Thermodynamics and statistical mechanics in materials modelling II

Size: px
Start display at page:

Download "Thermodynamics and statistical mechanics in materials modelling II"

Transcription

1 Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1 Statstcal Mechancs An attempt to relate the macroscopc thermodynamc propertes of a system to the ensemble behavour of ts components. Each thermodynamc state of the system (represented by partcular values of the state functons) s termed a macrostate. For each macrostate, there are many correspondng mcrostates, whch are formed from the product of many sngle partcle states or (for strongly nteractng systems) a sngle many-partcle state. Product of sngle partcle states or a many partcle state Mcrostate Macrostate E E Ψ Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 1

2 Course MP3 Lecture 8/11/006 (JAE). Some prncples of Statstcal Mechancs Ergodcty and detaled balance Most results n statstcal mechancs assume ergodcty,.e. that every mcrostate correspondng to a gven macrostate s accessble (ths s not always true n practce) The prncple of detaled balance says that the transton rate from one mcrostate to another must be equal to the rate of the reverse process Thermally solated system For an solated system, the macrostate occupaton probabltes are equal. Ths s termed the mcrocanoncal or VE ensemble Thermal equlbrum wth a heat reservor For any system n thermal equlbrum wth a reservor at fnte temperature, the macrostates have oltzmann occupances Ths s termed the canoncal or VT ensemble.3 Gbbs entropy Gbbs entropy S k p ln p The Gbbs entropy nvolves the probablty p of fndng the system n a partcular mcrostate wth energy E. The probablty dstrbuton of p for the system can be derved from the Gbbs entropy by functonal optmsaton. It turns out that the assumpton that all degenerate mcrostates of a system are equally lkely to be occuped s equvalent to maxmsng the Gbbs entropy subject to macroscopc constrants on the extensve varables. Ths s done usng standard Lagrange multpler technques. Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson.

3 Course MP3 Lecture 8/11/006 (JAE).4 Prncple of maxmum entropy (MaxEnt) efore explctly carryng out ths maxmsaton, t s worth pausng to thnk about what we are actually dong. MaxEnt prncples are used n a wde range of dfferent physcal applcatons, e.g. nformaton theory (Shannon entropy) and sgnal processng (mage reconstructon). The phlosophy s always to maxmse the uncertanty (.e. nformatonal entropy) n the unknown degrees of freedom, subject to macroscopc constrants on the system as a whole. The results s always the most probable occupaton of mcrostates consstent wth total system state..5 The oltzmann dstrbuton Consder a system wth average energy <U> wth a fxed number of partcles n thermal equlbrum at temperature T. The constrants on the total occupancy and ensemble energy are: p 1 pe U So, maxmsng S subject to these constrants: p p k p ln λ 1 µ j p j p j p je j E 0 j j j exp ( E / kt ) ( E / k T ) 1 exp Z ( E k T ) / exp whch s the famlar oltzmann dstrbuton for the mcrostates. Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 3

4 Course MP3 Lecture 8/11/006 (JAE).6.1 The partton functon The denomnator n the expresson for p s called the partton functon and s usually denoted by Z (for Zustandsdchte). ( E k T ) Z exp / The partton functon s a dmensonless normalsng sum of oltzmann factors over all mcrostates of the system. It s extremely mportant because t relates mcroscopc thermodynamc varables (whch we cannot measure) to macroscopc functons of state (whch we can measure). The partton functon s a complete thermodynamc descrpton of the system!.6. The partton functon All the thermodynamc functons of state can be obtaned drectly from the partton functon, e.g. F ktln Z 1 Z U S k ln Z + U / T Z β Use the relevant Maxwell relaton to obtan other thermodynamc functons of state. Smlar results can be obtaned for systems n dffusve equlbrum (varable number of partcles) va the the grand partton functon (see examples sheet 1). Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 4

5 Course MP3 Lecture 8/11/006 (JAE).7.1 Fluctuaton-dsspaton theorems As mentoned before, temperature can be thought of as fluctuatons n the nternal energy of a system n contact wth a thermal reservor. We can relate the energy fluctuatons drectly to the temperature usng the partton functon, because the partton functon gves us total thermodynamc knowledge of the system. 1 Z U Z β 1 Z U Z β ( ) Z exp E / k T U U U.7.3 Fluctuaton-dsspaton theorems The result for the mean squared energy fluctuatons can be generalsed to the form: k T A x x where x s any thermodynamc state functon and A s the avalablty.the avalablty measures the amount of useful energy whch can be extracted from a system. A U TS + pv µ The double dervatve of A w.r.t. the state functon s called the thermodynamc response functon. The system responds so that the amount of fluctuaton and dsspaton prevents energy from the reservor accumulatng ndefntely. Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 5

6 Course MP3 Lecture 8/11/006 (JAE).8 Usng the partton functon Recall that the partton functon s a dmensonless sum of oltzmann factors over all mcrostates of the system, and provdes us wth a complete thermodynamc descrpton of a system. ( E / k T ) g exp( E k T ) Z exp / We wll now see how to wrte down the partton functon for a smple physcal system, n order to obtan macroscopc functons of state from the mcroscopc thermodynamc varables. n n n.9.1 Partton functon of an deal gas You wll all have met the deal (or perfect) gas before, and ts treatment n statstcal mechancs s a good example of general concepts we have dscussed. Recall that an deal gas conssts of an assembly of pontlke non-nteractng partcles confned n a cell of fxed volume. Mcroscopc descrpton Macroscopc descrpton pv nrt Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 6

7 Course MP3 Lecture 8/11/006 (JAE).9. Partton functon of an deal gas The mcroscopc varables (or degrees of freedom) are the partcle momenta, and so the partton functon for a sngle partcle n ths system can be wrtten: 4πV Z1 Ztr p 3 h 0 exp( βp / m).dp where p are the possble momenta of the partcle. The partton functon of the entre system can be approxmated smply as the product of each sngle partcle state, takng account of ndstngushablty. Z Z1Z Z /! Z1 /!.9.3 Partton functon of an deal gas The full many-partcle partton functon s gven by: Z, tr 1 4πV p p m p h exp( β / ).d 3! 0 V 1! λ T 3 from we can then calculate: λ T βh πm 1/ thermal wavelength ev F tr kt ln Z, tr kt ln 3 λt F tr ev πme Str k ln T V βh 3/ Sackur-Tetrode formula Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 7

8 Course MP3 Lecture 8/11/006 (JAE).9.4 Partton functon of an deal gas We can also use the partton functon to derve the deal gas equaton. df SdT pdv F ev p k T V V ln 3 T λt kt p V Ths equaton of state s ndependent of any nternal degrees of freedom, and apples to any system where the partcles do not nteract wth each other..10 Summary In ths lecture, we ntroduced the formalsm of statstcal mechancs, whch connects mcroscopc degrees of freedom wth macroscopc state functons. y maxmsng the Gbbs entropy, we obtaned the oltzmann dstrbuton of mcrostate occupances for a system n thermal equlbrum wth a heat reservor. We dentfed the partton functon, and saw that t contans all thermodynamc nformaton about a system, ncludng the magntude of any fluctuatons. We saw how to form the partton functon of an deal gas, and use ths to derve the famlar equaton of state. Copyrght 006 Unversty of Cambrdge. ot to be quoted or coped wthout permsson. 8

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1

STATISTICAL MECHANICAL ENSEMBLES 1 MICROSCOPIC AND MACROSCOPIC VARIABLES PHASE SPACE ENSEMBLES. CHE 524 A. Panagiotopoulos 1 CHE 54 A. Panagotopoulos STATSTCAL MECHACAL ESEMBLES MCROSCOPC AD MACROSCOPC ARABLES The central queston n Statstcal Mechancs can be phrased as follows: f partcles (atoms, molecules, electrons, nucle,

More information

Statistical mechanics handout 4

Statistical mechanics handout 4 Statstcal mechancs handout 4 Explan dfference between phase space and an. Ensembles As dscussed n handout three atoms n any physcal system can adopt any one of a large number of mcorstates. For a quantum

More information

Monte Carlo method II

Monte Carlo method II Course MP3 Lecture 5 14/11/2006 Monte Carlo method II How to put some real physcs nto the Monte Carlo method Dr James Ellott 5.1 Monte Carlo method revsted In lecture 4, we ntroduced the Monte Carlo (MC)

More information

Lecture 3: Boltzmann distribution

Lecture 3: Boltzmann distribution Lecture 3: Boltzmann dstrbuton Statstcal mechancs: concepts Ams: Dervaton of Boltzmann dstrbuton: Basc postulate of statstcal mechancs. All states equally lkely. Equal a-pror probablty: Statstcal vew of

More information

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution 10.40 Appendx Connecton to Thermodynamcs Dervaton of Boltzmann Dstrbuton Bernhardt L. Trout Outlne Cannoncal ensemble Maxmumtermmethod Most probable dstrbuton Ensembles contnued: Canoncal, Mcrocanoncal,

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

ESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy

ESCI 341 Atmospheric Thermodynamics Lesson 10 The Physical Meaning of Entropy ESCI 341 Atmospherc Thermodynamcs Lesson 10 The Physcal Meanng of Entropy References: An Introducton to Statstcal Thermodynamcs, T.L. Hll An Introducton to Thermodynamcs and Thermostatstcs, H.B. Callen

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

Q e E i /k B. i i i i

Q e E i /k B. i i i i Water and Aqueous Solutons 3. Lattce Model of a Flud Lattce Models Lattce models provde a mnmalst, or coarse-graned, framework for descrbng the translatonal, rotatonal, and conformatonal degrees of freedom

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.62 Physcal Chemstry II Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.62 Lecture #8: Boltzmann, Ferm-Drac,

More information

5.60 Thermodynamics & Kinetics Spring 2008

5.60 Thermodynamics & Kinetics Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.60 Thermodynamcs & Knetcs Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.60 Sprng 2008 Lecture #29 page 1

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

PHY688, Statistical Mechanics

PHY688, Statistical Mechanics Department of Physcs & Astronomy 449 ESS Bldg. Stony Brook Unversty January 31, 2017 Nuclear Astrophyscs James.Lattmer@Stonybrook.edu Thermodynamcs Internal Energy Densty and Frst Law: ε = E V = Ts P +

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Entropy generation in a chemical reaction

Entropy generation in a chemical reaction Entropy generaton n a chemcal reacton E Mranda Área de Cencas Exactas COICET CCT Mendoza 5500 Mendoza, rgentna and Departamento de Físca Unversdad aconal de San Lus 5700 San Lus, rgentna bstract: Entropy

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Thermodynamics and Kinetics of Solids 33. III. Statistical Thermodynamics. Â N i = N (5.3) N i. i =0. Â e i = E (5.4) has a maximum.

Thermodynamics and Kinetics of Solids 33. III. Statistical Thermodynamics. Â N i = N (5.3) N i. i =0. Â e i = E (5.4) has a maximum. hermodynamcs and Knetcs of Solds 33 III. Statstcal hermodynamcs 5. Statstcal reatment of hermodynamcs 5.1. Statstcs and Phenomenologcal hermodynamcs. Calculaton of the energetc state of each atomc or molecular

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Lecture 2 Grand Canonical Ensemble GCE

Lecture 2 Grand Canonical Ensemble GCE Lecture 2 Grand Canoncal Ensemble GCE 2.1 hermodynamc Functons Contnung on from last day we also note that thus, dω = df dµ µd = Sd P dv dµ (2.1) P = V = S = From the expresson for the entropy, we therefore

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Statistical mechanics canonical ensemble

Statistical mechanics canonical ensemble canoncal ensemble system n thermal equlbrum wth bath of system probablty of mcro state T = k/ bath system p = 1 Z e E Z = e E average energy of system he = p E = what about? P E E e P e E = @ ln Z @ replcate

More information

Topics on Statistical Mechanics TCMM Lecture Notes

Topics on Statistical Mechanics TCMM Lecture Notes Topcs on Statstcal Mechancs TCMM Lecture otes Fernando Fernandes Department of Chemstry and Bochemstry, Faculty of Scences, Unversty of Lsbon, Portugal Emal: fslva@fc.ul.pt A short revew of basc concepts

More information

Lecture 5: Ideal monatomic gas

Lecture 5: Ideal monatomic gas Lecture 5: Ideal monatomc gas Statstcal mechancs of the perfect gas Ams: Key new concepts and methods: Countng states Waves n a box. Demonstraton that β / kt Heat, work and Entropy n statstcal mechancs

More information

Property calculation I

Property calculation I .0, 3.0, 0.333,.00 Introducton to Modelng and Smulaton Sprng 0 Part I Contnuum and partcle methods Property calculaton I Lecture 3 Markus J. Buehler Laboratory for Atomstc and Molecular Mechancs Department

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Part II Statistical Mechanics, Lent 2005

Part II Statistical Mechanics, Lent 2005 Part II Statstcal Mechancs, Lent 25 Prof. R.R. Horgan February 14, 25 1 Statstcal Mechancs 1.1 Introducton The classcal and quantum dynamcs of smple systems wth few degrees of freedom s well understood

More information

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A.

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A. A quote of the week (or camel of the week): here s no expedence to whch a man wll not go to avod the labor of thnkng. homas A. Edson Hess law. Algorthm S Select a reacton, possbly contanng specfc compounds

More information

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

10.34 Fall 2015 Metropolis Monte Carlo Algorithm 10.34 Fall 2015 Metropols Monte Carlo Algorthm The Metropols Monte Carlo method s very useful for calculatng manydmensonal ntegraton. For e.g. n statstcal mechancs n order to calculate the prospertes of

More information

Quantum Statistical Mechanics

Quantum Statistical Mechanics Chapter 8 Quantum Statstcal Mechancs 8.1 Mcrostates For a collecton of N partcles the classcal mcrostate of the system s unquely specfed by a vector (q, p) (q 1...q N, p 1...p 3N )(q 1...q 3N,p 1...p 3N

More information

THE STATISTICAL ENSEMBLES II.1. Review of Thermodynamics

THE STATISTICAL ENSEMBLES II.1. Review of Thermodynamics THE STATISTICAL ENSEMBLES II.1. Revew of Thermodynamcs Consder a physcal system K contanng c dfferent chemcal speces, each wth N j molecules ( j = 1,2,...,c). The external deformaton coordnates of the

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Chap.5 Statistical Thermodynamics

Chap.5 Statistical Thermodynamics Chap5 Statstcal Thermodynamcs () Free expanson & adabatc from macroscopc: Δ S dq T R adabatc Q, free expanson W rrev rrev ΔU, deal gas ΔT If reversble & sothermal QR + WR ΔU 因 Uf(T) RT QR WR ( Pd ) Pd

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

NAME and Section No.

NAME and Section No. Chemstry 391 Fall 2007 Exam I KEY (Monday September 17) 1. (25 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). Defne the terms: open system, closed system and solated system

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

CIE4801 Transportation and spatial modelling Trip distribution

CIE4801 Transportation and spatial modelling Trip distribution CIE4801 ransportaton and spatal modellng rp dstrbuton Rob van Nes, ransport & Plannng 17/4/13 Delft Unversty of echnology Challenge the future Content What s t about hree methods Wth specal attenton for

More information

Lecture 10. Reading: Notes and Brennan Chapter 5

Lecture 10. Reading: Notes and Brennan Chapter 5 Lecture tatstcal Mechancs and Densty of tates Concepts Readng: otes and Brennan Chapter 5 Georga Tech C 645 - Dr. Alan Doolttle C 645 - Dr. Alan Doolttle Georga Tech How do electrons and holes populate

More information

STATISTISK MEKANIK FYSA21. Hösten Lars Gislén. Department of Theoretical Physics University of Lund

STATISTISK MEKANIK FYSA21. Hösten Lars Gislén. Department of Theoretical Physics University of Lund STATISTISK MEKANIK FYSA Hösten 009 Lars Gslén Department of Theoretcal Physcs Unversty of Lund STATISTICAL MECHANICS Lars Gslén, Theoretcal physcs, Unversty of Lund. Introducton Classcal thermodynamcs

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Phase Space N p t 2 2 t 1 Phase space p, p, p,..., p, r, r, r,..., r N N 1 N r

Phase Space N p t 2 2 t 1 Phase space p, p, p,..., p, r, r, r,..., r N N 1 N r Phase Space p t 2 2 t1 1 Phase space p,..., 1, p2, p3,..., p, r1, r1, r3 r r Phase Orbt If thehamltonan of the system s denoted by H(q,p), the moton of phase pont can be along the phase orbt and s determned

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Equilibrium Statistical Mechanics

Equilibrium Statistical Mechanics Equlbrum Statstcal Mechancs Ref. Davdson, Statstcal Mechancs McGraw-Hll, 96 We wsh to study plasmas n equlbrum for at least two reasons: (a) Many tmes real plasmas are near true equlbrum, at least locally

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I

PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I PHYSICS 391 FALL 2017 QUANTUM INFORMATION THEORY I Jean Well INDEPENDENT STUDY PAPER Professor S.G. Rajeev 10 th December 2017 1 Introducton A method s more mportant than a dscovery, snce the rght method

More information

Thermoequilibrium statistics for a finite system with energy nonextensivity

Thermoequilibrium statistics for a finite system with energy nonextensivity Artcle Statstcal Physcs and Mathematcs for Complex Systems December 0 Vol.56 No.34: 36663670 do: 0.007/s434-0-476- SPCIAL TOPICS: Thermoequlbrum statstcs for a fnte system wth energy nonextensvty ZHNG

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities a for save as PDF Chemstry 163B Introducton to Multcomponent Systems and Partal Molar Quanttes 1 the problem of partal mmolar quanttes mx: 10 moles ethanol C 2 H 5 OH (580 ml) wth 1 mole water H 2 O (18

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Physics 212: Statistical mechanics II Lecture I

Physics 212: Statistical mechanics II Lecture I Physcs 212: Statstcal mechancs II Lecture I A theory s the more mpressve the greater the smplcty of ts premses, the more dfferent knds of thngs t relates, and the more extended ts area of applcablty. Therefore

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Why BP Works STAT 232B

Why BP Works STAT 232B Why BP Works STAT 232B Free Energes Helmholz & Gbbs Free Energes 1 Dstance between Probablstc Models - K-L dvergence b{ KL b{ p{ = b{ ln { } p{ Here, p{ s the eact ont prob. b{ s the appromaton, called

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Probabilistic method to determine electron correlation energy

Probabilistic method to determine electron correlation energy Probablstc method to determne electron elaton energy T.R.S. Prasanna Department of Metallurgcal Engneerng and Materals Scence Indan Insttute of Technology, Bombay Mumba 400076 Inda A new method to determne

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS

PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS DRAGOŞ-VICTOR ANGHEL Department of Theoretcal Physcs, Hora Hulube Natonal Insttute for Physcs and Nuclear Engneerng (IFIN-HH),

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

Maximum entropy & maximum entropy production in biological systems: survival of the likeliest?

Maximum entropy & maximum entropy production in biological systems: survival of the likeliest? Maxmum entropy & maxmum entropy producton n bologcal systems: survval of the lkelest? Roderck Dewar Research School of Bology The Australan Natonal Unversty, Canberra Informaton and Entropy n Bologcal

More information

0.1 Required Classical Mechanics

0.1 Required Classical Mechanics 0.1 Requred Classcal Mechancs The subject of statstcal mechancs deals wth macroscopc (large szed systems consstng of 10 23 partcles) systems. As a result, they have a huge number of degrees of freedom.

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information