requires explicit permission. Instructors may obtain PowerPoint source or obtain special use permissions from Wiley see for information.

2 FSM esign Goal: esign a FSM that satisfies the requirements of the given problem description (spec.) Follow FSM analysis steps in reverse! (more or less) ) (optional) Construct state diagram ) Construct state/output table 3) Create state assignments rt of design 4) Create transition/output table 5) Choose FF type 6) Construct excitation/output table - Similar to transition/output table Turn the crank 7) Find excitation and output logic equations EECS7 - Copyright 3

3 FSM esign Example Problem description: design a Moore FSM with one input IN and one output OUT, such that OUT is one iff IN is for three consecutive clock cycles State table: EECS7 - Copyright 3 3

4 State ssignments How many state variables are needed to encode four states? In general, if we have n states, how many state variables are needed to encode those states? log n These state assignments may seem rather arbitrary that s because they are! We will soon see the impact that state assignments have on our final circuit EECS7 - Copyright 3 4

5 Transition/output table State/Output Table: Transition/Output Table: IN Q Q OUT + + Q Q Choose FF type: Using flip-flops will simplify things (as we ll see below ) Excitation table Shows FF input values required to create next state values for every current state/input combination If we re designing with FFs, entries in excitation/output table are the same as those in transition/output table! Because of FF characteristic equation: Q + = EECS7 - Copyright 3 5

6 Excitation Logic Excitation/Output Table: Q Q IN Q IN IN Q Q Q IN Q Q IN Output Logic Q IN Q IN Q Q IN EECS7 - Copyright 3 OUT 6

7 Circuit: Excitation Equations: IN Q Q IN Q Q Output Equation: OUT EECS7 - Copyright 3 7

8 In Class Exercise esign a state/output table for the following problem specification: Combination lock: Two inputs, X and Y, encode a binary number between and 3 (X is MSB, i.e., XY = ). single output signal UNLOCK should be set to iff the sequence,, occurs on the inputs in three consecutive clock cycles EECS7 - Copyright 3 8

9 FSM Transition List esign: 5s Vending Machine Inputs d: asserted when user inserts dime n: asserted when user inserts nickel c: asserted when user presses candy button s: asserted when user presses soda button Outputs dc: dispenses candy when asserted ds: dispenses soda when asserted cr: 4-bit unsigned number, represents the user s credit Specifications ll inputs are one-hot Candy costs cents, soda costs 5 cents Money need only be counted up to 5 cents EECS7 - Copyright 3 9

10 Vending Machine State iagram and Transition List dsc d d n n d+n cr = dc = ds = B cr = 5 dc = ds = C cr = dc = ds = E cr = 5 dc = ds = c c s EECS7 - Copyright 3 dndcn cr = dc = ds = nf cr = 5 dc = ds = G cr = dc = ds = Transition List Transition S Q Q Q Expression S + Q Q Q n B d C n d B n C B d E B n d B C n+d E C c C n d c C E c F E s G E s c E F B G

11 Transition List Transition S Q Q Q Expression S + Q Q Q n d B C n d B B n d C E B n d B C C n+d c E C n d c C E E c s F G E s c E F G B Q Q Q B C E F G Output Table EECS7 - Copyright 3 cr dc ds Q dc Q Q Q Q Q Q Q ds Q ndc Q c Q d Q n Q n Q QQ QQQ Q QQ d Q ( Q Q n d) QQQ c QQQ s QQQ sc s nd Q c c

12 5s Vending Machine: Mealy Implementation dcs EECS7 - Copyright 3 c, dc = E cr = 5 s, ds = Outputs are assumed to be unless stated otherwisend n cr = dnd n B cr = 5 C cr = dcnc, dc = The Mealy implementation uses fewer states, and therefore fewer FFs! d+n

13 State ssignments Back to our combinational lock example S B C UNLOCK X Y B B C B C S + EECS7 - Copyright 3 Minimal SOP: 6 literals Minimal POS: literals Perhaps we can do better using smarter state assignments 3

14 nother state assignment approach S B C Maximize the number of s UNLOCK X Y B B C B C S + Q + XY QQ Q Q UNLOCK Q + XY QQ X Y + + Q Q EECS7 - Copyright 3 Minimal SOP: literals Minimal POS: 9 literals Using smarter state assignments improved the next-state circuit cost from literals to 9 literals! 4

15 nother approach: use more flip-flops one-hot encodings (with the addition of ) S B C UNLOCK X Y B B C B C S + Read minterms directly off of transition table: Q Q XY XY Q Q XYQ EECS7 - Copyright 3 Q Q Q XY Q XYQQQ X YQQQ Q XYQQ Q 3 literals How many states are really in our new state machine? What happened to the other 4 states??? 5

16 Unused States Previous design: all unused states were implicitly assigned a next state of (state ) This is known as a safe design If noise causes the machine to enter an unused state, it will return to a used state under any input conditions u u u3 u4 X Y Q Q Q UNLOCK Q Q Q EECS7 - Copyright 3 6

17 Efficient esign: Treat the next-states and outputs of unused states as don t cares Minimizes circuit cost! If an unused state is ever entered, state machine may never return to normal operation u u u3 u4 X Y Q Q Q UNLOCK Q Q Q Finding transition equations now requires 5-variable K-maps! d d d d EECS7 - Copyright 3 7

18 State clustering assigns unused states to behave like used states If noise causes an unused state to be entered, the machine will return to a used state in a single clock cycle X Y Q Q Q x x x Q Q Q UNLOCK Represents (C) and (u) Represents (), (u), (u3), and (u4) EECS7 - Copyright 3 8

Different encodings generate different circuits

Different encodings generate different circuits FSM State Encoding Different encodings generate different circuits no easy way to find best encoding with fewest logic gates or shortest propagation delay. Binary encoding: K states need log 2 K bits i.e.,

More information

Synchronous Sequential Circuit Design

Synchronous Sequential Circuit Design Synchronous Sequential Circuit Design 1 Sequential circuit design In sequential circuit design, we turn some description into a working circuit We first make a state table or diagram to express the computation

More information

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1 Ch 7. Finite State Machines VII - Finite State Machines Contemporary Logic esign 1 Finite State Machines Sequential circuits primitive sequential elements combinational logic Models for representing sequential

More information

Digital Logic Design - Chapter 5

Digital Logic Design - Chapter 5 Digital Logic Design - Chapter 5 S. Design a 2-bit binary up counter a) using positive-edge-triggered D flip-flops. b) using positive-edge-triggered T flip-flops. c) using positive-edge-triggered JK flip-flops.

More information

5 State Minimisation. university of applied sciences hamburg. Digital Systems. Prof. Dr. J. Reichardt Prof. Dr. B. Schwarz

5 State Minimisation. university of applied sciences hamburg. Digital Systems. Prof. Dr. J. Reichardt Prof. Dr. B. Schwarz 5 State Minimisation In an early design phase when a word description of a sequential circuit's function is transformed into a FSM state diagram or state table redundant states may arise. State minimisation

More information

Sequential logic and design

Sequential logic and design Principles Of Digital Design Sequential logic and design Analysis State-based (Moore) Input-based (Mealy) FSM definition Synthesis State minimization Encoding Optimization and timing Copyright 20-20by

More information

Sequential Circuit Design

Sequential Circuit Design Sequential Circuit esign esign Procedure. Specification 2. Formulation Obtain a state diagram or state table 3. State Assignment Assign binary codes to the states 4. Flip-Flop Input Equation etermination

More information

ENEL Digital Circuit Design. Final Examination

ENEL Digital Circuit Design. Final Examination ELECTRICAL AND COMPUTER ENGINEERING ENEL 353 - Digital Circuit Design Final Examination Friday, December 17, 1999 Red Gymnasium, 3:30PM - 6:30 PM Instructions: Time allowed is 3 hours. The examination

More information

Module 10: Sequential Circuit Design

Module 10: Sequential Circuit Design Module : Sequential Circuit esign Wakerly: Chapter 7 (Part 3) : ECE 3233 r. Keith A. eague Spring 23 REA Chapter 7 (skipping references to HL) 23 -Machine esign and Synthesis he creative part, like writing

More information

Clocked Synchronous State-machine Analysis

Clocked Synchronous State-machine Analysis Clocked Synchronous State-machine Analysis Given the circuit diagram of a state machine: Analyze the combinational logic to determine flip-flop input (excitation) equations: D i = F i (Q, inputs) The input

More information

EGR224 F 18 Assignment #4

EGR224 F 18 Assignment #4 EGR224 F 18 Assignment #4 ------------------------------------------------------------------------------------------------------------- Due Date: Friday (Section 10), October 19, by 5 pm (slide it under

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Synchronous Sequential Circuits Basic Design Steps CprE 281: Digital Logic Iowa State University, Ames,

More information

Analysis of Clocked Sequential Circuits

Analysis of Clocked Sequential Circuits Objectives Analysis of Clocked Sequential Circuits The objectives of this lesson are as follows: Analysis of clocked sequential circuits with an example State Reduction with an example State assignment

More information

Symbolic State Minimization

Symbolic State Minimization CSE 27 Introduction to igital Systems Supplementary Reading Symbolic State inimization and An Example Symbolic State inimization In constructing state diagrams, it often occurs that the number of symbolic

More information

Lecture 10: Synchronous Sequential Circuits Design

Lecture 10: Synchronous Sequential Circuits Design Lecture 0: Synchronous Sequential Circuits Design. General Form Input Combinational Flip-flops Combinational Output Circuit Circuit Clock.. Moore type has outputs dependent only on the state, e.g. ripple

More information

Synchronous Sequential Circuit Design. Dr. Ehab A. H. AL-Hialy Page 1

Synchronous Sequential Circuit Design. Dr. Ehab A. H. AL-Hialy Page 1 Synchronous Sequential Circuit Design Dr. Ehab A. H. AL-Hialy Page Motivation Analysis of a few simple circuits Generalizes to Synchronous Sequential Circuits (SSC) Outputs are Function of State (and Inputs)

More information

FYSE420 DIGITAL ELECTRONICS

FYSE420 DIGITAL ELECTRONICS FYSE42 IGITAL ELECTRONICS Lecture 4 [] [2] [3] IGITAL LOGIC CIRCUIT ANALYSIS & ESIGN Nelson, Nagle, Irvin, Carrol ISBN -3-463894-8 IGITAL ESIGN Morris Mano Fourth edition ISBN -3-98924-3 igital esign Principles

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: igital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ State Minimization CprE 281: igital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Topics for Lecture #9. Button input processor

Topics for Lecture #9. Button input processor opics for Lecture # Reminder: midterm examination # next uesday starting at :0am. Examples of small state machines simultaneous button push detector (continued) button push processor pulse stretcher General

More information

Design Example: 4-bit Sequence Detector

Design Example: 4-bit Sequence Detector Design Example: 4-bit Sequence Detector We are asked to design a 4-bit sequence detector. For each 4 bits that are input, we need to see whether they match one of two given sequences: 1010 or 0110. The

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

Digital Logic Design. Midterm #2

Digital Logic Design. Midterm #2 EECS: igital Logic esign r. nthony. Johnson s7m2s_dild7.fm - igital Logic esign Midterm #2 Problems Points. 5 2. 4 3. 6 Total 5 Was the exam fair? yes no EECS: igital Logic esign r. nthony. Johnson s7m2s_dild7.fm

More information

FSM model for sequential circuits

FSM model for sequential circuits 1 FSM model for sequential circuits The mathematical model of a sequential circuit is called finite-state machine. FSM is fully characterized by: S Finite set of states ( state ~ contents of FFs) I Finite

More information

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process Parity Checker Example A string of bits has even parity if the number of 1 s in the string is even. Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if the parity thus far is even

More information

Finite State Machine. By : Ali Mustafa

Finite State Machine. By : Ali Mustafa Finite State Machine By : Ali Mustafa So Far We have covered the memory elements issue and we are ready to implement the sequential circuits. We need to know how to Deal(analyze) with a sequential circuit?

More information

ENGG 1203 Tutorial. Solution (b) Solution (a) Simplification using K-map. Combinational Logic (II) and Sequential Logic (I) 8 Feb Learning Objectives

ENGG 1203 Tutorial. Solution (b) Solution (a) Simplification using K-map. Combinational Logic (II) and Sequential Logic (I) 8 Feb Learning Objectives ENGG 23 Tutorial Simplification using K-map Combinational Logic (II) and Sequential Logic (I) 8 Feb Learning Objectives Apply Karnaugh map for logic simplification Design a finite state machine News HW

More information

6. Finite State Machines

6. Finite State Machines 6. Finite State Machines 6.4x Computation Structures Part Digital Circuits Copyright 25 MIT EECS 6.4 Computation Structures L6: Finite State Machines, Slide # Our New Machine Clock State Registers k Current

More information

Digital Design 2010 DE2 1

Digital Design 2010 DE2 1 1 Underviser: D. M. Akbar Hussain Litteratur: Digital Design Principles & Practices 4 th Edition by yj John F. Wakerly 2 DE2 1 3 4 DE2 2 To enable students to apply analysis, synthesis and implementation

More information

EECS 270 Midterm 2 Exam Answer Key Winter 2017

EECS 270 Midterm 2 Exam Answer Key Winter 2017 EES 270 Midterm 2 Exam nswer Key Winter 2017 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. NOTES: 1. This part of the exam

More information

Models for representing sequential circuits

Models for representing sequential circuits Sequential Circuits Models for representing sequential circuits Finite-state machines (Moore and Mealy) Representation of memory (states) Changes in state (transitions) Design procedure State diagrams

More information

Finite State Machine (FSM)

Finite State Machine (FSM) Finite State Machine (FSM) Consists of: State register Stores current state Loads next state at clock edge Combinational logic Computes the next state Computes the outputs S S Next State CLK Current State

More information

Learning Objectives:

Learning Objectives: Learning Objectives: t the end of this topic you will be able to; draw a block diagram showing how -type flip-flops can be connected to form a synchronous counter to meet a given specification; explain

More information

Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd..

Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd.. Indian Institute of Technology Jodhpur, Year 2017-2018 Digital Logic and Design (Course Code: EE222) Lecture 19: Sequential Circuits Contd.. Course Instructor: Shree Prakash Tiwari Email: sptiwari@iitj.ac.in

More information

Example: vending machine

Example: vending machine Example: vending machine Release item after 15 cents are deposited Single coin slot for dimes, nickels o change Reset Coin Sensor Vending Machine FSM Open Release Mechanism Clock Spring 2005 CSE370 - guest

More information

Timing Constraints in Sequential Designs. 63 Sources: TSR, Katz, Boriello & Vahid

Timing Constraints in Sequential Designs. 63 Sources: TSR, Katz, Boriello & Vahid Timing Constraints in Sequential esigns 63 Sources: TSR, Katz, Boriello & Vahid Where we are now. What we covered last time: FSMs What we ll do next: Timing constraints Upcoming deadlines: ZyBook today:

More information

Example: A vending machine

Example: A vending machine Lecture 22 Logistics HW8 due Monday (6/2), HW9 due Friday (6/6) Ant extra credit due 6/6 Take home extra credit final handed out 6/6 Final exam 6/9 8:30am Review? Last lecture Simplification Today State

More information

COE 202: Digital Logic Design Sequential Circuits Part 3. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 3. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 3 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Important Design Concepts State Reduction and Assignment Design

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

EE 209 Logic Cumulative Exam Name:

EE 209 Logic Cumulative Exam Name: EE 209 Logic Cumulative Exam Name: 1.) Answer the following questions as True or False a.) A 4-to-1 multiplexer requires at least 4 select lines: true / false b.) An 8-to-1 mux and no other logi can be

More information

COE 202: Digital Logic Design Sequential Circuits Part 3. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 3. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 3 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives State Reduction and Assignment Design of Synchronous Sequential

More information

Digital Design. Sequential Logic

Digital Design. Sequential Logic Principles Of igital esign Chapter 6 Sequential Logic Chapter preview Boolean algebra 3 Logic gates and flip-flops 3 Finite-state machine 6 Logic design techniques 4 Sequential design techniques 6 Binary

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Final Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Tuesday Dec 12 th 13:00-15:00 (1-3pm) 2 hour

More information

IE1204 Digital Design. L10: State Machines (Part 2) Masoumeh (Azin) Ebrahimi Elena Dubrova

IE1204 Digital Design. L10: State Machines (Part 2) Masoumeh (Azin) Ebrahimi Elena Dubrova IE1204 Digital Design L10: State Machines (Part 2) Masoumeh (Azin) Ebrahimi (masebr@kth.se) Elena Dubrova (dubrova@kth.se) KTH / ICT / ES This lecture BV pp. 528-532, 557-567 IE1204 Digital Design, Autumn2015

More information

14.1. Unit 14. State Machine Design

14.1. Unit 14. State Machine Design 4. Unit 4 State Machine Design 4.2 Outcomes I can create a state diagram to solve a sequential problem I can implement a working state machine given a state diagram STATE MACHINES OVERVIEW 4.3 4.4 Review

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Midterm02 Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Thursday Nov. 16 th In normal lecture (13:00-14:15)

More information

State Graphs FSMs. Page 1

State Graphs FSMs. Page 1 State Graphs FSMs Page 1 Binary Counter State Graph 00 Q1 Q0 N1 N0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 11 01 State graphs are graphical representations of TT s They contain the same information: no more, no

More information

Chapter 7. Synchronous Sequential Networks. Excitation for

Chapter 7. Synchronous Sequential Networks. Excitation for Chapter 7 Excitation for Synchronous Sequential Networks J. C. Huang, 2004 igital Logic esign 1 Structure of a clocked synchronous sequential network Mealy model of a clocked synchronous sequential network

More information

L10 State Machine Design Topics

L10 State Machine Design Topics L State Machine Design Topics States Machine Design Other topics on state machine design Equivalent sequential machines Incompletely specified machines One Hot State Machines Ref: text Unit 15.4, 15.5,

More information

3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value

3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value EGC22 Digital Logic Fundamental Additional Practice Problems. Complete the following table of equivalent values. Binary. Octal 35.77 33.23.875 29.99 27 9 64 Hexadecimal B.3 D.FD B.4C 2. Calculate the following

More information

ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter. Lab 3. Lab 3 Gate Timing. Lab 3 Steps in designing a State Machine. Timing diagram of a DFF

ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter. Lab 3. Lab 3 Gate Timing. Lab 3 Steps in designing a State Machine. Timing diagram of a DFF ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter Timing diagram of a DFF Lab 3 Gate Timing difference timing for difference kind of gate, cost dependence (1) Setup Time = t2-t1 (2) Propagation

More information

EE 209 Spiral 1 Exam Solutions Name:

EE 209 Spiral 1 Exam Solutions Name: EE 29 Spiral Exam Solutions Name:.) Answer the following questions as True or False a.) A 4-to- multiplexer requires at least 4 select lines: true / false b.) An 8-to- mux and no other logic can be used

More information

Lecture 8: Sequential Networks and Finite State Machines

Lecture 8: Sequential Networks and Finite State Machines Lecture 8: Sequential Networks and Finite State Machines CSE 140: Components and Design Techniques for Digital Systems Spring 2014 CK Cheng, Diba Mirza Dept. of Computer Science and Engineering University

More information

ASYNCHRONOUS SEQUENTIAL CIRCUITS

ASYNCHRONOUS SEQUENTIAL CIRCUITS ASYNCHRONOUS SEQUENTIAL CIRCUITS Sequential circuits that are not snchronized b a clock Asnchronous circuits Analsis of Asnchronous circuits Snthesis of Asnchronous circuits Hazards that cause incorrect

More information

Time Allowed 3:00 hrs. April, pages

Time Allowed 3:00 hrs. April, pages IGITAL ESIGN COEN 32 Prof. r. A. J. Al-Khalili Time Allowed 3: hrs. April, 998 2 pages Answer All uestions No materials are allowed uestion a) esign a half subtractor b) esign a full subtractor c) Using

More information

Counters. We ll look at different kinds of counters and discuss how to build them

Counters. We ll look at different kinds of counters and discuss how to build them Counters We ll look at different kinds of counters and discuss how to build them These are not only examples of sequential analysis and design, but also real devices used in larger circuits 1 Introducing

More information

Asynchronous sequence circuits

Asynchronous sequence circuits Asynchronous sequence circuits An asynchronous sequence machine is a sequence circuit without flip-flops Asynchronous sequence machines are based on combinational gates with feedback Upon analysis it is

More information

CSE140: Design of Sequential Logic

CSE140: Design of Sequential Logic CSE4: Design of Sequential Logic Instructor: Mohsen Imani Flip Flops 2 Counter 3 Up counter 4 Up counter 5 FSM with JK-Flip Flop 6 State Table 7 State Table 8 Circuit Minimization 9 Circuit Timing Constraints

More information

Chapter 6. Synchronous Sequential Circuits

Chapter 6. Synchronous Sequential Circuits Chapter 6 Synchronous Sequential Circuits In a combinational circuit, the values of the outputs are determined solely by the present values of its inputs. In a sequential circuit, the values of the outputs

More information

Chapter 15 SEQUENTIAL CIRCUITS ANALYSIS, STATE- MINIMIZATION, ASSIGNMENT AND CIRCUIT IMPLEMENTATION

Chapter 15 SEQUENTIAL CIRCUITS ANALYSIS, STATE- MINIMIZATION, ASSIGNMENT AND CIRCUIT IMPLEMENTATION Chapter 15 SEQUENTIAL CIRCUITS ANALYSIS, STATE- MINIMIZATION, ASSIGNMENT AND CIRCUIT IMPLEMENTATION Lesson 2 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT Ch15L2- "Digital Principles and Design", Raj Kamal, Pearson

More information

Lecture (08) Synchronous Sequential Logic

Lecture (08) Synchronous Sequential Logic Lecture (08) Synchronous Sequential Logic By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 2018, CSE303 Logic design II Analysis of Clocked Sequential Circuits The behavior of a clocked sequential

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

Digital Logic Design. Midterm #2

Digital Logic Design. Midterm #2 EECS: igital Logic esign r. nthony. Johnson f5m2s_il7.fm - igital Logic esign Miterm #2 Problems Points. 5 2. 4 3. 6 Total 5 Was the exam fair? yes no EECS: igital Logic esign r. nthony. Johnson f5m2s_il7.fm

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 14:332:231 IGITL LOGI ESIGN Ivan Marsic, Rutgers University Electrical & omputer Engineering all 2013 Lecture #17: locked Synchronous -Machine nalysis locked Synchronous Sequential ircuits lso known as

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 5 Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly Language What a pain! Understand

More information

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid CSE140: Components and Design Techniques for Digital Systems Midterm Information Instructor: Mohsen Imani Midterm Topics In general: everything that was covered in homework 1 and 2 and related lectures,

More information

Synchronous Sequential Circuit Design. Digital Computer Design

Synchronous Sequential Circuit Design. Digital Computer Design Synchronous Sequential Circuit Design Digital Computer Design Races and Instability Combinational logic has no cyclic paths and no races If inputs are applied to combinational logic, the outputs will always

More information

Lecture 14 Finite state machines

Lecture 14 Finite state machines Lecture 14 Finite state machines Finite state machines are the foundation of nearly all digital computation. The state diagram captures the desired system behavior A formulaic process turns this diagram

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Following the slides of Dr. Ahmed H. Madian Lecture 10 محرم 1439 ه Winter

More information

Appendix A: Digital Logic. CPSC 352- Computer Organization

Appendix A: Digital Logic. CPSC 352- Computer Organization - CPSC 352- Computer Organization -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties of oolean lgebra.6 The Sum-of-Products Form, and Logic Diagrams.7 The

More information

Digital Electronics Sequential Logic

Digital Electronics Sequential Logic /5/27 igital Electronics Sequential Logic r. I. J. Wassell Sequential Logic The logic circuits discussed previously are known as combinational, in that the output depends only on the condition of the latest

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

CSE140: Digital Logic Design Registers and Counters

CSE140: Digital Logic Design Registers and Counters CSE14: Digital Logic Design Registers and Counters Prof. Tajana Simunic Rosing 38 Where we are now. What we covered last time: ALUs, SR Latch Latches and FlipFlops (FFs) Registers What we ll do next FSMs

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

EECS 270 Midterm Exam 2 Fall 2009

EECS 270 Midterm Exam 2 Fall 2009 EECS 270 Midterm Exam 2 Fall 2009 Name: unique name: UMID: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: NOTES: Problem # Points 1&2

More information

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007 EECS 150 - Components and Design Techniques for Digital Systems FSMs 9/11/2007 Sarah Bird Electrical Engineering and Computer Sciences University of California, Berkeley Slides borrowed from David Culler

More information

Final Exam. ECE 25, Spring 2008 Thursday, June 12, Problem Points Score Total 90

Final Exam. ECE 25, Spring 2008 Thursday, June 12, Problem Points Score Total 90 Final Exam ECE 25, Spring 2008 Thursday, June 12, 2008 Name: PID: Problem Points Score 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 Total 90 1) Number representation (10 pts) a) For each binary vector

More information

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department Page of COE 22: Digital Logic Design (3--3) Term (Fall 22) Final Exam Sunday January

More information

Ch 9. Sequential Logic Technologies. IX - Sequential Logic Technology Contemporary Logic Design 1

Ch 9. Sequential Logic Technologies. IX - Sequential Logic Technology Contemporary Logic Design 1 Ch 9. Sequential Logic Technologies Technology Contemporary Logic Design Overview Basic Sequential Logic Components FSM Design with Counters FSM Design with Programmable Logic FSM Design with More Sophisticated

More information

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 Prof. Martha A. Kim Columbia University Due October 10, 2013 at 10:10 AM Write your name and UNI on your solutions Show your work for each

More information

CE1911 LECTURE FSM DESIGN PRACTICE DAY 1

CE1911 LECTURE FSM DESIGN PRACTICE DAY 1 REVIEW MATERIAL 1. Combinational circuits do not have memory. They calculate instantaneous outputs based only on current inputs. They implement basic arithmetic and logic functions. 2. Sequential circuits

More information

Q: Examine the relationship between X and the Next state. How would you describe this circuit? A: An inverter which is synched with a clock signal.

Q: Examine the relationship between X and the Next state. How would you describe this circuit? A: An inverter which is synched with a clock signal. /2/2 OF 7 Next, let s reverse engineer a T-Flip flop Prob. (Pg 529) Note that whenever T is equal to, there is a state change, otherwise, there isn t. In this circuit, (x) determines whether the output

More information

EECS150 - Digital Design Lecture 23 - FSMs & Counters

EECS150 - Digital Design Lecture 23 - FSMs & Counters EECS150 - Digital Design Lecture 23 - FSMs & Counters April 8, 2010 John Wawrzynek Spring 2010 EECS150 - Lec22-counters Page 1 One-hot encoding of states. One FF per state. State Encoding Why one-hot encoding?

More information

Lecture 17: Designing Sequential Systems Using Flip Flops

Lecture 17: Designing Sequential Systems Using Flip Flops EE210: Switching Systems Lecture 17: Designing Sequential Systems Using Flip Flops Prof. YingLi Tian April 11, 2019 Department of Electrical Engineering The City College of New York The City University

More information

ALU, Latches and Flip-Flops

ALU, Latches and Flip-Flops CSE14: Components and Design Techniques for Digital Systems ALU, Latches and Flip-Flops Tajana Simunic Rosing Where we are. Last time: ALUs Plan for today: ALU example, latches and flip flops Exam #1 grades

More information

Written exam with solutions IE1204/5 Digital Design Friday 13/

Written exam with solutions IE1204/5 Digital Design Friday 13/ Written eam with solutions IE204/5 Digital Design Friday / 207 08.00-2.00 General Information Eaminer: Ingo Sander. Teacher: Kista, William Sandqvist tel 08-7904487 Teacher: Valhallavägen, Ahmed Hemani

More information

Present Next state Output state w = 0 w = 1 z A A B 0 B A C 0 C A C 1

Present Next state Output state w = 0 w = 1 z A A B 0 B A C 0 C A C 1 W Combinational circuit Flip-flops Combinational circuit Z cycle: t t t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t : : Figure 8.. The general form of a sequential circuit. Figure 8.2. Sequences of input and output

More information

Week-5. Sequential Circuit Design. Acknowledgement: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA.

Week-5. Sequential Circuit Design. Acknowledgement: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA. Week-5 Sequential Circuit Design Acknowledgement: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA. Storing a value: SR = 00 What if S = 0 and R = 0? The equations on the

More information

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati

CS221: Digital Design. Dr. A. Sahu. Indian Institute of Technology Guwahati CS221: Digital Design Counter&Registers Dr. A. Sahu DeptofComp.Sc.&Engg. Indian Institute of Technology Guwahati Outline Counter : Synchronous Vs Asynchronous Counter: Finite it State t Machine Mhi A register

More information

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 Solutions

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 Solutions CSEE W3827 Fundamentals of Computer Systems Homework Assignment 3 Solutions Prof. Martha A. Kim Columbia University Due October 10, 2013 at 10:10 AM Write your name and UNI on your solutions Show your

More information

15.1 Elimination of Redundant States

15.1 Elimination of Redundant States 15.1 Elimination of Redundant States In Ch. 14 we tried not to have unnecessary states What if we have extra states in the state graph/table? Complete the table then eliminate the redundant states Chapter

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

COEN 312 DIGITAL SYSTEMS DESIGN - LECTURE NOTES Concordia University

COEN 312 DIGITAL SYSTEMS DESIGN - LECTURE NOTES Concordia University 1 OEN 312 DIGIAL SYSEMS DESIGN - LEURE NOES oncordia University hapter 6: Registers and ounters NOE: For more examples and detailed description of the material in the lecture notes, please refer to the

More information

Last lecture Counter design Finite state machine started vending machine example. Today Continue on the vending machine example Moore/Mealy machines

Last lecture Counter design Finite state machine started vending machine example. Today Continue on the vending machine example Moore/Mealy machines Lecture 2 Logistics HW6 due Wednesday Lab 7 this week (Tuesday exception) Midterm 2 Friday (covers material up to simple FSM (today)) Review on Thursday Yoky office hour on Friday moved to Thursday 2-:2pm

More information

EEE2135 Digital Logic Design

EEE2135 Digital Logic Design EEE2135 Digital Logic Design Chapter 7. Sequential Circuits Design 서강대학교 전자공학과 1. Model of Sequential Circuits 1) Sequential vs. Combinational Circuits a. Sequential circuits: Outputs depend on both the

More information

6 Synchronous State Machine Design

6 Synchronous State Machine Design Design of synchronous counters. Based on the description of the problem, determine the required number n of the FFs - the smallest value of n is such that the number of states N 2 n and the desired counting

More information

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction

Chapter 5. Digital systems. 5.1 Boolean algebra Negation, conjunction and disjunction Chapter 5 igital systems digital system is any machine that processes information encoded in the form of digits. Modern digital systems use binary digits, encoded as voltage levels. Two voltage levels,

More information

Computers also need devices capable of Storing data and information Performing mathematical operations on such data

Computers also need devices capable of Storing data and information Performing mathematical operations on such data Sequential Machines Introduction Logic devices examined so far Combinational Output function of input only Output valid as long as input true Change input change output Computers also need devices capable

More information