Canonical transformations

Size: px
Start display at page:

Download "Canonical transformations"

Transcription

1 Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons, χ A ξ B whch are symplectc transformatons at each pont are called canoncal. Specfcally, those functons χ A ξ satsfyng Ω CD χc χd ΩAB ξa ξ B are canoncal transformatons. Canoncal transformatons preserve Hamlton s equatons. 1 Posson brackets We may also wrte Hamlton s equatons n terms of Posson brackets between dynamcal varables. By a dynamcal varable, we mean any functon f f ξ A of the canoncal coordnates used to descrbe a physcal system. We defne the Posson bracket of any two dynamcal varables f and g by AB f g f, g} Ω The mportance of ths product s that t s preserved by canoncal transformatons. We see ths as follows. Let ξ A be any set of phase space coordnates n whch Hamlton s equatons take the form dξ A AB H Ω ξ B 1 and let f and g be any two dynamcal varables. Denote the Posson bracket of f and g n the coordnates ξ A be denoted by f, g} ξ. In a dfferent set of coordnates, χ A ξ, we have AB f g f, g} χ Ω χ A χ B ξ Ω AB C f ξ D χ A ξ C χ B ξ C ξd f ΩAB χa χ B ξ C Therefore, f the coordnate transformaton s canoncal so that ξ C ξd ΩAB χa χ B ΩCD g ξ D g ξ D 1

2 we have AB f g f, g} χ Ω ξ C ξ D f, g} ξ and the Posson bracket s unchanged. We conclude that canoncal transformatons preserve all Posson brackets. Conversely, a transformaton whch preserves all Posson brackets satsfes ξ C ξd ΩAB χa χ B f ξ C f, g} χ f, g} ξ g f ΩCD ξd ξ C for all f, g and must therefore be canoncal. An mportant specal case of the Posson bracket occurs when one of the functons s the Hamltonan. In that case, we have AB f H f, H} Ω f H x f H p p x f x dx f p df f dp or smply, df f f, H} + Ths shows that as the system evolves classcally, the total tme rate of change of any dynamcal varable s the sum of the Posson bracket wth the Hamltonan and the partal tme dervatve. If a dynamcal varable has no explct tme dependence, f 0, then the total tme dervatve s just the Posson bracket wth the Hamltonan. The coordnates provde another mportant specal case. Snce nether x nor p has any explct tme dependence, we have g ξ D dx dp H, x } H, p } 2 or smply ξ A H, ξ A}, and we can check ths drectly that ths reproduces Hamlton s equatons, dq H, x } j1 j1 H p x H x j x H p j p j x j δ j H p j 2

3 and dp H, p } j1 H p H p H q j p j p j q j Notce that snce q, p and are all ndependent, and do not depend explctly on tme, p. We also have the commutator of the Hamltonan wth the Hamltonan tself, p j p q j 0 dh H, H} + H H so f the Hamltonan s not explctly tme-dependent, then t s a constant of the moton. f More generally, a dynamcal varable wth no explct tme dependence, 0, s a constant of the moton f and only f t has vanshng Posson bracket wth the Hamltonan, H, f} 0. 2 Canoncal transformatons We now defne the fundamental Posson brackets. Suppose x and p j are a set of coordnates on phase space such that Hamlton s equatons hold. Snce they themselves are functons of x m, p n they are dynamcal varables and we may compute ther Posson brackets wth one another. Wth ξ A x m, p n we have for x wth x j, for x wth p j and fnally x, x j} AB x x j Ω ξ x x j x m x x j 0 m1 x, p j }ξ p j, x } AB x p j Ω ξ x p j x m x p j δ j m1 δmδ j m m1 p, p j } ξ Ω AB p p j p p j x m p p j 0 m1 3

4 for p wth p j. The subscrpt ξ on the bracket ndcates that the partal dervatves are taken wth respect to the coordnates ξ A x, p j. We summarze these relatons as ξ A, ξ B} ξ ΩAB However, snce Posson brackets are preserved by canoncal transformatons, ths wll hold n any canoncal coordnates, ξ A, ξ B} χ ΩAB. We summarze the results of ths subsecton wth a theorem: Let the coordnates ξ A be canoncal. Then a coordnate transformaton χ A ξ s canoncal f and only f t satsfes the fundamental bracket relaton χ A, χ B} ξ ΩAB For proof, note that the bracket on the left s defned by χ A, χ B} ξ χa χ B ΩCD ξ C ξ D so n order for χ A to satsfy the canoncal bracket relaton we must have CD χa χ B Ω ξ C ξ D ΩAB 3 whch s just the condton shown above for the coordnate transformaton χ A ξ to be canoncal. Conversely, suppose the transformaton χ A ξ s canoncal, so that eq.3 holds. Then, computng the Posson bracket χ A, χ B} ξ ΩCD χa ξ C χ B ξ D ΩAB so χ A satsfes the fundamental bracked relaton. In summary, each of the followng statements s equvalent: 1. χ A ξ s a canoncal transformaton. 2. χ A ξ s a coordnate transformaton of phase space that preserves Hamlton s equatons. 3. χ A ξ preserves the symplectc form, accordng to AB ξc ξ D Ω χ A χ B ΩCD 4. χ A ξ satsfes the fundamental bracket relatons χ A, χ B} ξ ΩAB These bracket relatons represent a set of ntegrablty condtons that must be satsfed by any new set of canoncal coordnates. When we formulate the problem of canoncal transformatons n these terms, t s not obvous what functons q x j, p j and π x j, p j wll be allowed. Fortunately there s a smple procedure for generatng canoncal transformatons, whch we develop n the next secton. We end ths secton wth three examples of canoncal transformatons. 4

5 2.1 Example 1: Coordnate transformatons Let x, p j be one set of canoncal varables. Suppose we defne new confguraton space varables, q, be an arbtrary nvertble functon of the spatal coordnates: q q x j We seek a set of momentum varables π j such that q, π j are canoncal. For ths they must satsfy the fundamental Posson bracket relatons: q, q j} x,p 0 q, π j } x,p δ j π, π j } x,p 0 Check each: q, q j} x,p 0 m1 q q j x m q q j snce qj p m 0. For the second bracket, δj q, π j }x,p q π j x m q π j m1 m1 x m π j p m Snce q s ndependent of p m, we can satsfy ths only f Integratng gves π j xm p m q j π j xn q j p n + c j x wth the c j an arbtrary functons of x. Choosng c j 0, we compute the fnal bracket: π, π j } x,p π π j x m π π j p m p m x m x n x s x m p n p m q j p s x n x s p m p n x m q j p s xm x n q j x m p n xm x n x m q j p n 2 x n q j p n 2 x n q j p n 0 Exercse: Show that the fnal bracket, π, π j } x,p stll vanshes provded c f for some functon f q. 5

6 Therefore, the transformatons q j q j x π j xn q j p n + f q j s a canoncal transformaton for any functons q x. Ths means that the symmetry group of Hamlton s equatons s at least as bg as the symmetry group of the Euler-Lagrange equatons. 2.2 Example 2: Interchange of x and p. The transformaton q p π x s canoncal. We easly check the fundamental brackets: q, q j} x,p p, p j } x,p 0 q, π j } x,p p, x j} x,p x j, p }x,p δ j π, π j } x,p x, x j} x,p 0 Interchange of x and p j, wth a sgn, s therefore canoncal. The use of generalzed coordnates n Lagrangan mechancs does not nclude such a possblty, so Hamltonan dynamcs has a larger symmetry group than Lagrangan dynamcs. For our next example, we frst show that the composton of two canoncal transformatons s also canoncal. Let ψ χ and χ ξ both be canoncal. Defnng the composton transformaton, ψ ξ ψ χ ξ, we compute CD ψa ψ B ψ A Ω ξ C ξ D χ E ψ B χ F ΩCD χ E ξ C χ F ξ D χ E χ F ψ A ψ B ξ C ξ D ΩCD χ E χ F so that ψ ξ s canoncal. Ω EF ψ A χ E Ω AB 2.3 Example 3: Momentum transformatons ψ B By the prevous results, the composton of an arbtratry coordnate change wth x, p nterchanges s canoncal. Consder the effect of composng a an nterchange, b a coordnate transformaton, and c an nterchange. For a, let q p π x χ F 6

7 Then for b we choose an arbtrary functon of q : Fnally, for c, another nterchange: Combnng all three, we have Q F q j P qn Q π n q P π Q q P qn Q π n pn π x n π Q F q j F p j so that π s replaced by an arbtrary functon of the orgnal momenta. Ths establshes that replacng the momenta by any ndependent functons of the momenta, preserves Hamlton s equatons as long as we choose the proper coordnates q. 3 Generatng functons There s a systematc approach to canoncal transformatons usng generatng functons. We wll gve a smple example of the technque. Gven a system descrbed by a Hamltonan Hx, p j, we seek another Hamltonan H q, π j such that the equatons of moton have the same form, namely n the orgnal system and dx dp dq dπ H p H x H π H n the transformed varables. The prncple of least acton must hold for each par: S S ˆ p dx H ˆ π dq H where S and S dffer by at most a constant. Correspondngly, the ntegrands may dffer by the addton of a total dfferental, df df, snce ths wll ntegrate to a surface term and therefore wll not contrbute to the varaton. In general we may therefore wrte p dx H π dq H + df 7

8 and solve for the dfferental df df p dx π dq + H H For the dfferental of f to take ths form, t must be a functon of x, q and t, f fx, q, t. Therefore, the dfferental of f s df f x dx + f dq + f Equatng the expressons for df we match up terms to requre The frst equaton p f x 4 π f 5 H H + f p fxj, q j, t x 7 gves q mplctly n terms of the orgnal varables, whle the second determnes π. Ths choce fxes the form of π by eq.5, whle eq.6 gves the new Hamltonan n terms of the old one. The functon f s the generatng functon of the transformaton. There are other types of generatng functons. By makng a Legendre transformaton, we can change the ndependent varables. For example, settng we have f p x + f 2 p, q, t p dx H π dq H + df π dq H + dp x + p dx + df 2 p, q, t H π dq H + dp x + df 2 p, q, t so that the ndependent varables are now p, q, satsfyng 6 We may also defne x f p π f H H + f f π q + f 3 x, π j, t f p x π q + f 4 p, π j, t so that the ndependent varables may be taken as ether of the new coordnates wth ether of the old coordnates. 8

9 3.1 Example 1 Let f 2 be a general quadratc, f 2 p, q j, t 1 aj t q q j + b j t p q j + c j t p p j 2 Then x 1 aj q q j + 2b p 2 jp q j + c j p p j b jq j + c j p j π 1 aj q q j + 2b 2 jp q j + c j p p j a j q j + b jp H H + 1 ȧ j t q q j + 2 ḃ j t p q j + ċ j t p p j 3.2 Example 2 Let f 2 p, q j, t g p, t + g p q f j p q q j + 1 3! f jk p q q j q k Then x g p, t g p q 12 p f j p q q j 13! f jk p q q j q k π g p f j p q j 1 2 f jk p q j q k H H + g p, t 9

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 0 Canoncal Transformatons (Chapter 9) What We Dd Last Tme Hamlton s Prncple n the Hamltonan formalsm Dervaton was smple δi δ p H(, p, t) = 0 Adonal end-pont constrants δ t ( )

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation 1 PHYS 705: Classcal Mechancs Hamlton-Jacob Equaton Hamlton-Jacob Equaton There s also a very elegant relaton between the Hamltonan Formulaton of Mechancs and Quantum Mechancs. To do that, we need to derve

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

Integrals and Invariants of

Integrals and Invariants of Lecture 16 Integrals and Invarants of Euler Lagrange Equatons NPTEL Course Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng, Indan Insttute of Scence, Banagalore

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

6. Hamilton s Equations

6. Hamilton s Equations 6. Hamlton s Equatons Mchael Fowler A Dynamcal System s Path n Confguraton Sace and n State Sace The story so far: For a mechancal system wth n degrees of freedom, the satal confguraton at some nstant

More information

Classical Field Theory

Classical Field Theory Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Three views of mechanics

Three views of mechanics Three vews of mechancs John Hubbard, n L. Gross s course February 1, 211 1 Introducton A mechancal system s manfold wth a Remannan metrc K : T M R called knetc energy and a functon V : M R called potental

More information

Calculus of Variations Basics

Calculus of Variations Basics Chapter 1 Calculus of Varatons Bascs 1.1 Varaton of a General Functonal In ths chapter, we derve the general formula for the varaton of a functonal of the form J [y 1,y 2,,y n ] F x,y 1,y 2,,y n,y 1,y

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Iterative General Dynamic Model for Serial-Link Manipulators

Iterative General Dynamic Model for Serial-Link Manipulators EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for Seral-Lnk Manpulators In ths set of notes, we are gong to develop a method for computng a general

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

The generating function of a canonical transformation

The generating function of a canonical transformation ENSEÑANZA Revsta Mexcana de Físca E 57 158 163 DICIEMBRE 2011 The generatng functon of a canoncal transformaton G.F. Torres del Castllo Departamento de Físca Matemátca Insttuto de Cencas Unversdad Autónoma

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Chapter 6. Hamilton s Equations. 6.1 Legendre transforms 156 CHAPTER 6. HAMILTON S EQUATIONS

Chapter 6. Hamilton s Equations. 6.1 Legendre transforms 156 CHAPTER 6. HAMILTON S EQUATIONS 156 CHAPTER 6 HAMILTON S EQUATIONS Chapter 6 Hamlton s Equatons We dscussed the generalzed momenta p = L(q, q, t) q, and how the canoncal varables {q,p j } descrbe phase space One can use phase space rather

More information

CHAPTER 5: Lie Differentiation and Angular Momentum

CHAPTER 5: Lie Differentiation and Angular Momentum CHAPTER 5: Le Dfferentaton and Angular Momentum Jose G. Vargas 1 Le dfferentaton Kähler s theory of angular momentum s a specalzaton of hs approach to Le dfferentaton. We could deal wth the former drectly,

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

On the symmetric character of the thermal conductivity tensor

On the symmetric character of the thermal conductivity tensor On the symmetrc character of the thermal conductvty tensor Al R. Hadjesfandar Department of Mechancal and Aerospace Engneerng Unversty at Buffalo, State Unversty of New York Buffalo, NY 146 USA ah@buffalo.edu

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Review of Newtonian Mechanics

Review of Newtonian Mechanics hapter 1 Revew of Newtonan Mechancs 1.1 Why Study lasscal Mechancs? Quantum lmt Relatvstc lmt General relatvty Mathematcal technques Frst approxmaton Intuton 1.2 Revew of Newtonan Mechancs Basc defntons

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

Point symmetries of the Euler Lagrange equations

Point symmetries of the Euler Lagrange equations RESEARCH Revsta Mexcana de Físca 60 2014 129 135 MARCH-APRIL 2014 Pont symmetres of the Euler Lagrange equatons G.F. Torres del Castllo Departamento de Físca Matemátca, Insttuto de Cencas, Unversdad Autónoma

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

4. Laws of Dynamics: Hamilton s Principle and Noether's Theorem

4. Laws of Dynamics: Hamilton s Principle and Noether's Theorem 4. Laws of Dynamcs: Hamlton s Prncple and Noether's Theorem Mchael Fowler Introducton: Galleo and Newton In the dscusson of calculus of varatons, we antcpated some basc dynamcs, usng the potental energy

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

10.34 Fall 2015 Metropolis Monte Carlo Algorithm 10.34 Fall 2015 Metropols Monte Carlo Algorthm The Metropols Monte Carlo method s very useful for calculatng manydmensonal ntegraton. For e.g. n statstcal mechancs n order to calculate the prospertes of

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

On covariant Poisson brackets in classical field theory

On covariant Poisson brackets in classical field theory On covarant Posson brackets n classcal feld theory Mchael Forger and Máro O. Salles Ctaton: Journal of Mathematcal Physcs 56, 102901 2015); do: 10.1063/1.4932011 Vew onlne: http://dx.do.org/10.1063/1.4932011

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

LAGRANGIAN MECHANICS

LAGRANGIAN MECHANICS LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information